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Abstract—Maintaining performant code in a world of fast-
evolving computer architectures and programming models poses
a significant challenge to scientists. Typically, benchmark codes
are used to model some aspects of a large application code’s
performance, and are easier to build and run. Such benchmarks
can help assess the effects of code or algorithm changes, sys-
tem updates, and new hardware. However, most performance
benchmarks are not written using a wide range of GPU pro-
gramming models. The RAJA Performance Suite provides a
comprehensive set of computational kernels implemented in a
variety of programming models. We integrated the performance
measurement and analysis tools Caliper and Thicket into the
RAJA Performance Suite to facilitate performance comparison
across kernel implementations and architectures. This paper
describes the RAJA Performance Suite, performance metrics that
can be collected, and experimental analysis with case studies. The
RAJA Performance Suite and integration of Caliper and Thicket
enabled us to effectively measure the variety of implementations
on the variety of hardware, and automatically characterize
subsets of kernels which exhibit similar bottlenecks—and there-
fore perform similarly on new architectures which provide a
different balance between resources such as FLOPS and memory
bandwidth. We definitively demonstrate that the most memory
bound kernels show the most performance gains on architectures
with high-bandwidth memory (HBM), and that the kernels that
have other bottleneck may, to a lesser extent, benefit from the
higher-FLOPS GPUs.

I. INTRODUCTION

The rapid advancement of accelerator hardware technology
in HPC has provided substantial performance gains for many
applications, but writing code that runs well on a wide range of
hardware is not simple and achieving good performance often
requires architecture-specific implementations. Thus, scientists
may be constrained to run their applications on a single
platform, unable to run elsewhere without significant work to
develop multiple versions of their application code. As systems
age and are replaced by new and different architectures, this
problem intensifies. This problem has led to the develop-
ment of performance portability models (e.g., OpenMP [1],
RAJA [2], [3], and Kokkos [4], [5]) that enable scientists to
write single-source parallel code that can be compiled to run
on many different architectures without sacrificing application
performance. Such portability layers provide frameworks to
compare performance across architectures and to more easily
port applications to new systems.

Additionally, as new systems come online, they must be
evaluated and vetted for the codes that will run on them.
This is usually done using benchmark suites representing
key aspects of full applications. There is a long history of
benchmark suites that represent computations performed at
national laboratories [6], [7], [8] and the HPC field as a
whole [9], [10]). The RAJA Performance Suite (RAJAPerf)
is an evolving suite of computational kernels of interest
to Lawrence Livermore National Laboratory (LLNL).
Specifying how to run such suites is a challenge of its
own [11], necessitating the additional development of
increasingly automated runtime specifications [12], [13].

RAJAPerf enables performance analysis for kernels with a
variety of different algorithms and programming models. Anal-
ysis of these kernels is helpful for both platform procurement
and application porting. Evaluation of new machines requires
benchmark analysis to assess the readiness and feasibility
of new architectures. In addition, this analysis can evaluate
the health of aging hardware, and help determine when it
may be time to retire systems. Another benefit is to help
decide whether to port code by extrapolating performance
for applications with similar algorithmic characteristics to
the kernels. RAJAPerf provides useful performance-related
metrics, and by combining these with the collection of metrics
and analysis from other tools, we gain more insight into the
execution behavior of these kernels.

In this work, we leverage Caliper [14], [15] and Nsight
Compute [16] to measure time and hardware counters. We
also use Thicket [17], a Python tool that enables exploratory
data analysis (EDA) of parallel performance data. We employ
the Intel Top-Down Analysis [18] on CPUs, and the Roofline
analysis [19] on GPUs. We perform similarity analysis to
characterize similarities and differences across architectures
and kernels. The main contributions of this work are:

1) Comprehensive overview of the RAJA Performance Suite
(RAJAPerf), a curated set of kernels implemented in a
variety of CPU and GPU programming models.

2) Integration of a portable performance analysis toolchain,
including Caliper for recording measurements, and
Thicket for Exploratory Data Analysis (EDA).

3) Analysis of performance portability of the RAJA pro-
gramming model across four architectures.
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TABLE I: RAJAPerf kernels organized into seven groups,
kernel programming model implementations (B or R for Base
or RAJA variants), kernel features, and complexities.

G
ro

up Kernel Name Programming Models Features

Se
qu

en
tia

l

O
pe

nM
P

O
M

PT
ar

ge
t

C
U

D
A

R
O

C
M

SY
C

L

K
ok

ko
s

So
rt

s

Sc
an

s

R
ed

uc
ts

A
to

m
ic

s

V
ie

w
s

C
om

pl
ex

ity

BR BR BR BR BR BR

O
(

)

A
lg

or
ith

m
s ATOMIC n

HISTOGRAM n
MEMCPY n
MEMSET n
REDUCE SUM n
SCAN n
SORT n lg n
SORTPAIRS n lg n

A
pp

lic
at

io
ns

CONVECTION3DPA n
DEL DOT VEC 2D n
DIFFUSION3DPA n
EDGE3D n
ENERGY n
FIR n
LTIMES n
LTIMES NOVIEW n
MASS3DEA n
MASS3DPA n
MATVEC 3D STENCIL n
NODAL ACCUMUL 3D n
PRESSURE n
VOL3D n
ZONAL ACCUMUL 3D n

B
as

ic
Pa

tte
rn

s ARRAY OF PTRS n
COPY8 n
DAXPY n
DAXPY ATOMIC n
IF QUAD n
INDEXLIST n
INDEXLIST 3LOOP n
INIT3 n
INIT VIEW1D n
INIT VIEW1D OFFSET n
MAT MAT SHARED n

√
n

MULADDSUB n
MULTI REDUCE n
NESTED INIT n
PI ATOMIC n
PI REDUCE n
REDUCE3 INT n
REDUCE STRUCT n
TRAP INT n

C
om

m HALO EXCHANGE n2/3

HALO EXCH FUSED n2/3

HALO PACKING n2/3

HALO PACKING FUSED n2/3

HALO SENDRECV n2/3

L
C

A
L

S DIFF PREDICT n
EOS n
FIRST DIFF n
FIRST MIN n
FIRST SUM n
GEN LIN RECUR n
HYDRO 1D n
HYDRO 2D n
INT PREDICT n
PLANCKIAN n
TRIDIAG ELIM n

Po
ly

be
nc

h 2MM n
√

n
3MM n

√
n

ADI n
ATAX n
FDTD 2D n
FLOYD WARSHALL n

√
n

GEMM n
√

n
GEMVER n
GESUMMV n
HEAT 3D n
JACOBI 1D n
JACOBI 2D n
MVT n

St
re

am

ADD n
COPY n
DOT n
MUL n
TRIAD n

Section II describes the RAJAPerf suite, its curated kernels,
the programming models used, and the integrated portable
performance analysis toolchain. Section III details the
performance metrics we considered across the architectures.

Sections IV and V showcase performance portability analysis
enabled by RAJAPerf. Section VI describes related work.

II. RAJA PERFORMANCE SUITE

The RAJA Performance Suite (RAJAPerf) [20] is an estab-
lished suite offering a comprehensive collection of benchmark
and real application kernels. RAJAPerf provides multiple vari-
ants (or implementations) of each kernel, each performing the
same computation. Initially, the suite was created to compare
the performance of kernels implemented using the RAJA
performance portability layer [2], [3] with the performance of
those kernels implemented directly in programming models
appropriate for specific architectures. Now, the suite is used
to assess new hardware architectures and is an important
collaboration tool for interactions between application teams
and hardware, compiler, and runtime vendors. Both RAJA and
non-RAJA (i.e., baseline) variants are available for Sequential
(C++ code), OpenMP, OpenMP Target Offload, CUDA, HIP,
and SYCL programming models. Variants are also used to
identify C++ features, such as lambda expressions. For each
programming model, a RAJAPerf kernel includes at least two
variants: (1) a baseline variant implemented directly in a
particular programming model such as CUDA, and (2) a RAJA
variant implemented using the RAJA portability layer, which
insulates the kernel source code from the programming model
implementation details. Some kernels also appear using the
Kokkos portability abstraction layer. These are developed and
maintained separately by the Kokkos team. Performance anal-
ysis and results associated with those are not discussed in this
article. Each kernel contains a reference description in the form
of a C-style, sequential for-loop implementation. The suite
features over 70 unique kernels, as detailed in Table I, with
new kernels regularly added. It is important to note that not all
kernels are available in all programming models and variants.

A. Curated Kernels

Each kernel in RAJAPerf is a self-contained loop-based com-
putation. As a whole, the suite represents a spectrum of
algorithms used in many application codes. A group is a subset
of kernels in the suite that originate from a single benchmark
suite, or represent a related set of computational patterns.
Kernels in RAJAPerf fall into the following seven groups:

1) Algorithms: Kernels that focus on specific parallel con-
structs, such as atomic operations, scans, reductions, and
sorts, and memory operations like memcpy and memset.

2) Applications: Kernels derived from important application
operations in various LLNL mutliphysics applications.

3) Basic Patterns: Kernels that are small and simple, yet
often present optimization challenges for compilers.

4) Comm: Communication buffer packing/unpacking pat-
terns from distributed memory applications using MPI.

5) LCALS: Kernels originating in the Livermore Loops
suite [6], designed to explore Fortran compiler vector-
ization, and subsequently translated into C++ in LCALS -
Livermore Compiler Analysis Loop Suite. LCALS was an
LLNL-internal suite designed to study the ability of C++
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Fig. 1: Analytic metrics per kernel iteration. A “*” next to a
kernel name indicates one or more metric values, denoted with
“Cap”, is shown as a truncated value on the axis despite the
value being larger, to enable seeing smaller values for other
kernels on the same scale.

compilers to optimize kernels that employ C++ templates
and lambda expressions, which are core to RAJA.

6) Polybench: A subset of kernels from the Polybench Suite
used to study polyhedral optimization in compilers [21].

7) Stream: Streaming kernels found in the McCalpin
STREAM benchmark [22].

Kernels are annotated based on the RAJA features that
they exercise such as sort, scan, reduction, atomic operations,
and data views. Kernels are also annotated based on their
computational complexity. Most kernels run a number of
operations of the the same order as their data size, however
some kernels do more or less work on that data and some
use no stored data at all. For instance, some kernels perform
matrix-matrix multiplication which uses O(N

3
2 ) operations

relative to the size of the matrix storage.
RAJAPerf provides a wide variety of command line options

to run subsets of kernels, such as specific groups, variants, or
those that exercise specific RAJA features, and to run different
kernel working set sizes, algorithm tuning options, etc. As a
result, the suite enables a broad range of performance studies.
Various text-based files can be generated for each run for
processing with common plotting and other tools.

B. Analytic Metrics

Analytic metrics are platform-independent and provide valu-
able insights into the performance characteristics of kernels.
RAJAPerf provides the following metrics for each kernel:

• Bytes Read: This metric measures the amount of data read
from memory during the execution of a kernel.

• Bytes Written: Similar to bytes read, this metric measures
the amount of data written to memory.

• Floating-Point Operations (FLOPs): This metric counts
the number of floating-point operations a kernel performs.
It is a critical measure of computational workload and is
used to evaluate the arithmetic intensity of a kernel.

• FLOPs per Byte of Memory Touched: This derived metric
indicates how many floating-point operations are per-
formed per byte of memory accessed.

These metrics provide a quantitative view of kernels’ compu-
tational and memory demands. For example, Bytes Read and
Bytes Written provide insight into memory access patterns and
are crucial for understanding data movement overhead.

A default problem size is defined for each kernel. Problem
size can also be chosen at runtime via a command line
argument. Examples of problem size include the number of
elements in a matrix or the size of a numerical grid in a
simulation. Fig. 1 shows analytic metrics for each kernel, nor-
malized by the kernel’s problem size to facilitate comparison.
At a glance, we see which kernels perform the most FLOPs,
and which kernels stress the memory subsystem most.

These static metrics are pivotal at execution time; given the
execution time of each kernel, we can use the metrics to derive
the Read Memory Bandwidth Rate (i.e., the rate at which
data is read from memory), the Write Memory Bandwidth
Rate (i.e., the rate at which data is written to memory), and
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TABLE II: Supercomputers used for the experiments, with FLOPS and memory bandwidth listed per single compute unit
(GPU or CPU) and per node. Achieved FLOPS are measured using the Basic MAT MAT SHARED kernel, achieved memory
bandwidth using the Stream TRIAD. The % exp columns denote the percentage of the theoretical hardware performance
achieved by these kernels. Unit and node FLOPS numbers for EPYC-MI250X assume double-precision vector instructions.

Shorthand System Name Architecture executing Units on Rate of floating-point operations (TFLOPS) Memory bandwidth (TB/s)
kernels (CPU or GPU) one node unit node Basic MAT MAT % exp unit node Stream TRIAD % exp

SPR-DDR Poodle (DDR) Intel Sapphire Rapids 2 sockets 2.3 4.7 0.8 18.0 0.3 0.6 0.5 77.7
SPR-HBM Poodle (HBM) Intel Sapphire Rapids 2 sockets 2.3 4.7 0.7 15.5 1.6 3.3 1.1 33.7
P9-V100 Sierra NVIDIA V100 4 GPUs 7.8 31.2 7.0 22.4 0.9 3.6 3.3 92.6
EPYC-MI250X Tioga AMD MI250X 8 GPUs 24.0 191.5 13.3 7.0 1.6 12.8 10.2 79.5

the number of Floating-Point Operations per Second (FLOPs)
(i.e., the total number of floating-point operations performed
divided by the execution time).

C. Focus on Understanding Performance

Performance analysis is the primary goal of RAJAPerf.
Execution time, or the time it takes to complete the execution
of a kernel, is the bottom line. In addition, RAJAPerf enables
users to evaluate (1) kernel scalability with the increase in
computational resources, such as more CPU cores or GPU
threads; (2) kernel computational efficiency, including the
effective use of hardware resources like CPU, GPU, and
memory bandwidth; and (3) kernel overhead added by using
RAJA abstractions compared to using programming models,
such as OpenMP or CUDA directly. Users can assess ker-
nel portability, or the ability to perform consistently across
different architectures and programming environments, and
find optimal configurations for specific hardware by tuning
various execution parameters, such as GPU thread-block sizes.
Runtime parameters enable running the entire suite or a subset
of specified kernels, variants, and tunings.

D. Integrating Caliper and Thicket into RAJAPerf

We integrated two performance analytics tools into RA-
JAPerf to augment metric gathering and analysis: Caliper [14],
[23] and Thicket [17], [24]. Caliper is a performance profiling
library that provides performance study capabilities in HPC
software stacks. Caliper is integrated into RAJAPerf similarly
to how it is integrated in large-scale simulations. Kernels
within RAJAPerf are annotated as Caliper regions, and the an-
alytical kernel metrics calculated in RAJAPerf are collected as
Caliper metrics associated with these regions. The Adiak [25]
library annotates per-run metadata, such as the programming
model used and the variant run. A single RAJAPerf run
generates a Caliper profile containing one variant and one
tuning. Caliper collects all requested performance data at
runtime and generates a .cali file for each run. These files
are then read into Thicket for analysis and visualization.

Thicket is an open-source Python toolkit for exploratory data
analysis of multi-run performance experiments. It provides an
interface for interacting with performance data, enabling an
understanding of performance configurations for large-scale
application codes. Thicket has a modular structure composed
of three components: a multi-dimensional table of performance

metrics per node matching a call tree profile for each appli-
cation run; a metadata table including the application’s build
settings; and aggregated statistics summarizing performance
metrics collected across runs. Thicket handles multiple runs by
generating one profile per run, recording critical information
about build settings and execution contexts in the metadata,
and leveraging Thicket components to avoid redundant data
representation. Using Thicket to simplify data composition
involves reading multiple Caliper files (performance profiles)
into Thicket, grouping the data by variants and tunings in the
metadata table, and visualizing and analyzing the dataset using
Thicket’s capabilities. Such capabilities include performance
composition from different runs across different configurations
and parameters; performance data manipulation, organizing
the data based on specific aspects; performance visualization
to identify patterns and insights; and analysis and modeling
of collected performance.

Integrating Caliper and Thicket into RAJAPerf enhances the
ability to measure, analyze, and visualize performance metrics.
Caliper and Thicket standardize the performance profiling
format in RAJAPerf, thus facilitating knowledge extraction and
enhancing the understanding of performance behavior across
different programming models and hardware architectures.

Fig. 2: Top-down structured hierarchical method to identify
dominant bottleneck in out-of-order processors.

III. PERFORMANCE METRICS

We conducted experiments on four different supercomputer
platforms, detailed in Table II. These include two Intel CPU-
only systems on the Poodle platform at LLNL: one is equipped
with Sapphire Rapids and Double Data Rate Memory (SPR-
DDR), and the other with Sapphire Rapids and High Band-
width Memory (SPR-HBM). SPR-DDR operates with Double
Data Rate (DDR) memory across two sockets, achieving
4.7 TFLOPS with a 0.6 TB/s memory bandwidth, reaching
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Fig. 3: SPR-DDR top-down metrics

77.7% of its expected memory bandwidth. In contrast, SPR-
HBM uses High Bandwidth Memory (HBM) to deliver 4.7
TFLOPS at 3.3 TB/s, with 33.7% of its expected memory
bandwidth. Additionally, we use two CPU+GPU integrated
systems. One is the P9-V100 Sierra system at LLNL, which
integrates IBM Power9 CPUs and NVIDIA V100 GPUs,

TABLE III: RAJAPerf parameters used in this paper. We kept
the problem size per node constant across all systems at 32M.

System Variant Tuning
Num. MPI
Processes

Problem Size
Per Process

SPR-DDR RAJA Seq default, funcptr 112 300K
SPR-HBM RAJA Seq default, funcptr 112 300K

P9-V100 RAJA CUDA

block 256,
blkatm occgs 256,
block 64 block 25,
funcptr 256,
cub, default,
atomic occgs 256,
blkdev occgs 256 4 8M

EPYC-MI250X RAJA HIP

block 256,
blkatm occgs 256,
block 64 block 25,
funcptr 256,
rocprim, default,
atomic occgs 256,
blkdev occgs 256 8 4M

providing 31.2 TFLOPS and a 3.6 TB/s memory bandwidth,
achieving 92.6% of theoretical memory bandwidth. The other
is the Tioga system at LLNL, which integrates AMD EPYC
CPUs and AMD MI250X GPUs, producing an exceptional
192 TFLOPS and 12.8 TB/s, achieving 79.5% of its theoretical
memory bandwidth. These metrics enable us to compare these
system’s substantial computational capabilities and efficiency
in performing complex operations.

For each of these systems, we run RAJAPerf with specific
variants, tunings, number of MPI processes, and problem sizes
per process to ensure a fair comparison for each kernel for a
total problem size of 32,000,000 for the entire node. These
parameters are shown in Table III. On the CPU systems
(SPR-DDR and SPR-HBM), we use MPI for parallelism to
maximize performance across the two sockets on each node.
Additionally, we use 112 processes with the RAJA Seq variant
to fully load each of the 112 cores per node. On P9-V100, we
use four processes with the RAJA CUDA variant to make use
of the four NVIDIA V100 GPUs on each node. On EPYC-
MI250X, we use eight processes with the RAJA HIP variant to
utilize the eight GCDs available across the four AMD MI250X
GPUs per node.

A. Hardware Metrics on CPUs

On CPUs, we use the industry-standard PAPI counters [26]
to measure performance. To begin our analysis, we use the
Top-down Microarchitecture Analysis (TMA) [18] method
for out-of-order processors designed by Intel. The top-down
analysis uses designated hardware performance counters in
a hierarchical structure to identify dominant bottlenecks in
the collected performance data. The analysis shown in Fig. 2
breaks down the observed CPU pipeline utilization into four
broad categories: Frontend Bound, Bad Speculation, Retiring,
and Backend Bound. Frontend Bound measures the initial
stages of instruction processing, such as instruction fetch
latency and bandwidth; Bad Speculation captures the costs
associated with the CPU’s predictive mechanisms; Retiring
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Fig. 4: SPR-HBM top-down metrics

computes the rate at which the CPU completes and retires
instructions; and Backend Bound highlights delays due to data
or resource availability needed to execute instructions. Each
category is hierarchically divided into more detailed sub-
categories to narrow down specific performance bottlenecks.
Backend bound is comprised of Core Bound (saturation within

the CPU core) and Memory Bound (saturation within the
memory), which is further broken down by specific memory
levels (L1, L2, L3) and external memory interactions, describ-
ing issues in data retrieval from various cache levels or RAM.

In this work, we focus only on the top two levels of the
TMA hierarchy. Fig. 3 shows the top-down metrics across
the suite when running on SPR-DDR. Fig. 4 shows the top-
down metrics across the suite when running on SPR-HBM.
The figures demonstrate how specific kernels are more mem-
ory bound on SPR-DDR than SPR-HBM, since the higher-
bandwidth HBM (partially) alleviates the memory bandwidth
bottleneck. Data-intensive kernels such as the Stream kernels,
where the need to quickly read and write large volumes
of data is a primary performance requirement, particularly
benefit from HBM. Additionally, the higher throughput of
HBM ensures that data-dependent kernels can operate more
continuously without stalling for memory access, enhancing
overall computational efficiency and performance. For in-
stance, with Algorithm SCAN, higher memory bound met-
ric on SPR-DDR indicates that this kernel—often used for
performing prefix sums—is limited by memory bandwidth
constraints. The significantly lower memory bound metric
on SPR-HBM suggests that the higher bandwidth of HBM
effectively accommodates the high data throughput required
by this algorithm. HBM also offers lower latency compared
to DDR. For kernels involving frequent memory access, such
as those performing multiple matrix operations, this reduced
latency can significantly improve overall execution times. For
instance, Polybench GESUMMV displays substantial memory
bound constraints with DDR. In this case, the kernel needs
rapid memory access for subsequent multiplications, a task that
DDR struggles to manage efficiently. In contrast, the reduced
memory bounding in the HBM configuration highlights the
efficient use of its superior bandwidth to streamline data access
and processing speeds.

On the other hand, kernels can be more significantly limited
by the compute resources available for performing operations
than by memory speed. For instance, the bars representing
the memory bound metric for Algorithm REDUCE SUM
for both DDR and HBM are relatively low, suggesting that
the bottleneck is not primarily in memory bandwidth. Sim-
ilarly, Polybench 2MM and Polybench ATAX also exhibit
low memory bound metric values on both systems, indi-
cating that their performance is likely more dependent on
the efficiency of the compute operations rather than the
speed of data retrieval from memory. The same patterns
are observed in various application-specific kernels, such as
Apps MATVEC 3D STENCIL.

B. Hardware Metrics on GPUs

For NVIDIA GPUs, we utilize the Instruction Roofline
Analysis model [19] to interpret performance measurements
from NVIDIA’s Nsight Compute CLI (NCU), including
metrics like memory throughput, compute utilization, and
latency. The Instruction Roofline Model is a performance
analysis tool that visualizes performance (y-axis, measured
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in Warp Giga-Instructions Per Second, Warp GIPS) versus
instruction intensity (x-axis, measured in Warp Instructions per
Transaction) for various kernels, providing a comprehensive
view of the GPU’s performance limitations. Given the
hardware constraints of the GPU, the ceiling line (i.e.,
roofline) represents the maximum possible performance. The
theoretical maximum bandwidth is shown on the diagonal line
and is measured in 109 transactions per second (GTXN/s).
The theoretical maximum instruction rate is shown on the
horizontal line and is measured in 109 instructions per second
(GIPS). Each point in the figure indicates a kernel’s instruction
intensity and performance per cache layer. When a kernel
(i.e., point) is farther from the horizontal roof of a model it
indicates that performance is limited by the kernel not fully
utilizing the GPU’s processing power. On the other hand,
when a kernel is farther from the diagonal roof it indicates that
performance is limited by the kernel not efficiently accessing
the GPU’s memory resources. The metrics and equations for
calculating kernel performance in our work were specified by
Ding and Williams [27] and are shown in Table IV.

We used NCU and Caliper to collect the performance
counters for the Instruction Roofline Analysis, used Thicket
to read in the data, and applied the analysis to all RAJAPerf
kernels. Fig. 5 shows the roofline models for L1, L2, and HBM
cache layers on the NVIDIA V100 GPUs on the P9-V100
system. The plots help identify whether each kernel is compute
bound or memory bound. Each point on a plot represents
a specific kernel or computational task. For readability, we
color the kernels by RAJAPerf groups—Algorithms, Apps,
Basic, Communication, Lcals, Polybench, and Stream—and
graphed them separately per cache layer. Points close to
the horizontal segment use the compute resources efficiently
but are limited by the maximum computational capability
of the GPU (compute-bound). Points close to or along the
diagonal segment are limited by memory bandwidth. Mov-
ing horizontally towards higher instruction intensities without
significantly increasing performance suggests that improving
the computation-to-memory access ratio can deliver better per-
formance (memory bound). Points below the roofline suggest
inefficiencies that could be due to several factors like poor

TABLE IV: Metrics for instruction roofline analysis for
NVIDIA GPUs, collected using NVIDIA Nsight Compute.

Category Metric Description

thread- sm sass thread inst executed.sum non-
based predicated

l1tex t sectors pipe lsu mem global op ld.sum
l1tex t sectors pipe lsu mem global op st.sum L1 cache
l1tex t sectors pipe lsu mem local op ld.sum transactions

warp- l1tex t requests pipe lsu mem local op st.sum
based lts t sectors op read.sum

L2 cachelts t sectors op write.sum
lts t sectors op atom.sum
lts t sectors op red.sum
dram sectors read.sum HBM
dram sectors write.sum memory

kernel- time (gpu) execution
based time

(a) L1 cache instruction

(b) L2 cache instruction

(c) HBM cache instruction

Fig. 5: Instruction roofline model for the P9-V100 system, split
into three figures for the different cache layers: L1, L2, and
HBM. The theoretical maximum bandwidth is on the diagonal
line in GTXN/s and the theoretical maximum instruction rate
is shwon on the horizontal line in Warp GIPS.

cache utilization (where the cache is not effectively storing
and retrieving data), thread divergence (where threads in a
warp take different execution paths, reducing parallelism),
or unoptimized data access patterns (where the data is not
accessed in a way that maximizes cache efficiency).
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The performance for different kernel types in Fig. 5a (L1
cache level) is quite varied, suggesting different behaviors or
requirements in terms of data fetching and processing effi-
ciency. The kernels near the theoretical maximum performance
(roof) are compute bound and can efficiently utilize the GPU’s
computational resources. The kernels below the roof are either
memory bound or not optimally utilizing the L1 cache. The
spread of kernels in Fig. 5b (L2 cache level) is narrower
than L1, indicating a more consistent use of the L2 cache
across different kernels. Fewer kernels reach closer to the
roof than for L1, indicating that the L2 cache could be more
effectively used or that these kernels are more memory bound
with respect to L2 than L1. The dispersion of kernels in Fig. 5c
(HBM) suggests a clear division between higher-performing
kernels and those that lag. In other words, some kernels can
efficiently leverage high-bandwidth memory to achieve near-
optimal performance. However, others, like most Polybench
kernels, are limited by memory access patterns or other factors
preventing them from fully exploiting HBM.

IV. KERNEL SIMILARITY ANALYSIS

We employ clustering techniques to understand which kernels
perform similarly across different architectures. For compari-
son purposes, we use a problem size of 32,000,000 per node
on each of the four architectures, as described in Table III.
Because this problem is decomposed to run on 112 cores on
the CPU systems, four GPUs on P9-V100, and eight GPUs on
EPYC-MI250X, the decomposition introduces incomparable
amounts of work for the kernels in the suite with complexity
other than O(N), such as our Halo communication kernels. We
thus exclude 12 out of 75 kernels (16%) from our subsequent
analysis.

Each kernel is represented by a tuple of top-down metrics
(i.e., frontend bound, bad speculation, retiring, core bound, and
memory bound). We use agglomerative, bottom-up, hierarchi-
cal clustering to group the kernel tuples, and we use Euclidean
distance to measure the distance between tuples. We apply the
Ward merge strategy [28] to minimize variance within each
cluster. In the Ward strategy, we set the distance threshold
to 1.4, identifying four distinct clusters with similar kernels.
Fig. 6 visualizes the clustering results using a dendrogram.

Fig. 7 outlines how the four clusters are characterized by
the distinct patterns defined by the top-down metrics. Fig. 7
also shows how the RAJAPerf kernel groups are distributed
across the four clusters (Fig. 6). Cluster 2 is the most memory
bound, and includes nearly all Stream and LCALS kernels.
It achieves the highest speedup on all three HBM platforms,
with an impressive 22.6x on EPYC-MI250X over SPR-DDR.
Cluster 0 is the second most memory bound, and includes
40% of the applications kernels. It achieves the second highest
speedup on all three HBM platforms, including 14x on EPYC-
MI250X over SPR-DDR. Cluster 3 is the most core bound,
and includes roughly a quarter of Basic and Polybench kernels.
Because it is not memory bound, it achieves a modest speedup
on the GPUs, with 6.3x on EPYC-MI250X over SPR-DDR.
Cluster 1 is the most frontend bound, and includes 40% of

the applications kernels. It achieves a modest speedup on the
GPUs, with 7.1x on EPYC-MI250X over SPR-DDR.

Fig. 8 shows a parallel coordinate plot that links the average
TMA values with the average speedup over the three different
architectures for each cluster (color). The pattern visualized
here demonstrates the commmonalities in the autogenerated
clusters: Cluster 2 is the most memory bound and had the
highest speedup across all three systems since they all have
higher memory bandwidth. Cluster 0 is the second highest
memory bound and exhibited the second highest speedup
across all three systems. Cluster 1 and Cluster 3 are not
memory bound and had the least speedup on the systems that
predominantly improve the memory bandwidth over the SPR-
DDR system we used as the baseline.

V. MEMORY SPEED AND FLOPS TRADE-OFFS

Identifying and measuring the bottlenecks of each RAJAPerf
kernel using TMA provides valuable insights for predicting
potential speedups on different architectures. For instance, if
a kernel is constrained by memory bandwidth on the CPU,
transitioning to high-bandwidth memory can alleviate this
bottleneck and enhance performance. Once the memory bottle-
neck is addressed, if the following constraint is FLOPS (core-
bound), further speedup might be achievable on processors
with higher FLOP rates, such as GPUs.

Our analysis employs the TMA methods on SPR-DDR
to assess the memory speed each kernel can reach when
running on high bandwidth memory systems like SPR-HBM
and GPUs (e.g., NVIDIA V100 and AMD MI250X). Fig. 9
presents a comparative analysis of the performance of
RAJAPerf kernels exhibiting memory bound behavior across
different architectures.

The figure is divided into four panels. The leftmost
panel illustrates the Memory Bound TMA metrics for each
RAJAPerf kernel on the SPR-DDR system. The higher the
bar, the more constrained the kernel’s memory bandwidth.
The second panel from the left compares the performance
of the same kernels when using the SPR-HBM architecture,
which offers higher memory bandwidth. Specifically, the blue
bar indicates the speedup achieved by each kernel on SPR-
HBM compared to SPR-DDR. The vertical red line marks the
1x performance level, serving as a baseline for comparison.
Kernels with blue bars exceeding this red line exhibit speedup,
indicating that the transition to HBM alleviates memory
bottlenecks for those kernels. Due to the scale of the second
panel, we label the kernels with a speedup greater than 1x. The
vertical yellow line indicates the value of the Stream TRIAD
kernel for that architecture as another basis for comparison. We
chose to highlight Stream TRIAD because it is significantly
memory bound and it contains a higher proportion of bytes
read to bytes written, which is characteristic of many scientific
applications (see Fig. 1). The two rightmost panels illustrate
the kernels’ speedup when running on the NVIDIA V100
and AMD EPYC-MI250X GPU architectures compared
to the SPR-DDR baseline, respectively. Like the second
panel, the blue bars represent the speedup, with the red line
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Fig. 6: Dendrogram of agglomerative clustering on SPR-DDR data.

Cluster ID Algorithms Applications Basic Comm (not LCALS Polybench Stream
Total Kernels 5 62.5% 14 93% 17 89% considered) 11 100% 9 69% 5 100%

0 1 12.5% 6 40% 6 32% 0 0% 1 9% 3 23% 1 20%
1 1 12.5% 6 40% 4 21% 0 0% 1 9% 1 7% 0 0%
2 2 25.0% 2 13% 3 16% 0 0% 9 82% 2 15% 4 80%
3 1 12.5% 0 0% 4 21% 0 0% 0 0% 3 23% 0 0%

Cluster
ID

Frontend
Bound

Bad
Speculation Retiring

Core
Bound

Memory
Bound

Speedup on
SPR-HBM

Speedup on
P9-V100

Speedup on
EPYC-MI250X

0 0.0452 0.0380 0.2402 0.1488 0.5279 1.4286 4.7197 13.9824
1 0.1460 0.0050 0.7169 0.1021 0.0300 0.9559 4.5510 7.0543
2 0.0103 0.0001 0.0562 0.0522 0.8812 2.5972 7.3578 22.6483
3 0.0118 0.0037 0.4117 0.5358 0.0370 0.8651 3.3596 6.2609

Fig. 7: Per-cluster top-down metrics and speedup over SPR-DDR.

indicating 1x performance, and the yellow line indicating
Stream TRIAD performance. We annotate the speedup for
Apps EDGE3D (118.6) on EPYC-MI250X as it exceeds 40x.

A. Comparing CPU with DDR versus HBM

Our findings support the hypothesis that increased mem-
ory bandwidth in memory-constrained kernels enhances their
performance. Specifically, the findings confirm that higher
memory bandwidth can alleviate bottlenecks, as evidenced
by the performance improvement of 40 out of 67 memory
bound kernels when transitioning from SPR-DDR to SPR-
HBM. The 26 kernels that did not demonstrate substantial
performance increases are less memory bound than the others.

Notable exceptions include Comm HALO kernels, which are
dominated by the MPI communication time.

B. Comparing CPU with DDR versus NVIDIA V100 GPU

When comparing performance from CPUs with DDR
memory to the NVIDIA V100 GPU architecture, eight
of the kernels did not exhibit speedup on the P9-V100.
Contrary to SPR-HBM, where all kernels that demonstrate
speedup are at least somewhat memory bound, four kernels—
Basic INIT VIEW1D, Basic INIT VIEW1D OFFSET,
Basic NESTED INIT, and Lcals FIRST MIN—perform
better on the P9-V100 even though they do not exhibit
memory constraints. The retiring metric from TMA is the
primary bottleneck for the three Basic kernels, indicating they
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Fig. 8: Parallel coordinate plot showing average top-down metrics and speedup over SPR-DDR per cluster. The average of
each of the top-down metrics per cluster is shown in the first five axes and then average speedup per cluster in the last three
axes. Cluster 2 (red line), made up of primarily memory bound kernels, exhibits the highest speedup on all architectures.

do not have a specific bottleneck restricting computation.
The Lcals kernel is split approximately half and half
between retiring and frontend bound. As a result, these
kernels can efficiently use the additional parallelism
available on the P9-V100. Similarly to SPR-HBM, not all
memory bound kernels show speedup on the P9-V100.
Besides the Comm HALO kernels, six other kernels—
Basic PI ATOMIC, Polybench ADI, Polybench ATAX,
Polybench GEMVER, Polybench GESUMMV, and
Polybench MVT—do not exhibit speedup on the P9-
V100. Some of these kernels may not be optimized for GPU
execution, which could account for the lack of performance
improvement. Other kernels make extensive use of atomics,
which are slower than other GPU instructions and introduce
synchronization, minimizing the benefit of the additional
parallelism available on the P9-V100. Of the memory bound
kernels, 11 demonstrate speedup on the P9-V100 but not on
SPR-HBM. These include Algorithm MEMSET, Apps FIR,
Apps LTIMES, Apps LTIMES NOVIEW, Apps VOL3D,
Basic INIT VIEW 1D, Basic INIT VIEW 1D OFFSET,
Basic MAT MAT SHARED, Polybench 2MM, Polybench
3MM, and Polybench GEMM. On both SPR-DDR and SPR-
HBM, these kernels encounter significant retiring bottlenecks,
and the Polybench kernels are also core bound. Thus, these

kernels cannot leverage the extra memory bandwidth provided
by SPR-HBM alone and instead can benefit from the parallel
processing capabilities of the P9-V100. The Polybench
kernels here also are O(N3/2), so the GPU versions have
more work to perform.

C. Comparing CPU with DDR versus EPYC-MI250X GPU

On the EPYC-MI250X architecture, almost all of the RA-
JAPerf kernels demonstrate speedup. The only exceptions
are Basic PI ATOMIC, Comm HALO PACKING, Poly-
bench ADI, Polybench ATAX, Polybench GEMVER, Poly-
bench GESUMMV, and Polybench MVT. These kernels all
have a non-zero memory bound percentage but also have
bottlenecks in both core bound and retiring. They also do not
exhibit any speedup on the P9-V100. Two of them, however,
show a slight speedup on SPR-HBM: Polybench ADI and
Polybench GESUMMV. Consequently, the two happen to
have the kernels’ highest and most significant memory bottle-
necks that did not speedup on the EPYC-MI250X (excluding
the Comm HALO kernel, which is an outlier due to the MPI
communication and launching many kernels, therefore being
kernel launch overhead bound).
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Fig. 9: SPR-DDR memory bound and speedup on SPR-HBM,
P9-V100, and EPYC-MI250X relative to SPR-DDR. Red line
indicates a speedup of 1; yellow line is the Stream TRIAD
value. All SPR-HBM speedup values greater than 1 are
annotated (panel 2). For Apps EDGE3D on EPYC-MI250X,
speedup value is annotated as it exceeds 40x (panel 4).

D. Comparing CPU with HBM versus GPUs

When it comes to achievable speedup with GPUs, it helps to
take a look at the primarily core (FLOP) bound kernels. Fig. 10
shows whether the RAJAPerf kernels have a higher memory
bandwidth (below the diagonal dashed line) or a higher flop
rate (above the diagonal dashed line). The 17 FLOP-heavy
kernels on SPR-DDR are:

• Apps CONVECTION3DPA
• Apps DEL DOT VEC 2D
• Apps DIFFUSION3DPA
• Apps EDGE3D
• Apps FIR
• Apps LTIMES
• Apps LTIMES NOVIEW
• Apps MASS3DPA
• Apps VOL3D

• Basic MAT MAT SHARED
• Basic PI ATOMIC
• Basic PI REDUCE
• Basic TRAP INT
• Polybench 2MM
• Polybench 3MM
• Polybench FLOYD WARSHALL
• Polybench GEMM

As expected, 15 of these 17 kernels show greater speedup
on both the P9-V100 and EPYC-MI250X than on SPR-
HBM, as they can take advantage of the additional mem-
ory bandwidth. However, the two that do not are Ba-
sic PI ATOMIC, and Polybench FLOYD WARSHALL. Ba-
sic PI ATOMIC has an extremely high retiring bound,
whereas Polybench FLOYD WARSHALL is primarily mem-
ory bound. Polybench FLOYD WARSHALL does exhibit
better performance on the EPYC-MI250X than SPR-HBM,
but the P9-V100 does not perform as well as SPR-HBM.
Polybench FLOYD WARSHALL is O(N3/2) complexity so
the GPU has to do more work due to the decomposition and
is not directly comparable to the work performed by the CPU.

Fig. 10 shows that the achievable memory bandwidth in-
creases from SPR-DDR to SPR-HBM, but the FLOP rate stays
consistent. This observation contrasts with the P9-V100 in that
we see a significant increase in achieved memory bandwidth
and a significant boost in achieved FLOPs, especially for some
kernels within the Apps, Basic, and Polybench groups. Finally,
on the EPYC-MI250X, the memory bandwidth trends towards
around 3x of the P9-V100 for many kernels, with an increased
FLOP rate as well, though it is not as remarkable a difference.

VI. RELATED WORK

When evaluating new architectures, benchmarks are an
important tool to characterize achievable performance.
The widely-known LINPACK benchmark [29] is used to
categorize systems in the TOP500 list [30]. Similarly, the
HPCG benchmark [31] provides additional computation and
data access patterns, meant to augment results from LINPACK.
While LINPACK and HPCG are used to evaluate performance
regardless of architecture, the SHOC [32], NUPAR [33], and
Rodinia [34] benchmark suites are focused on evaluating
systems that contain GPUs. SHOC and NUPAR contain
implementations in OpenCL and CUDA, whereas Rodinia
is parallelized with CUDA and OpenMP. The SPEChpc [35]
suite contains a variety of MPI, OpenMP, OpenACC, and
OpenMP target offload HPC application benchmarks.
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(a) SPR-DDR (b) SPR-HBM (c) P9-V100

(d) EPYC-MI250X

Fig. 10: Memory bandwidth vs. FLOPS on four architectures. Kernels that perform more memory operations than FLOPS
fall below the dashed line, kernels that perform more FLOPS are above the dashed line. The four points marked by
labeled X symbols at the top of Fig. 10d denote the four kernels with FLOPS greater than 10,000. These kernels are:
(0) Basic MAT MAT SHARED (13,326.4 GFLOPS), (1) Apps EDGE3D (84,113.3 GFLOPS), (2) Apps VOL3D (11,259.0
GFLOPS), and (3) Apps DIFFUSION3DPA (14,974.5 GFLOPS).

Kokkos Kernels [36] is a library of portable sparse linear
algebra, dense linear algebra, and graph algorithm kernels
implemented in the Kokkos programming model, with some
changes to the algorithms to increase portability. The primary
goal of Kokkos Kernels is to serve as a portable layer to be
used within an application as a library, removing the need
to actually learn the Kokkos programming model, whereas
the RAJA Performance Suite is intended as a standalone
benchmark for detailed performance analysis.

Several works conduct benchmarking studies or analyze
performance portability across different platforms. In [37],
Siefert et al. provide benchmark results for several TOP500
DOE machines using OSU Micro-Benchmarks, BabelStream
and Comm|Scope, primarily focusing on memory bandwidth
and launch latency. Afzal et al. [38] assess performance and
energy characteristics of the Intel Ice Lake and Sapphire
Rapids platforms using the SPEChpc suite. In [39], Kwack et
al. use roofline models to study the performance portability
of RAJA, SYCL, Kokkos, AMReX, and OpenMP codes
using three ECP apps and three mini-apps. The results
suggest good portability but wide variation in performance

portability across the different programming models.
In [40], Antepara et al. also use roofline models to evaluate
performance portability of block stencil computations across
different GPU architectures (NVIDIA, AMD, and Intel) and
programming models (CUDA, HIP, and SYCL). In contrast,
our study provides detailed comparisons and explanations of
performance portability characteristics of the 70+ RAJAPerf
kernels across both CPU and GPU platforms.

VII. CONCLUSIONS

The RAJA Performance Suite is a performance portable,
curated suite of kernels. It enables performance analysis of
key computational patterns across modern architectures. This
paper presents the analysis of RAJAPerf kernels across four
architectures, providing an ability to reason about expected
performance on CPUs as well as GPUs. The integration of
Caliper into RAJAPerf and analysis with Thicket allowed us
to automatically cluster kernels by their execution character-
istics and identify their bottlenecks. We further show that the
performance of kernels changes as expected when run on an
architecture that alleviates the most pressing bottleneck.
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