
A Metric for HPC Programming Model Productivity
Wei-Chen Lin

School of Computer Science
University of Bristol

Bristol, UK
wl14928@bristol.ac.uk

Tom Deakin
School of Computer Science

University of Bristol
Bristol, UK

tom.deakin@bristol.ac.uk

Simon McIntosh-Smith
School of Computer Science

University of Bristol
Bristol, UK

S.McIntosh-Smith@bristol.ac.uk

Abstract—There has been a healthy growth of heterogeneous
programming models that cover different paradigms in the HPC
space. Selecting an appropriate programming model for new
projects is challenging: how does one select a model that is
both productive and performant? The same applies for existing
projects aiming to leverage heterogeneous offload capabilities.

While characterisation of programming model performance
has been abundant and comprehensive, productivity metrics
are often reduced to basic measures like Source Line of Code
(SLOC). This study introduces a novel model divergence measure
to objectively evaluate productivity. We cover common aspects
of productivity, including syntax, semantics, and optimisation
overhead.

We present a productivity analysis framework supporting
GCC and Clang, covering models for C/C++ and Fortran.
We evaluate our metric using this framework on select mini-
apps, including some from SPEChpc, and propose a combined
productivity and performance probability visualisation for a
comprehensive picture.

Index Terms—Performance portability, productivity, StdPar,
CUDA, HIP, Kokkos, OpenMP, OpenMP target, SYCL, TBB,
Fortran, benchmarking, semantics

I. INTRODUCTION

A parallel programming model is an encoding of constraints
that helps programmers to express parallelism in their code.
To illustrate, consider a commonly used encoding of doing
parallel work using thread objects (e.g., pthread objects in
Linux). The thread objects constrain and model how threads
are mapped to physical CPU threads. Another way to encode
this abstraction is parallel combinators such as map and
reduce, as seen in C++ PSTL (StdPar). The interfaces of
the combinator functions constrain what kind of input and
output is possible. These are many ways to encode a similar
constraint, and these form the basis of a programming model.

With advances in both heterogeneous computing and tra-
ditional CPUs from various vendors, the need for portable
parallel programming models has increased. Many of the
programming models we see today are capable of expressing
similar constraints but with different design philosophies.

For example, directive models such as OpenMP use declara-
tive annotations to minimise the changes required to the exist-
ing codebase when introducing parallelism. On the other hand,
imperative models like SYCL provide an idiomatic C++ API,
where the programmer is responsible for transforming their
code to exploit parallelism. First-party models, such as CUDA
and HIP, use a C++ dialect to encode accelerator-specific

constraints (e.g., locality of data), thus giving the programmer
maximum control in expressing parallelism. Finally, we also
see library-based abstractions like Kokkos and RAJA, each
providing an opinionated API for the supported backends.

Each model presents its own strengths and trade-offs, cater-
ing to different programming preferences and requirements.
While the expressed parallelism may be similar, the produc-
tivity property may differ significantly depending on the design
choices of the model, whether technical or philosophical.
Understanding how productivity is influenced by these design
choices is critical in helping programmers select the most
productive model for the task at hand. Beyond just selecting
a programming model, understanding the productivity aspect
also helps inform potential optimisations to the model itself
to improve productivity.

The current state of the art in objective metrics for measur-
ing the productivity of a programming model frequently uses
methods like measuring the SLOC (Source Lines of Code).
For example, a programmer might measure the SLOC increase
from a serial version of their code to a port that uses a hetero-
geneous programming model. The degree of SLOC increase is
then used to determine whether the performance improvement,
or lack thereof, is justified. Similarly, the verbosity of models
can be measured by comparing implementations of the same
application using different programming models, although care
must be taken that they are intrinsically equally skillfully
written.

Beyond objective measures, productivity may also be sum-
marised subjectively based on the overall experience of using
the model. Overall, productivity measures derived from the
codebase itself are an area that has not been widely explored.

A. Contribution

We introduce a novel model divergence metric to capture
the semantic information of the codebase. This new metric
offers a higher level of insight than the widely used SLOC
measure. Specifically, this paper presents:

• A novel tree-based method of summarising a codebase
while retaining semantic information for both C/C++ and
Fortran.

• A method for evaluating the divergence of semantic-
bearing trees.

1192979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00160

• An open source unified software framework 1 that pro-
vides an end-to-end workflow to collect and analyse
semantic-bearing trees.

• Evaluation of the new metric against the state of the
art using select HPC benchmark codebases chosen from
SPEChpc.

• Methods of combining this metric with the performance
portability metric [1].

• Insight on the semantic and perceived complexities of
different programming models.

This paper focuses solely on the codebase and does not
directly address the human side of productivity, including
programmer performance, behaviour, and experience. These
aspects of programmer productivity have the potential to be
subjective depending on a programmer’s background knowl-
edge. For example, a Haskell programmer might not im-
plement a stencil algorithm over a structured grid in the
same way a C++ programmer would. Similarly, programmer
experience—or the element of frustration, as coined by Harrell
et al. [2]—may be more pronounced for a programmer more
familiar with the functional programming paradigm.

II. RELATED WORK

Despite the recent rise of multiple heterogeneous and paral-
lel programming models in the HPC space, objective measures
beyond SLOC for productivity are sparse.

In Youssef’s survey of k-means cluster algorithms on the
GPU using SYCL, a reduction of the SLOC is associated with
an increase of productivity [3]. Asahi on the other hand, has
attributed the productivity of heterogeneous code directly to
the programming model itself, where the act of using one,
such as Kokkos, is a productivity improvement [4].

Classically, there has been a constant focus on the human
factor.

Stephen et al. [2] have used survey projects to investigate
how productivity and performance portability can be measured
effectively. Wienke et al. proposed a productivity model where
the aim is to predict HPC software development cost [5]. His
method includes the use of SLOC as a factor, along with many
other metrics on software development workflow.

Pennycook et al. [6] introduced a related code divergence
metric that measures lines that are different between two ports
of an application. Their method involves a Jaccard difference
of two codebases using regions that differ textually after the
execution of the preprocessor. The result is a divergence value
in the range of 0 to 1, which is then used to generate a den-
drogram and a navigation chart when paired with performance
portability metrics. Our work is inspired by this approach but
with enhancements to add the semantic dimension that the
compiler already uses internally for compilation.

III. MODEL DIVERGENCE METRIC

This section describes our novel programming model di-
vergence metric, how it measures productivity, and how it is

1https://github.com/UoB-HPC/SilverVale

related to other kinds of productivity metrics such as Source
Lines of Code (SLOC).

In general, measuring the productivity of a programmer
while using a certain programming model will always have
elements of subjectivity due to human involvement. This is
different from objective measures such as the performance
portability metric (PP) [1], which can be measured by execut-
ing and comparing benchmarks results. We explore the extent
to which one can adopt a similar workflow to PP, attempting
to derive relative metrics without human subjectivity in the
loop.

First, we define a serial codebase S with no parallelism as a
baseline representing maximum productivity (indeed, parallel
programming is hard [7]). This serial codebase uses the
standard control constructs of the implementation language,
with no special consideration for memory allocation or address
space.

Then, we introduce codebase P which is a port of S
that expresses parallelism using the programming model M .
P is ported idiomatically using M and exhibits the ex-
pected speedup from the baseline codebase S; this assump-
tion captures that the port is effective at leveraging parallel
performance. The divergence between S and P represents
additional porting effort for the programmer, which reduces
the productivity.

Note that we do not consider productivity in the sense of
application usability, nor run time, here, such that a user of the
parallel code might expect output in human timescales such
as, before the deadline, overnight, etc.

A frequently used measure in current literature when pre-
sented with different ports of S is to count the increase of
SLOC against either S or an existing P . For example, Lin
et al. previously compared the SLOC needed for the StdPar
port against the CUDA versions of mini-apps as a measure
of programming effort [8]. However, the SLOC measure does
not capture any semantic information from either codebase
and could be misleading due to factors such as linebreak
preferences and macros. Utilising tools to formalise coding
styles may also be problematic when programming models
have idiomatic styles that might diverge from usual conven-
tions in the underlying programming language. A slightly more
involved method might use Logical Lines of Code (LLOC)
or compute the edit distance (e.g., Levenshtein distance or
diff), or number of locations to edit irrespective of the
size of the edit (the authors recall this was suggested in
workshop discussion by S. Hammond) between codebases.
However, these methods are prone to anchoring issues where
the ordering on both sides of the comparison is important.

A. A Tree-Based metric

To capture the semantic information and avoid ordering
issues, we first propose a method where a codebase can be
reduced into multiple semantic-bearing trees for comparison.

From the compiler’s perspective, the source program is
already represented as trees at all levels of the compilation.
We take advantage of this by extracting the Abstract Syntax

1193

Tree (AST) at both the frontend and the backend of the compi-
lation process. Let Tsem represent information extracted from
the frontend AST (e.g., ClangAST). Tsem retains symbolic
relations, expansions (i.e., templates or generic types), and any
other constructs that influence the code generation. Crucially,
we keep a reference to the source location for all nodes in this
tree (i.e., line and file name).

For the backend, let Tir represent the platform-independent
Intermediate Representation (IR) AST (e.g., LLVM IR) before
machine code generation. This tree retains the semantics of
the low-level but platform-independent machine operation.
To keep Tir comparable, the IR used must be stripped of
architecture-specific information. Like Tsem, we retain all
source location references.

Where possible, we also collect the Concrete Syntax Tree
(CST) either from the compiler directly or through a separate
lexer. CST is sometimes referred as the parse tree as it
captures all syntactical tokens required to fully reconstruct
the source. For example, CSTs usually retains low semantic-
value tokens such as commas in source text, even when the
comma separated text is already parsed into a list of tokens.
We collect both the AST and CST so that we can compare
how much boilerplate syntactic token is present in the source
that subsequently gets discarded at the frontend.

Let Tsrc represent information extracted from the CST
after normalisation. The normalisation process removes noise
such as space, comments, and control tokens. Tsrc contains
a tokenised view of the source with nodes that represent
syntactic elements. This is conceptually similar to what syntax
highlighters provide. For example, the CST cannot discrimi-
nate between function calls and functional-style casts in C++;
both are considered a call token. Languages that include a
preprocessing phase will yield two Tsrc: one before and one
after the preprocessor.

The back reference from the semantic trees to the source
code is important and serves multiple purposes. First, this
information is necessary for reconstructing the dependency
tree between all source units. This process enables the cal-
culation of secondary metrics such as module coupling [9]
and overall tree complexity. Additionally, back references are
useful for annotating or pruning specific parts of the tree based
on source location. For example, we use runtime coverage
data to eliminate parts of the tree that were never executed.
The coverage data, provided by most compilers, reference the
original source location which is used to mask out parts of the
tree.

B. Tree distance

Now that we have defined a way to summarise a codebase in
semantic-bearing trees, we introduce a method for comparing
these trees to form a relative divergence metric. Similar to
string edit distance, to compare distances between trees we
use the Tree Edit Distance (TED) algorithm. TED is defined
as the minimal amount of deleting, inserting, and relabelling of
tree nodes required to transform one tree to another [10]. For
example, consider the comparison of two simple ClangASTs

shown in Fig. 1, the dotted lines show nodes that are com-
mon between two trees. The remaining five nodes are either
relabelled, inserted, or deleted.

Function: foo

ReturnStmt

BinaryOperator: +

Literal: 1Literal: 2

Function: bar

ReturnStmt

Literal: 2

Var: b

Literal: 0

relabel

Fig. 1. Two ASTs with a TED distance of five: four outlined nodes are
inserted or deleted with one relabelled node on the top.

We denote dTED(T1, T2) as the TED between n-ary trees T1

and T2. TED is applicable for any n-ary tree structure, and the
algorithm supports specifying different weights for different
operations. For simplicity, we use the unit weight of one for all
nodes and operations. A future study may associate different
weights depending on operations and node types; adding new
code may have a different productivity impact than removing
existing code.

To avoid excessive relabelling of nodes that have
programmer-introduced names, we normalise names by retain-
ing only the token type. For example, all variable, function,
and class names are removed. For TED, this has the effect
of preserving the overall semantic structure and control flow
graph such that a subtree with the closest structure will have
the minimal distance.

C. Tree-Based Model Divergence (TBMD)

TABLE I
CODEBASE SUMMARISATION METRICS

Metric Measure Domain Variants

SLOC Absolute Perceived,
Language agnostic

+preprocessor
+coverage

LLOC Absolute Perceived,
Language agnostic

+preprocessor
+coverage

Source
Relative
(Edit distance)

Perceived,
Language agnostic

+preprocessor
+coverage

Tsrc
Relative
(TED) Perceived +preprocessor

+coverage

Tsem
Relative
(TED) Semantic +inlining

+coverage

Tir
Relative
(TED) Semantic +coverage

Performance Relative
(PP) Runtime N/A

As our metric is novel, we compare it with existing metrics
to highlight its strength and potential advances over the state
of the art. Table I outlines the measure, domain, and possible
variants when used on a codebase. An empirical evaluation is
done for all metrics listed later on in Section V.

1194

Given a codebase C containing the set of source files
FC = {F1, F2, . . . , Fn}. We consider a unit of comparison
as the source file itself, and all its module dependencies (i.e.,
headers), denoted unitC(x) in Eq. (1) for some file x in C.
This is crucial for correctly handing languages like C++ where
the header may contain large chunks of the program logic.
While this definition also includes artefacts such as system
headers, those can simply be masked out during the analysis
phase.

unitC(x) = dep(x) ∪ x (1)

Using this unit definition, we discuss the concrete metric
listed in Table I. This table is sorted by the kind of semantic
information given. Starting from the top, with the classic
SLOC, measured in the number of lines break characters
in the source file. The metric, together with all perceived
metrics discussed (SLOC, LLOC, Source), is applied after
normalisation of white spaces and comments. This is inline
with the SLOC definition proposed by Nguyen et al. [11].
Whitespace normalisation removes consecutive whitespace
characters while preserving all other tokens. In the same vein,
comments are removed using ranges marked by a CST.

In all cases, we make special provisions for language that
store semantic-bearing information in unusual places. For
example, OpenMP pragmas are identified and retained even
after preprocessing and normalisation steps. Languages that
use special comment tokens for directives are also handled.

Like SLOC, we use the LLOC definition from Nguyen et
al. [11]. LLOC considers certain tokens as a logical line—
for example, a for-loop header in C++ would be counted
as a single line regardless of linebreak. This requires lexical
understanding of the source, which is again available from the
CST. SLOC and LLOC are both absolute measures, meaning
that a single value can be computed from one codebase. Eq. (2)
and Eq. (3) defines the SLOC and LLOC respectively on
codebase C as the sum of the metric on all units in the
codebase.

SLOC(C) =
∑
x∈FC

SLOC(unitC(x)) (2)

LLOC(C) =
∑
x∈FC

LLOC(unitC(x)) (3)

Source is a relative measure where it compares unit pairs
from two codebases textually, as defined in Eq. (4).

dLCS(C1, C2) =
∑

{FC1,FC2}∈match(C1,C2)

LCS(FC1, FC2)

(4)
This is the sum of the longest common subsequence (LCS)
on all unit pairs between the two codebases, where each file of
the unit is normalised like LLOC. The match function deter-
mines which two units should be paired together, indicating
that the files implement equivalent parts in their respective
code bases. This function is specific to the codebase being

compared, but logically, it should pair units with the same
purpose.

In principle, match is not required as the entire codebase
can be treated as a single large tree with units at the first
level. In practice, this adds significant runtime overhead when
solving for TED on codebases beyond a few thousand lines,
so providing match where possible accelerates the workflow.

Finally, metrics Tsrc, Tsem, and Tir, are tree-based relative
measures where we compare semantic tree pairs from two
codebases. Tsrc covers the perceived semantics from each unit,
as viewed by a programmer in a syntax-highlighted text editor.
Then, Tsem covers the semantic information as interpreted by
the compiler. We end with Tir covering low-level machine
semantics as interpreted by the abstract hardware.

Tsrc(F) = Tsem(F) = Tir(F) =
∪

x∈FC

unitC(x) (5)

For all these cases, we use the sum of the TED distance of all
tree pairs defined in Eq. (6) and the tree constructor defined
in Eq. (5).

d(C1, C2) =
∑

{FC1,FC2}∈match(C1,C2)

dTED(T (FC1), T (FC2))

(6)
A value of zero indicates the codebase compared is identical.
These three tree metrics form the basis of the novel diver-
gence metric; we collectively call this the Tree-Based Model
Divergence, or the TBMD metric.

We define a bound for TBMD that denotes the maximum
divergence of two codebases such that no semantic similarity
exists, shown in Eq. (7).

dmax(C1, C2) =
∑

{FC1,FC2}∈match(C1,C2)

|T (FC2)| (7)

Let |T | represent the total number of tree nodes in tree T .
dmax(C1, C2) gives the maximum distance d(C1, C2) can
yield before C2 is considered an entirely different codebase
from C1. This is different from a divergence upper-bound,
which we do not define. Intuitively, the maximum divergence
is determined by the amount of change necessary to remove all
nodes from one codebase and then fully reintroducing nodes
from another. Maximum divergence is primarily useful for
normalising TBMD for it to be comparable across divergences
of multiple models.

IV. SILVERVALE ANALYSIS FRAMEWORK

This section describes the software framework we imple-
mented to capture the required tree information discussed
in Section III. For a comprehensive study, we design our
framework to cover two primary language categories widely
used in the HPC space: C/C++ and Fortran.

We designed compiler plugins to implement the extraction
of semantic-bearing trees discussed in the previous section. For
C/C++, we devlop against the open-source Clang and GCC
compilers. These two compilers cover many HPC compiler
uses and provide a friendly plugin system for developers.

1195

For Fortran, we use GFortran from GCC. There are other
equally popular compilers for Fortran, but many are pro-
prietary and do not provide a plugin system with the re-
quired capabilities. At the time of writing, the Clang-based
flang-new compiler did not provide a robust OpenMP
implementation that can compile common Fortran HPC code-
bases.

Modern codebases typically involve multiple source files
and may have complex configuration steps that gener-
ate additional source files and set macro arguments. We
design our framework to handle this robustly by using
Compilation Databases (DBs). These DBs are a single
compile_commands.json file that records the compiler
invocations used to compile the codebase to completion. Build
tools such as CMake and Meson natively support generating
Compilation DBs, and third-part tools for GNU Make are also
available.2

Compile

Codebase

Compile
/w Cov + DB

Binary
Binary
/w Cov

Compilation
DB

Benchmark

SilverVale
Indexing

Codebase
DB

Generate PP.
metric

Generate diff
metric

Fig. 2. Divergence metric workflow, optional coverage data in grey

Fig. 2 shows where our framework fits into an end-to-end
workflow. The SilverVale framework ingests a Compilation
DB file from a codebase that has been successfully com-
piled previously. The user can optionally provide a binary
that has been compiled with coverage options alongside the
generated coverage data. At this stage, SilverVale generates
a Codebase DB where it indexes all compiler invocations in
the Compilation DB. The result is a portable set of semantic-

2https://github.com/rizsotto/Bear

bearing trees and metadata files all stored in a Zstd compressed
MessagePack format.

The following section discusses the challenges and overall
workflow for extracting semantic-bearing trees from both
Clang and GCC.

Compilation

DB

clang++ main.cpp
-MD -E

g++ main.cpp
-MD -E

main.ii
main.d

main.tir
(...)

main.ts
(...)

GCC Clang

Link

main.profraw
main.gcda

g++ main.cpp
-fplugin=uproot.so

clang++ main.cpp
-fplugin=uproot.so

Binary

Object

LLVM IRLow GIMPLE

Object

ClangASTHigh GIMPLE

Fig. 3. SilverVale internal tree capture process

A. Compiler: Clang
The Clang compiler supports user plugins and provides a

set of modular and easy-to-use AST traversing APIs for the
underlying ClangAST. ClangAST is the primary AST used
for all C/C++ dialects, including CUDA, HIP, and directives
such as OpenMP. Internally, C++20 modules and precompiled
headers in Clang are implemented using ClangASTs that are
serialised to files.

At the frontend, the representation of the source code
in ClangAST is straightforward, but a lot of non-semantic
bearing nodes are also required to capture nuances of the C++
language. For example, implicit and value category casts are
prevalent and visible in most statements. To generate Tsem,
we discard all non-semantic nodes and record only the node
type, literal, and operator names. Two Tsem are generated:
Tsem+i which inlines all function invocations that originated
from the same source at the tree level (i.e., system headers or
libraries are excluded), and the one that is as written (Tsem,
unmodified). Tsem+i captures the case where the codebase
itself attempts to abstract over a parallel programming model.

To generate Tir from the backend, we directly invoke
Clang again but adjust the compile command to emit LLVM

1196

bitcode. This only works well for host code; for offloading
models, including HIP, CUDA, and OpenMP target, the output
format is a Clang offload bundle3 that contains bitcode for
multiple targets. In later versions of Clang, depending on the
dialect, the compiler driver may embed the bitcode directly
in the host bitcode file under a special section annotated with
@llvm.embedded.object. For both cases, we extract the
embedded bitcode and parse it into a semantic tree. Like
the frontend tree, we discard all symbol names but retain
instruction names, functions, basic blocks, and globals. Fig. 3
gives a high-level flowchart of the artefacts generated at each
of the stages in the compilation process.

B. Compiler: GCC

Like Clang, GCC (including GFortran) supports compiler
plugins, although the exposed API is significantly more com-
plex and is only sparsely documented. GCC lowers (translates)
C/C++ source code to GIMPLE, GCC’s internal tree repre-
sentation designed for optimisation passes. Other languages
like Fortran first lower to a different IR, GENERIC, which
is then converted to GIMPLE as a later step. GIMPLE is
functionally similar to ClangAST but represents the node using
a tuple instead of an arbitrary tree. This tuple structure is not
comparable to ClangAST in any meaningful way, so cross-
compiler comparison is not possible.

Unlike Clang, GCC uses GIMPLE for both the frontend,
and the backend before target-specific code generation. Early
on in the frontend, GCC uses High GIMPLE to represent the
semantics of the source language. Towards the backend, Low
GIMPLE is used which contains a reduced set of instructions,
with control structures rewritten as goto statements to go be-
tween basic blocks. After this, target-specific code generation
begins, which converts Low GIMPLE to RTL for allocating
machine registers.

We generate both Tsem and Tir from the two GIMPLE vari-
ants by rewriting all tuple representations back to a tree-like
structure while retaining semantics, as shown in Fig. 3. Unlike
Clang, generating the inlined tree Tsem+i requires significant
effort due to how lambda expressions are represented, so we
have omitted this for GCC. We also do not consider offload
scenarios for GCC at this time, and is something we plan to
investigate in the future.

C. Concrete Syntax Tree

Modern compilers do not usually have a clearly demarcated
phase where a parse tree solely describes the lexical properties
of the source; some semantic information will be embedded
for convenience. For both Clang and GCC, the plugin API
does not expose a CST of any kind. To obtain a Tsrc, we
use the tree-sitter4 library to generate parse trees and filter
out anonymous tokens. The tree-sitter library is a proven
syntax and symbol parsing library that GitHub internally uses
for static code analysis [12]. The library has a wide range

3https://clang.llvm.org/docs/ClangOffloadBundler.html
4https://github.com/tree-sitter/tree-sitter

of official language support, including C/C++, variants for
CUDA/HIP, and Fortran.

Using a CST that is decoupled from the compiler has an
additional advantage where the resulting Tsrc are comparable
within the same language, and not just with the same compiler.
Recall that Tsem is not comparable across compilers due to
semantic differences.

D. Coverage

SilverVale implements coverage support and accepts profile
data generated using Clang’s source-based code coverage
option or GCC’s GCoverage. If the codebase under analysis
is compiled with coverage flags, SilverVale can be instructed
to use these profile data as part of the index step. Internally,
the coverage data is converted to a line-based mask that can
be toggled for any tree structure or source file.

E. TED and string distance

The time and space complexity of TED is high: the naive
recursive implementation exhibits exponential time complexity
[13]. However, due to the versatility of the TED algorithm
in various domains that handle structured data, the newest
method, APTED, proposed by Pawlik et al. lowers the time
complexity to just O(n2) [14]. We use the open-source
implementation5 of APTED implemented by Pawlik et al.
themselves [15].

For comparing source files, we use the well-established
string sequence distance algorithm proposed by Wu et al. [16].
This is the algorithm used internally by the Linux utility diff.
Like APTED, we have integrated a high-quality and open-
source implementation6 created by Tatsuhiko Kubo [17].

To reduce the complexity of implementing SilverVale, we
implemented a C++ header-only combinator library called
Aspartame7. Aspartame is similar to C++20’s range library
but provides a much richer set of operations inspired by the
Haskell and Scala programming language.

V. EVALUATION

The following subsections will evaluate our proposed
TBMD metric. We will use a set of mini-apps that are im-
plemented in multiple programming models to assess whether
our metric provides any more insight than SLOC.

We use four mini-apps with different runtime characteristics,
as listed in Table II. BabelStream is the McCalpin STREAM
benchmark but implemented in heterogeneous models for both
CPUs and GPUs [18]. We include the recently added Fortran
version [19] to evaluate SilverVale’s Fortran support. Similar
in spirit to BabelStream, miniBUDE is a molecular docking
mini-app implemented in multiple programming models [20],
representative of the larger scientific code, BUDE.

For larger applications, CloverLeaf is a CFD application
using a structured grid to solve PDEs. Likewise, TeaLeaf
is a heat equation solver that uses the Conjugate Gradient

5https://github.com/DatabaseGroup/tree-similarity/
6https://github.com/cubicdaiya/dtl
7https://github.com/tom91136/Aspartame

1197

TABLE II
CODEBASE SUMMARISATION METRICS

Mini-app Type Models

BabelStream
Fortran Memory BW

Sequential, Array, DoConcurrent
OpenMP, OpenMP Taskloop
OpenACC, OpenACC Array

BabelStream
C++ Serial, CUDA, HIP

OpenMP,OpenMP target,
Kokkos, StdPar, TBB,
SYCL (USM/Accessors)

miniBUDE Compute

CloverLeaf Memory BW
Structured grid

TeaLeaf

method. Both of these mini-apps are part of Sandia’s Mantevo
benchmark suite, and the base OpenMP version has recently
been added to the SPEChpc suite [21].

It is imperative that we start our evaluation on smaller mini-
apps. The purpose of mini-apps is to have proxies that mirror
the real application but without the additional complexity
associated with the full application. As such, any discrepancies
from expectation can be easily investigated. Although mini-
apps do not necessarily capture some of the complexities
around source coding practices or size of the code base, by
using production-ready tools to ingest the source (GCC, Clang,
tree-sitter, etc.), we have engineered our approach to work for
such applications, with successful preliminary tests.

When comparing models, we consider some variants of a
model as distinct. Namely, OpenMP and OpenMP target, and
SYCL with or without USM. While OpenMP target is just an
extra set of directives for accelerators, more often than not,
the expression of parallelism and data movement is different
from host OpenMP. For SYCL, the USM model removes a
significant amount of the boilerplate but shifts the complexity
of memory management to the runtime. We would like our
metric to capture these productivity variables.

For all comparisons, we use Clang 17 as the primary
compiler and also GCC version 13 for Fortran codes. We use
Clang’s built-in support for the CUDA and HIP model. For
SYCL, we use the edge commit (August 2024) of the Intel
LLVM fork as SYCL support in upstream Clang is still at the
RFC (Request For Comment) stage.

Note that any boilerplate code shared between all models
will not have any impact on the metric as those simply evaluate
to a divergence of zero as the trees will be identical. If a
specific model has deviation from the shared boilerplate, then
this will also be automatically captured.

A. Semantic retention: C/C++

In this section, we use TeaLeaf to highlight the semantic-
retention properties of TBMD. We select TeaLeaf because the
amount of code expressed in any given programming model
is balanced in terms of shared and specialised model code.
This is not the case for miniBUDE or BabelStream, where the
code has a higher ratio of boilerplate to actual algorithm as
the computational kernels are relatively short in SLOC.

StdPar
TBB

Kokko
s

Serial

OpenMP

OpenMP Target
CUDA HIP

SYCL (U
SM)

SYCL (A
cc.)

StdPar

TBB

Kokkos

Serial

OpenMP

OpenMP Target

CUDA

HIP

SYCL (USM)

SYCL (Acc.)

0.5

0.0

0.5

1.0

Fig. 4. TeaLeaf model clustering, using Tsem

We setup TeaLeaf to be compiled with the Clang com-
piler and generate a compilation database. We then execute
our SilverVale tool over TeaLeaf, on a total of ten models,
including two variants. We run the comparison step over the
cartesian product of all models to yield a correlation matrix.
Fig. 4 shows the clustering of all models. We generate the
associated dendrogram around the map using complete linkage
and Euclidean distance between points. In brief, the proximity
to the closest branch of any two groups represents the degree
of similarity; clusters connected with a short distance before
a branch are more similar.

We observe a clear clustering of model variants and models
that are related in terms of design philosophy. For example,
both variants of SYCL, and OpenMP, are grouped into a
cluster, and the HIP model is grouped with CUDA. The serial
model appears to be close to the OpenMP variants. This
validates the design philosophy where OpenMP can mean
minimal changes are required to your code.

We now explore the clustering of both existing metrics
together with TBMD in Fig. 5. Overall, SLOC and LLOC did
not group related models together, and the clustering appears
random, confirming our experiences of their limited use as
productivity metrics.

Comparing Source, Tsrc, and Tsem, we start to see an
almost identical clustering. Here Kokkos has proximity to
SYCL, but it is later grouped with OpenMP and serial models
when using Tsrc and Tsem. As investigation on the tree
showed that while Kokkos may be textually similar to SYCL in
certain locations, the difference is outmatched by the number
of semantic-bearing elements the SYCL model introduces.
Concretely, the core SYCL API surface is heavily templated
with non-visible but semantic-beaning elements such as default

1198

Serial Kokkos OpenMP OpenMP
Target

CUDA TBB HIP SYCL
(Acc.)

StdPar SYCL
(USM)

0.00

0.05

0.10

0.15
SLOC

Kokkos Serial OpenMP TBB SYCL
(Acc.)

CUDA HIP OpenMP
Target

SYCL
(USM)

StdPar
0.000

0.025

0.050

0.075

0.100

0.125
LLOC

OpenMP
Target

OpenMP Serial TBB StdPar SYCL
(Acc.)

SYCL
(USM)

Kokkos CUDA HIP
0.0

0.1

0.2

0.3
Source

StdPar TBB OpenMP
Target

OpenMP Serial Kokkos SYCL
(Acc.)

SYCL
(USM)

HIP CUDA
0.0

0.1

0.2

0.3 Tsrc

CUDA HIP SYCL
(USM)

SYCL
(Acc.)

Kokkos Serial OpenMP OpenMP
Target

TBB StdPar
0.0

0.1

0.2

0.3

0.4

0.5 Tsem

OpenMP
Target

SYCL
(Acc.)

Kokkos SYCL
(USM)

CUDA HIP Serial OpenMP TBB StdPar
0

1

2

3

4

5 Tir

Fig. 5. TeaLeaf model clustering dendrogram, using LLOC, SLOC,
Source, Tsrc, Tsem, and Tir

values of parameters or even templates. In other words, SYCL
tries to hide semantic complexities using the C++ syntax and
managed to achieve a lower divergence at the source level.

The relation of TBB and StdPar is interesting. In Source,
Tsrc, and Tsem of Fig. 5, TBB and StdPar are grouped in
the same cluster. In essence, the two models look similar
and exhibit similar semantics in the case of TeaLeaf. Indeed,
StdPar on CPUs are frequently implemented using TBB, as
Lin et al. have explored previously [8], and the similarity in
API design may have led to this decision. In fact, STL directly
influences the API surface of TBB: Reinders et al. make many
references about this inspiration in their textbook on TBB [22].

At the IR level, some host models maintain clustering while
other offloading models are grouped in a different cluster. For
offload models, we observe IR elements that are not part of the

program, but runtime support code that help setup the device.
Since BabelStream contains only five short kernels, we do
not see any meaningful clustering for Tir except for host-only
models.

B. Semantic retention: Fortran

We now apply the same semantic analysis for the Fortran
version of BabelStream. This is the only mini-app where
we find a wide range of programming models to compare
against for the Fortran language. Note that both TeaLeaf
and CloverLeaf have a version in Fortran using OpenMP
and MPI, but due to time constraints, we do not evaluate
them in this paper, instead using the C++ versions which
have wider coverage of programming models. Fig. 6 shows
the clustered dendrogram for BabelStream Fortran using the
metrics LLOC, SLOC, Source, Tsrc, Tsem, and Tir.

Just as we found with C/C++ previously, SLOC and LLOC
contain no semantic information, so the clustering appears
random. Source, Tsrc, and Tsem all clustered in a similar
manner where OpenACC and the rest of the models are in
distinct groups. On inspection of Tsem and Tir, we found
that the OpenACC model, including the array variant, did not
introduce extra tokens related to parallelism. This outcome is
consistent with the single-threaded performance as evaluated
by the OpenACC port’s authors [19], where they note a
possible quality of implementation issue in GCC.

Overall, all the models at Tsem are more similar when
compared to the C++ version of BabelStream.

C. Metric model relation

Since we support different variants of each metric, such as
with and without preprocessor or coverage, we now take a
deeper look at all the metrics together. The coverage modifier
is obtained by recompiling the application under analysis with
the appropriate coverage flags and then running the application
with a reduced problem set. The resulting coverage data is then
fed into to the indexing step of SilverVale tool to use as a mask
for tree-based representations.

When comparing the serial code (model) to itself, as seen
in the left most column of Fig. 7 and Fig. 8, we see a correct
divergence of 0 for all metrics.

SYCL, when using the CPP modifier (Source+pp), exhibits
extreme divergence from the serial model. This appears to be
an artefact of the two-pass compilation used by Intel DPCPP,
the effect of this compilation model is discussed in depth by
Aksel et al. while implementing the oneAPI specification [23].
The complex host-device macro expansion yields a nearly 20
MB header when <CL/sycl.hpp> is included. Additionally,
the compiler attempts to insert several integration headers as
part of the process, which may have introduced unnecessary
source files.

The directive-based OpenMP has a consistently higher Tsem

divergence when compared to Tsrc or other perceived metrics.
We found that Clang has OpenMP-specific AST tokens that
capture OpenMP semantics. In essence, the subtree containing
an OpenMP token is handled at the compiler level: the

1199

Array Sequential DoConcurrent OpenMP OpenACCArray OpenACC OpenMPTaskloop
0.00

0.05

0.10

0.15 SLOC

Array OpenACCArray OpenMP OpenMPTaskloopSequential DoConcurrent OpenACC
0.000

0.025

0.050

0.075

0.100

0.125 LLOC

OpenMPTaskloop OpenMP Sequential DoConcurrent Array OpenACCArray OpenACC
0.000

0.025

0.050

0.075

0.100

0.125 Source

OpenACCArray Array OpenACC OpenMPTaskloop OpenMP Sequential DoConcurrent
0.00

0.05

0.10

0.15 Tsrc

OpenACCArray OpenACC OpenMP Array DoConcurrent SequentialOpenMPTaskloop
0.0

0.1

0.2

0.3 Tsem

OpenACCArray OpenACC OpenMP OpenMPTaskloopSequential Array DoConcurrent
0.0

0.1

0.2

0.3

0.4

0.5 Tir

Fig. 6. BabelStream Fortran model clustering dendrogram, using LLOC,
SLOC, Source, Tsrc, Tsem, and Tir

semantic meaning is ascribed in a way that is opaque in the
source. In other words, OpenMP pragamas provide additional
semantics beyond those of the base language. And because
of this, no other metric was able to capture this information.
Intuitively, using OpenMP may require a few lines of directive
and look simple, the actual transformation that happens is
involved and may not be any less complex than, say Kokkos.
We found GCC to also have OpenMP tokens in the AST.
Unfortunately, due to time constraints, we did not conduct a
full experiment to investigate this further.

The inlined semantic tree Tsem+i inlines any function calls
back into the tree. As expected, for library-based or language-
based models, we see a huge jump in divergence as foreign
code is brought in to the tree. For OpenMP, and to a lesser
degree CUDA, both show very little change for Tsem+i. These
two models rely on the compiler to introduce semantics, so

Serial OpenMP OpenMP
Target

Kokkos TBB StdPar CUDA HIP SYCL
(Acc.)

SLOC
SLOC + pp
SLOC + cov
LLOC
LLOC + pp
LLOC + cov
Source
Source + pp
Source + cov
Tsrc

Tsrc+pp
Tsrc+cov
Tsem

Tsem+cov
Tsem + i

Tsem + i+cov
Tir

Tir+cov
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 7. miniBUDE models, where divergence from serial is plotted from in
a heatmap from 0 to 1

Serial OpenMP OpenMP
Target

Kokkos TBB StdPar CUDA HIP SYCL
(USM)

SYCL
(Acc.)

SLOC
SLOC + pp
SLOC + cov
LLOC
LLOC + pp
LLOC + cov
Source
Source + pp
Source + cov
Tsrc

Tsrc+pp
Tsrc+cov
Tsem

Tsem+cov
Tsem + i

Tsem + i+cov
Tir

Tir+cov
0.0

0.2

0.4

0.6

0.8

1.0

Fig. 8. CloverLeaf models, where divergence from serial is plotted from in
a heatmap from 0 to 1

nothing gets inlined. HIP, on the other hand, requires non-
trivial runtime headers, so we still see a higher divergence
compared to Tsem+i.
Tir seems to misbehave for offload models. Initial investiga-

tion suggests that the obtained IR contains multiple layers of
driver code that is unrelated to the core algorithm. This is re-
peated for each file, thus artificially increasing the divergence.
The coverage modifier has limited success in recovering this
metric as Clang does not offer a way to instrument device
code to generate coverage.

D. Code Migration

Programming model migration commonly occurs for HPC
applications. As a motivating example, we consider the sce-
nario where an existing code may have a CUDA implementa-
tion at first because NVIDIA GPUs were the first platform
available when the code was developed. As other systems
with GPUs from other vendors were available, the base CUDA
version may need to be ported to run on other platforms. Other
similar scenarios can be described.

1200

SLOC LLOC Source Tsrc Tsem
0.0

0.1

0.2

0.3

0.4

0.5
M

et
ric

s

Kokkos
OpenMP Target
StdPar
SYCL (Acc.)
SYCL (USM)

Fig. 9. Model divergence from the serial model of TeaLeaf

SLOC LLOC Source Tsrc Tsem
0.0

0.1

0.2

0.3

0.4

0.5

M
et

ric
s

Kokkos
OpenMP Target
StdPar
SYCL (Acc.)
SYCL (USM)

Fig. 10. Model divergence from the CUDA model of TeaLeaf

In this section, we consider the different cost of divergence
when porting a model from CUDA to other offload models,
instead of starting from a serial model. We use the same
TeaLeaf data obtained from Fig. 5 to conduct this case study.
Fig. 9 shows the divergence of offload TeaLeaf models when
starting from a serial codebase. Likewise, Fig. 10 shows the
divergence starting from a CUDA codebase.

The divergence when starting from serial is lower when
compared to starting from CUDA. This is most obviously
seen with the Tsem metric and not the perceived metrics. This
suggests that CUDA already encoded a set of semantics that
differ from that of other models. Intuitively, it is common for
CUDA programs to include platform-specific logics such as
warp-size, or even use features that depend on independent
thread scheduling. Such features or constraints are not always
implemented or presented on another platform’s hardware.
This impedance is reflected in the higher Tsem for porting
from CUDA.

The OpenMP target model stands out as having the lowest
divergence overall when ported from serial, and the second
lowest for Tsem and Tsrc when ported from CUDA. We
conjecture that there may even be a desirable path where first
porting to a model with less divergence, and then porting from
that to the intended model, leads to an overall improvement
in productivity. We previously noted that OpenMP describes
the parallel semantics in a comparatively concise way in terms
of code divergence, and so this may provide a stepping stone
to first state the parallel semantics of the code using a non-
verbose model.

VI. COMBINED PERFORMANCE PORTABILITY AND
PRODUCTIVITY

Our model divergence metric presented is only concerned
with the productivity of the codebase artefact. This section
proposes a simple yet effective way of enhancing performance
portability with the model divergence metric.

First, we run TeaLeaf and CloverLeaf on a diverse set of
hardware platforms shown in Table III.

TABLE III
PLATFORM DETAILS FOR PP BENCHMARKS

Vendor Name Abbr. Platform
Topology

Intel Xeon Platinum 8468 SPR 8 nodes (32C*2)
AMD EPYC 7713 Milan 8 nodes (64C*2)
AWS Graviton 3e G3e 8 nodes (64C*1)
NVIDIA Tesla H100 (SXM 80GB) H100 2 nodes (4 GPUs)
AMD Instinct MI250X MI250X 2 nodes (4 GPUs)
Intel Data Center GPU Max 1550 PVC 1 node (4 GPUs*)

The benchmarks are run using all available compilers for
each platform. Where more than one compiler exists for each
model, we compile our benchmark with each and only use the
best performing result. For CloverLeaf, we use the BM64 deck
at 300 iterations over 4 MPI ranks. For TeaLeaf, we use the
BM5 deck at 4 steps over 4 MPI ranks. Fig. 11 and Fig. 12
shows our performance results in the classic cascade plot, as
proposed by Sewall et al. [24].

Interpreting the PP bar chart on the right might tell us
that these models are all quite similar. If we are interested
in specific platforms, we may look at the cascade plot and
observe where the performance drops. However, it is hard
to draw a concrete recommendation without the productivity
dimension.

To this end, we plot PP against our model divergence metric
to form a navigation chart, as shown in Fig. 13, and Fig. 14.
This chart is similar to and inspired by the navigation chart
proposed by Pennycook et al. [6]. We chose to include only
two of our tree metrics, Tsem and Tsrc, to avoid overcrowding
the chart. As the two metrics represent the same model, we
draw a line to create the association.

In general, the ideal model is located in the top right
quadrant, where it shares proximity to the serial model and
has good performance portability. Models that are not portable
(e.g., a PP of zero) are still plotted on the chart as the

1201

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ica
tio

n
Ef

fic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0 Perform
ance Portability

1 2 3 4 5 6
Platform

D
C
B C F A D E
B E F A D C
B E F A D C
B E C F D A
A F B
B D E F C A Kokkos

OpenMP
OpenMP Target
SYCL
SYCL (USM)
StdPar
CUDA
HIP

A EPYC 7713
B Graviton3e

C H100
D MI250X

E PVC1550 F Xeon 8468

Fig. 11. TeaLeaf cascade plot, showing performance portability on six
platforms

0.0

0.2

0.4

0.6

0.8

1.0

Ap
pl

ica
tio

n
Ef

fic
ie

nc
y

0.0

0.2

0.4

0.6

0.8

1.0 Perform
ance Portability

1 2 3 4 5 6
Platform

D
C
A C F B D E
B A F E C D
F C A B D E
E F B C A D
B A F
B F D C A E Kokkos

OpenMP
OpenMP Target
SYCL
SYCL (USM)
StdPar
CUDA
HIP

A EPYC 7713
B Graviton3e

C H100
D MI250X

E PVC1550 F Xeon 8468

Fig. 12. CloverLeaf cascade plot, showing performance portability on six
platforms

divergence is unaffected by PP. Overall, the navigation chart
visualises the tradeoff of performance and productivity in a
self-contained way. For example, with CloverLeaf, the acces-
sor variant of SYCL is not a particularly productive model
compared to the rest. However, it exhibited slightly better
performance than the SYCL USM variant, possibly due to
explicit memory movements that accessors encode.

The distance between Tsem and Tsrc, as illustrated using
connected ⋆ and •, gives interesting insight on the perceived
and semantic similarity to the serial version. Consider the
OpenMP and Kokkos model in Fig. 13, where the value of

0.00.20.40.60.81.0
Model Divergence from Serial = Tsem = Tsrc

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 P

or
ta

bi
lit

y

More
portable

Less
portable

More
productive

Less
productive

| Towards no resemblance of serial code

|
 D

id
 n

ot
 ru

n
on

 a
ll

pl
at

fo
rm

s

CUDA
OpenMP
OpenMP Target
HIP
Kokkos
StdPar
SYCL (USM)
SYCL (Acc.)

Fig. 13. CloverLeaf navigation chart of PP and TBMD

0.00.20.40.60.81.0
Model Divergence from Serial = Tsem = Tsrc

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 P

or
ta

bi
lit

y

More
portable

Less
portable

More
productive

Less
productive

| Towards no resemblance of serial code

|
 D

id
 n

ot
 ru

n
on

 a
ll

pl
at

fo
rm

s

CUDA
OpenMP
OpenMP Target
HIP
Kokkos
StdPar
SYCL (USM)
SYCL (Acc.)

Fig. 14. TeaLeaf navigation chart of PP and TBMD

Tsem for OpenMP target is close to Tsem and Tsrc of Kokkos.
We can interpret this as: the OpenMP model encodes similar
levels of semantic complexity to Kokkos while accomplishing
this with near zero cost at the source (Tsrc) level.

Another interesting example is the SYCL accessor model
variant in Fig. 13: unlike other models where the source is
usually perceived as more similar to serial (Tsrc is closer

1202

to zero), the excessive accessor for SYCL buffers made the
source appear much more complex than it is semantically.

Finally, note that the patterns of Tsrc and Tsem are
application-specific, but the ordering is similar between Fig. 13
and Fig. 14.

VII. FUTURE WORK

The SilverVale framework is designed with interfaces that
enable support of new programming languages in mind. How-
ever, to limit scope for this study, we only explored Fortran
and C/C++.

In the future, we would like to add support for established
languages such as Python, and also emerging ones like Rust
and Julia. For managed languages (i.e. languages that require
a runtime environment for JIT or GC) like Julia and Python,
there are additional complexities when approaching the Sir

level. Exploring how we can capture these appropriately will
be an interesting challenge.

We would also like to expand the study to include full
production applications that have different ports. For example,
the computation kernels of GROMACS and Blender both have
implementation in multiple programming models. At its cur-
rent stage, SilverVale is focused primarily on correctness. One
reason why production-ready applications were not included
in this paper is due to the unoptimised memory usage while
executing TED. For example, we were only able to do a
short and incomplete divergence run of GROMACS’s SYCL
and CUDA port but had to exclude OpenMP due to limited
memory on our workstations. In principle, the memory used
during TED can and should be compressed on the fly.

Our future work will focus on improving the performance
of SilverVale so that more comprehensive and meaningful
experiments can be conducted.

VIII. CONCLUSION

In this paper, we proposed a new productivity metric,
TBMD, based on the tree divergence from a serial model
of the codebase. We designed a novel tree representation to
summarise a codebase while retaining semantic information.
To compare trees, we used Tree Edit Distance (TED) for the
basis of divergence. And finally, we implemented an end-to-
end framework, SilverVale8, to carry out analysis of codebases
systematically.

Our evaluation of TBMD has revealed several interesting
properties. For example, we found that OpenMP directives in
both Clang and GCC are represented as unique AST tokens
that posses semantic information above the laws of the host
language. We were also able to show that code migration
is highly dependent on the original model used. This was
done with an example where migrating from CUDA to other
offload models may be less productive than porting from a
serial one. In general, we find declarative models such as
OpenMP and StdPar tend to have a lower divergence from
serial when compared to the rest. In essence, declarative

8https://github.com/UoB-HPC/SilverVale

0.00.20.40.60.81.0
Model Divergence from Serial = Tsem = Tsrc

0.0

0.2

0.4

0.6

0.8

1.0

Pe
rfo

rm
an

ce
 P

or
ta

bi
lit

y

More
portable

Less
portable

More
productive

Less
productive

| Towards no resemblance of serial code

|
 D

id
 n

ot
 ru

n
on

 a
ll

pl
at

fo
rm

s

1. CUDA on
NVIDIA GPUs

(PP. = 1.0)

2. CUDA on
NVIDIA GPUs
+ AMD GPUs

(PP. = 0.0)

3. Portable model
on NVIDIA GPUs

+ AMD GPUs
(PP. > 0)

?

Fig. 15. Navigation chart on for picking the right model, starting from an
unportable one

parallelism provides an encoding that helps preserve intent;
the constraints are unobtrusive and deals less damage to the
original serial semantic. This result suggests a workflow where
porting serial code to a declarative model first and then using
backend interop features (i.e., escape hatch) to fill performance
gaps may be a viable option.

Throughout the result analysis, we find our TBMD metric
generally agrees with anecdotal reports from developers that
have contributed to the mini-apps. The perceived and semantic
divergence result themselves aligns well with intuition. When
we compare the semantic (Tsem) and perceived (Tsrc) metrics,
we observe valuable insight such as potential model bloat
where the perceived divergence from serial is higher than that
of semantic divergence. In the same vein, we also observe
declarative models like OpenMP sharing similar semantic
complexity to imperative models but with very little perceived
complexity. Based on the results analysing five mini-apps, we
believe collecting and comparing Tsem and Tsrc is the most
appropriate application TBMD.

Finally, we combine our metric with performance portability
and propose an enhanced navigation chart. We conducted
heterogeneous benchmarks using CloverLeaf and TeaLeaf and
presented a navigation chart result highlighting tradeoffs of
the eight different programming models and variants.

Fig. 15 presents a common HPC codebase scenario where
vendor diversification has led to a need for more portability.
The figure starts with the data point 1 on the top right, where
a codebase is initially designed to use CUDA exclusively
because NVIDIA GPUs is the only GPGPU platform at the
time. Such a codebase has a PP of one because only a
single platform existed. As time moves on, AMD introduces

1203

competitive GPUs to the market, and so we add a second
platform which causes the PP to drop to zero: we are at data
point 2 where the original CUDA codebase is not directly
portable to the HIP platform. The navigation chart, when
augmented with past results, can be used to select which model
may be more suitable for the codebase, thus helping us land
on a better location for data point 3. We hope this method of
visualisation provides an easy way to help evaluate tradeoffs
between productivity and portability for both new and existing
projects.

ACKNOWLEDGEMENT

We would like to thank John Pennycook for his valuable
input and enlightening discussion on the topic related to
model divergence. Additionally, we would also like to thank
Jamie Wills, Johannes Doerfert, and Aksel Alpay, for their
positive and constructive feedback on the overall design of the
metric. Some benchmark results for performance portability
is collected with the assistance of Gonzalo Brito and Aksel
Alpay.

This work used the Isambard (http://gw4.ac.uk/isambard/)
UK National Tier-2 HPC Service operated by GW4 and
the UK Met Office, and funded by EPSRC (EP/P020224/1).
This work was performed using resources provided by the
Cambridge Service for Data Driven Discovery (CSD3) op-
erated by the University of Cambridge Research Computing
Service (www.csd3.cam.ac.uk), provided by Dell EMC and
Intel using Tier-2 funding from the Engineering and Physical
Sciences Research Council (capital grant EP/T022159/1), and
DiRAC funding from the Science and Technology Facilities
Council (www.dirac.ac.uk). DiRAC is part of the National e-
Infrastructure. The University of Bristol is an Intel oneAPI
Center of Excellence, which helped support this work. This
project has received funding from the European Union’s HE
research and innovation programme under grant agreement No
101092877. Some experiments in this paper used resources
from NVIDIA’s Selene and pre-EOS Supercomputers. We are
extremely grateful to AWS for supporting access to Graviton
3e.

REFERENCES

[1] S. J. Pennycook, J. D. Sewall, and V. W. Lee, “A Metric for Performance
Portability,” 2016. [Online]. Available: https://arxiv.org/abs/1611.07409

[2] S. L. Harrell, J. Kitson, R. Bird, S. J. Pennycook, J. Sewall, D. Jacobsen,
D. N. Asanza, A. Hsu, H. C. Carrillo, H. Kim, and R. Robey, “Effective
Performance Portability,” in 2018 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), 2018,
pp. 24–36.

[3] Y. Faqir-Rhazoui and C. Garcı́a, “Exploring the performance and
portability of the k-means algorithm on SYCL across CPU and GPU
architectures,” J. Supercomput., vol. 79, no. 16, pp. 18 480–18 506, Nov.
2023.

[4] Y. Asahi, T. Padioleau, G. Latu, J. Bigot, V. Grandgirard, and K. Obrejan,
“Performance portable vlasov code with c++ parallel algorithm,” in
2022 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2022, pp. 68–80.

[5] S. Wienke, “Productivity and software development effort estimation in
high-performance computing,” Ph.D. dissertation, Dissertation, RWTH
Aachen University, 2017, 2017.

[6] S. J. Pennycook, J. D. Sewall, D. W. Jacobsen, T. Deakin, and
S. McIntosh-Smith, “Navigating Performance, Portability, and Produc-
tivity,” Computing in Science & Engineering, vol. 23, no. 5, pp. 28–38,
2021.

[7] P. E. McKenney, “Is Parallel Programming Hard, And, If So, What Can
You Do About It? (Release v2023.06.11a),” 2023. [Online]. Available:
https://arxiv.org/abs/1701.00854

[8] W.-C. Lin, T. Deakin, and S. McIntosh-Smith, “Evaluating ISO C++ Par-
allel Algorithms on Heterogeneous HPC Systems,” in 2022 IEEE/ACM
International Workshop on Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), 2022, pp.
36–47.

[9] A. J. Offutt, M. J. Harrold, and P. Kolte, “A software metric system for
module coupling,” Journal of Systems and Software, vol. 20, no. 3, pp.
295–308, 1993.

[10] P. Bille, “A survey on tree edit distance and related problems,” Theo-
retical computer science, vol. 337, no. 1-3, pp. 217–239, 2005.

[11] V. Nguyen, S. Deeds-Rubin, T. Tan, and B. Boehm, “A SLOC counting
standard,” in Cocomo ii forum, vol. 2007. Citeseer, 2007, pp. 1–16.

[12] T. Clem and P. Thomson, “Static Analysis at GitHub: An experience
report,” Queue, vol. 19, no. 4, p. 4267, sep 2021. [Online]. Available:
https://doi.org/10.1145/3487019.3487022

[13] K. Zhang and D. Shasha, “Simple fast algorithms for the editing distance
between trees and related problems,” SIAM journal on computing,
vol. 18, no. 6, pp. 1245–1262, 1989.

[14] M. Pawlik and N. Augsten, “Tree edit distance: Robust and memory-
efficient,” Information Systems, vol. 56, pp. 157–173, 2016.

[15] ——, “tree-similarity,” https://github.com/DatabaseGroup/
tree-similarity/, 2024.

[16] S. Wu, U. Manber, G. Myers, and W. Miller, “An O (NP) sequence
comparison algorithm,” Information Processing Letters, vol. 35, no. 6,
pp. 317–323, 1990.

[17] T. Kubo, “dtl,” https://github.com/cubicdaiya/dtl, 2024.
[18] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Evalu-

ating attainable memory bandwidth of parallel programming models
via BabelStream,” International Journal of Computational Science and
Engineering, vol. 17, no. 3, pp. 247–262, 2018.

[19] J. R. Hammond, T. Deakin, J. Cownie, and S. McIntosh-Smith, “Bench-
marking Fortran DO CONCURRENT on CPUs and GPUs Using Babel-
Stream,” in 2022 IEEE/ACM International Workshop on Performance
Modeling, Benchmarking and Simulation of High Performance Com-
puter Systems (PMBS), 2022, pp. 82–99.

[20] A. Poenaru, W.-C. Lin, and S. McIntosh-Smith, “A Performance Anal-
ysis of Modern Parallel Programming Models Using a Compute-Bound
Application,” in High Performance Computing, B. L. Chamberlain, A.-
L. Varbanescu, H. Ltaief, and P. Luszczek, Eds. Cham: Springer
International Publishing, 2021, pp. 332–350.

[21] J. Li, A. Bobyr, S. Boehm, W. Brantley, H. Brunst, A. Cavelan,
S. Chandrasekaran, J. Cheng, F. M. Ciorba, M. Colgrove, T. Curtis,
C. Daley, M. Ferrato, M. G. de Souza, N. Hagerty, R. Henschel,
G. Juckeland, J. Kelling, K. Li, R. Lieberman, K. McMahon,
E. Melnichenko, M. A. Neggaz, H. Ono, C. Ponder, D. Raddatz,
S. Schueller, R. Searles, F. Vasilev, V. M. Vergara, B. Wang, B. Wesarg,
S. Wienke, and M. Zavala, “SPEChpc 2021 Benchmark Suites for
Modern HPC Systems,” in Companion of the 2022 ACM/SPEC
International Conference on Performance Engineering, ser. ICPE ’22.
New York, NY, USA: Association for Computing Machinery, 2022, p.
1516. [Online]. Available: https://doi.org/10.1145/3491204.3527498

[22] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for multi-
core processor parallelism. OReilly, 2010.

[23] A. Alpay, B. Soproni, H. Wünsche, and V. Heuveline, “Exploring the
possibility of a hipsycl-based implementation of oneapi,” in Proceedings
of the 10th International Workshop on OpenCL, ser. IWOCL ’22.
New York, NY, USA: Association for Computing Machinery, 2022.
[Online]. Available: https://doi.org/10.1145/3529538.3530005

[24] J. Sewall, S. J. Pennycook, D. Jacobsen, T. Deakin, and S. McIntosh-
Smith, “Interpreting and visualizing performance portability metrics,”
in 2020 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC). IEEE, Nov. 2020.

1204

APPENDIX

Artifact Description

We ran BabelStream, miniBUDE, TeaLeaf, and CloverLeaf
on a wide range of hardware platforms listed in Table III. We
created a SilverVale Codebase DB using all supported models
of these mini-apps.

Artifacts Available: The source code for the mini-apps used
in all experiments is available at:

• BabelStream - https://github.com/UoB-HPC/BabelStream
• miniBUDE - https://github.com/UoB-HPC/miniBUDE
• TeaLeaf - https://github.com/UoB-HPC/TeaLeaf
• CloverLeaf - https://github.com/UoB-HPC/CloverLeaf
The SilverVale software introduced in this paper is open

source software, available at https://github.com/UoB-HPC/
SilverVale. The project homepage contains comprehensive
documentation on the usage of the tool.

Experimental setup: SeeTable III for a list of hardware
platforms used. We performed the indexing step of code-
bases using SilverVale on all supported models of Babel-
Stream, miniBUDE, TeaLeaf, and CloverLeaf. The complete
experiment setup is available at https://github.com/UoB-HPC/
SilverVale/p3hpc.

Artefact Evaluation

Performed verification and validation studies: Each mini-
app contains built-in verification for correctness. At runtime,
SilverVale compares the base model against itself; non-zero
results will indicate an error in the implementation. SilverVale
also contains unit and integration tests.

Validated the accuracy and precision of timings: N/A
Used manufactured solutions or spectral properties: N/A
Quantified the sensitivity of your results to initial conditions

and/or parameters of the computational environment: N/A
Describe controls, statistics, or other steps taken to make the

measurements and analyses robust to variability and unknowns
in the system: N/A

1205

