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Abstract—The discussion around “safe” programming lan-
guages has significantly increased in recent years, and is im-
pacting how governments, industry, and academia plan to de-
velop current and future software products. The White House
Office of the National Cyber Director released a report [1]
in February 2024 calling on the technical community to work
towards proactively reducing attack surfaces in cyberspace,
in part, specifically by adopting memory safe programming
languages. While the main discourse thus far has been focused on
cybersecurity, memory safety issues are also a concern in HPC,
where memory related errors can result in wasted execution time,
incorrect results, etc. Legacy programming languages in HPC
such as C and C++ provide freedom and flexibility with memory
management, but requires the developer to guarantee safety.
While it is possible to develop “un-safe” code in all programming
languages, “memory-safe” languages help guarantee safety by
utilizing various compile time and runtime checks and validation
systems.

In this paper we introduce Lamellar, an asynchronous tasking
and PGAS runtime system for HPC written in Rust, one such
“memory-safe” language. We describe the entire Lamellar stack,
from network interfaces to safe high-level abstractions such as
distributed LamellarArrays and Active Messages. The goal of
our runtime is to enable end-users to develop entirely safe Rust
code in their applications, limiting the use of any “unsafe” code
blocks to rigorously tested code blocks within the runtime itself.
We conclude by showing comparable performance against several
C, C++, and Chapel implementations of a subset of the BALE
kernel suite while maintaining strong memory safety principles.

Index Terms—HPC, PGAS, Asynchronous, Runtime, Dis-
tributed Computing, Rust Programming Language

I. INTRODUCTION

This work presents Lamellar, an HPC runtime system writ-
ten in the Rust programming language. First and foremost,
Lamellar is a tool for safe, productive development. It provides
a performance-competitive alternative to C and C++ legacy
runtimes, with a special focus on PGAS and asynchronous

tasking approaches. Lamellar itself is open-sourced and avail-
able on both Github [2] and Crates.io [3].

The unique feature of Lamellar is a tiered programming ab-
straction that interfaces with Rust’s native memory safeguards.
Like the abstractions present in the Rust language itself, these
features do not guarantee memory or thread safety in and
of themselves. However, by transferring the responsibility of
memory safety for large portions of the software development
pipeline to the Rust compiler, they can reduce exposure to
many of the unsafe behaviors endemic to HPC. They can also
reduce total development time – sometimes dramatically. A
main goal of Lamellar is to enable users to develop performant
HPC applications using only safe APIs, thus limiting the
opportunity for memory related errors to introduced by the
users.

Memory related errors permeate every branch of compu-
tation. The United States National Security Agency (NSA)
recently released a memo [4] on the “memory safety problem,”
highlighting the role of memory-related bugs in modern cyber
vulnerabilities. Over the last decade, for example, Microsoft
and Google state that up to 70% of the vulnerabilities in their
products may have stemmed from memory issues.

The NSA memo recommends adoption of memory safe
languages wherever possible, specifically including Rust. Rust
[5] is a systems programming language designed to provide
the speed and flexibility of a language like C++ without large
classes of memory or thread safety issues that can lead to
system instability, error, or remote exploitation by an attacker.
Rust’s goal is the generation of safe, efficient, and reliable
code.

Lamellar occupies a new niche in the safe computing
ecosystem generally and in Rust in particular. Specifically,
it provides high-level support for HPC networks and pro-
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gramming models (including PGAS) that are needed to fully
leverage the memory and thread safety features available in
Rust while making little compromises on the performance.
While cybersecurity has not historically been a significant
concern in the HPC community where tightly controlled sys-
tems are the norm, memory related errors are still a significant
issue, potentially resulting in wasted execution time, incorrect
results, and data corruption. We build on the OpenFabrics in-
terface [6](OFI) to construct a lightweight C-library (Rofi) and
a set of Rust bindings (Rofi-sys) to access high performance
network fabrics within Rust applications. These libraries form
the bottom layer of our Lamellar Software Stack (Fig. 1), and
are available as stand alone libraries [7], [8].

We describe the Lamellar runtime design, architecture,
and select APIs in Sec. III, provide experimental results for
Lamellar communication abstractions and a comparison to
Chapel and C and C++ approaches utilizing OpenSHMEM
on a subset of the Bale kernel suite in Sec. IV, and discuss
prospects for future work in Sec. V.

II. RELATED WORK

MPI [9]/OpenMP [10] are the de facto standards for high-
performance parallel programming models and have been
dominant in HPC application development. MPI uses explicit
inter-processor data exchange. OpenMP is a cross-language
standard for shared memory programming within each node.
While they don’t implement the PGAS programming model,
the combination embodies concepts used in PGAS systems.

SHMEM [11]is a CRAY-developed library for distributed
computing. It includes one-sided, point-to-point and collective
communications, shared memory views, and atomic operation
on global variables. These capabilities use a distributed com-
munication frameworks (such as MPI) and provide an interface
for higher-level PGAS systems. There are SHMEM imple-
mentations for many different platforms. OpenSHMEM [12]
includes a standard PGAS model.

Foundational work in PGAS models includes Aggregate
Remote Memory Copy Interface (ARMCI) [13] and Com-
munications Run-time for Extreme Scale (ComEx) [14]. This
early work developed concepts such as remote memory access
(RMA), inter-connect specific support, multi-threading, group-
aware communications and generic active messages. Global
Arrays (GA) [15] built on this early work and provides a clear
implementation of the PGAS model.

GASNet [16] is a language-independent communication
library to support PGAS systems through a high performance,
network-independent communication interface. GASNet is
widely used in open-source and vendor-supported libraries for
PGAS programming models.

Chapel [17] is a language-based PGAS programming model
that is developed by Cray aiming to fill the programma-
bility gaps between mainstream and parallel programming
languages. It makes use of GASNet for communication and
data management in the runtime. It features general parallel
programming concepts, global-view abstraction and various

controls over the operations depending on the locality of the
data.

UPC (Unified Parallel C) [18] is an extension to the C
language where users define shared arrays and pointers that
address the global memory space. In addition to providing
language-level global access, it features a forall loop that
can distribute iterations based on the affinity of the array
elements. Later, a C++ extension named UPC++ [19] provided
an object-oriented PGAS programming model with parallel
programming concepts to support a wider range of asyn-
chronous operations.

Charm++ [20] is an object-oriented portable parallel pro-
gramming language based on C++. It provides explicit pro-
gramming constructs to provide a separation between sequen-
tial and parallel objects with operations executed in a message
driven manner.

HPX [21] provides a task-based PGAS programming model
that focuses on defining the overall operation in a set of
tasks. Using tasks, HPX tries to avoid the complexities of
explicit data distribution and communication found in MPI.
This task-based approach supports dynamic communication
between nodes and dynamic data migration and autonomous
load balancing.

Exstack, Exstack2 [22], and Conveyors [23] are all C-based
aggregation libraries built on top of either OpenSHMEM or
UPC. Exstack performs synchronous aggregation (resembling
a bulk synchronous programming model). Exstack2 is an
asynchronous version of Exstack. Conveyors implements a
multi-hop aggregation approach to reduce memory footprint
and increase bandwidth utilization. We compare these three
libraries with Lamellar in Section IV.

The Habanero C/C++ library (HClib) [24] is an asyn-
chronous many-task (AMT) programming model-based run-
time used to implement the“Selectors” API for a fine-grained
Asynchronous Bulk-Synchronous programming model [25].
Within this library, point-to-point remote operations are rep-
resented as fine-grained asynchronous actor messages, which
abstracts the complexities of message aggregation and termi-
nation detection from the user. We compare the Lamellar with
implementations using the Selector library in Section IV.

Within the Rust community we have found two other efforts
targeting HPC. This first is a Rust implementation of the above
mentioned Conveyors library. We were unable to successfully
build Rust Conveyors on our system, and thus will not include
it in our experimental analysis.

The second is Selectors-rs [26], which is a re-
implementation of the HClib Selectors API. This is to say, the
library does not simply create a Rust wrapper directly on top
of the C++ Selectors API, rather it creates Rust wrappers for
lower level dependencies so as HClib and re-implements the
upper layer API. We were unable to find publicly available
source of Selectors-rs and thus was unable to perform a
comparison.

Outside of HPC two of the most popular async Rust
runtimes are Tokio and Rayon. Tokio [27] caters to I/O
applications including web servers and clients. It provides
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an asynchronous version of the Rust standard library with
a multi-threaded executor, and features a large ecosystem of
users, developers, and associated libraries. Rayon [28] is the de
facto standard for data parallel processing in Rust. It features
multi-threaded, work-stealing execution engines and provides
its own fork/join asynchronous execution model (independent
of Rust futures). Parallelism in Rayon is typically exposed
through a Parallel Iterator, and the the library itself provides
parallel implementations of many sequential iterator methods.
Tokio and Rayon are complimentary: Rayon offers no func-
tionality for distributed execution or I/O bound applications,
and Tokio offers little advantage for CPU-bound applications.

These packages belong to a growing Rust ecosystem
which may be useful to HPC. Other tool sets include
async_std, which offers well-vetted asynchronous coun-
terparts to many components of the Rust standard library,
smol, which re-exports several other packages in a small
asynchronous runtime with concise, simplified trait definitions,
and fuchsia-async, which provides an executor for use in
the Fuchsia operating system.

III. RUNTIME DESIGN

Throughout the following sub-sections we will discuss each
layer in the runtime (Fig. 1), its responsibility, and any
interfaces it provides to the user. Nomenclature used by the
runtime includes:
• Node - A physical compute node.
• Processing Element (PE) - The smallest logical entity for executing

Lamellar applications. PEs in Lamellar utilize asynchronous thread
pools. Multiple PEs can be allocated to a compute node but one
PE per Numa node is typical.

• World - All the PEs instantiated for an application. The number
of PEs is controlled through the system’s launcher (e.g. slurm).

• Team - A subset of PEs in the world; sub-teams are supported.
• Remote Direct Memory Access (RDMA) Memory Region - A

segment of memory accessible from remote nodes.
• Active Message (AM) - A message which runs code when it arrives

at a remote PE.
• One-sided - Operations that only requires the calling PE (no

coordination with remote PEs occurs).

Network interfaces

ROFI Local

lamellae

Applications

Lamellar

PGAS

layer

Active 

message layer

SMP

LamellarArrays

Darcs

Fig. 1: The Lamellar stack, highlighting various layers and
interfaces provided by the runtime.

• Collective - Operations that require all PEs in a team to coordinate
before proceeding.

A. Lamellae Layer

At the base of the stack is the abstraction for communicating
with network interfaces, called the Lamellae Trait. In Rust,
a Trait is a collection of methods that are available to
multiple different types. This is similar to an “interface” in
other languages (e.g. Go and Java). Typically we say that a
type T “implements” a Trait U if it can execute the methods
in U.

The Lamellae Trait is the interface between the runtime
and network interfaces via functions for: (de)initialization;
getting PE ids and the number of PEs in the world; and
(de)allocating Memory Regions. The Trait defines the func-
tions for performing remote put/get transfers, and synchro-
nization primitives (e.g., barrier). The rest of this section
provides details on three implementors of the Lamellae
Trait.

1) ROFI & ROFI-sys: ROFI is a light-weight transport
layer built on OpenFabrics (OFI) [6] meant to facilitate data
transfers in distributed environments. Its goal is to provide
high-level abstractions compared to OFI, but not to im-
plement sophisticated communication protocols, which are
implemented at higher levels of the software stack. ROFI
is designed to integrate with Rust code, minimizing issues
that can occur using the Rust Foreign Function Interface
(FFI) and utilizes popular packages that assist with Rust-C
integration such as Bindgen [29]. It supports synchronous
and asynchronous RDMA-based APIs (i.e., PUT and GET)
treating messages as a sequence of bytes, without interpreting
their content. It provides an API for collective synchronization
(i.e. Barrier) and mechanisms to (de)allocate RDMA Memory
regions. Future work will replace this C-library with a Rust
binding of libfabric directly.

ROFI-sys is a low-level Rust crate exposing the public
interface of ROFI (i.e., the methods in ROFI.h). These are
implemented as unsafe Rust functions that can be called
from any Rust program. Every function provided by ROFI-
sys must be declared as unsafe, because the Rust compiler
cannot guarantee the behavior and safety of libraries written
in other languages. It is infeasible to expect mature libraries
and operating systems to be rewritten fully in Rust, thus
the standard compromise is to minimize user exposure to
memory and thread related bugs by introducing higher-level
safe abstractions over these “-sys” packages at the application
layer. By marking these functions as unsafe we are explicitly
warning users that extra care is needed when utilizing them.

Essentially there are two types of data transfer that oc-
cur within a Lamellar application. The first is a simple
RDMA put or get to directly transfer a raw bitstream.
The second uses runtime (de)serialization of messages be-
tween PEs. Building upon the ROFI C library and ROFI-sys
crate described above we developed the ROFI_Lamellae to
enable distributed execution of Lamellar applications. If we
oversimplify ROFI(-sys) as a mechanism to transfer bytes of
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data from one PE to another PE, then ROFI_Lamellae is
responsible for all other aspects of transferring data from one
PE to another.

For RDMA, the ROFI Lamellae simply provides a
lightweight shim over the corresponding calls in ROFI(-sys).
These types of transfers are (generally) unsafe as the Rust
compiler is unable to reason about memory access on remote
PEs. RDMA transfers used internally by the runtime are ex-
posed as unsafe interfaces that can be called on LamellarMem ⌋

oryRegions (Sec. III-D) and UnsafeArrays (Sec. III-F).
These transfers also are the building blocks for other safe
abstractions.

For cases where messages need to be (de)serialized be-
tween PEs, the Lamellae implements a “flag” based transfer
mechanism. Each PE is able to signal every other PE to let
them know when data is to be read. Upon receiving this
signal the Remote PE is then responsible for getting the
data, once local buffers become available. The remote PE
then signals the original PE to let it know it is now free
to release any resources associated the the transferred data.
Lamellar employs a double buffering message queue to both
deal with asynchrony and allow for more efficient use of
network resources by transferring larger messages.

The Lamellae is also responsible for managing RDMA
Memory Regions used within an application. During initializa-
tion of a Lamellar application, a large RDMA Memory Region
is allocated on each PE. A portion of this region is reserved for
internal runtime use, including message buffers and the tables
described above; this portion remains static during the lifetime
of an application, and scales in size with the number of PEs.
The remainder of the RDMA Memory Region is used as a
one-sided dynamic heap for user-level data structures such as
AMs and One-sided memory regions (discussed in Secs. III-C
and III-D2 respectively).

The Lamellae also manage the allocation of RDMA Mem-
ory Regions for distributed data structures exposed to the user,
such as the distributed arrays described in Sec. III-F. The
construction of such objects are collective but only block the
calling thread on each PE, other threads are free to continue
working. Unlike the runtime RDMA memory regions, these
memory regions will be deallocated once the associated data
structure has been dropped (destructed) from the application.

2) Shmem: To allow development of Lamellar applications
in a non-distributed environment and without the need for third
party language dependencies (i.e. libfabric and ROFI), we have
developed a POSIX shared-memory based implementation of
the Lamellae Trait. While shared memory provides potential
optimizations such as directly transferring data objects through
shared-memory segments without (de)serialization, we chose
to emulate the behavior of the ROFI Lamellae as much as
possible. This eases development and debugging, and ensures a
seamless transition when switching between the two Lamellae.
In particular, it avoids tailoring design decisions to optimized
Shared Memory Lamellae in ways that fail to scale to the
distributed environment. Scaling beyond a single node always
presents challenges, but the goal is to minimize risk.

The shared memory Lamellae implements all the same
internal data structures as the ROFI Lamellae. The key differ-
ence is that instead of creating RDMA Memory Regions (via
libfabrics) it simply allocates shared memory segments that
all PEs on the local node can access. From a user perspective
switching between the ROFI Lamellae and the Shared Memory
Lamellae should be transparent.

3) SMP: The SMP Lamellae targets single-process multi-
threaded applications where there is only one PE. No data
transfer needs to occur, so there is no (de)serialization. This
Lamellae has no RDMA Memory Regions (and related con-
cepts), as all allocations requested by the application are
handled locally (e.g., by the standard Rust allocator).

While we have tried to ensure that applications first written
using only the SMP Lamellae will execute successfully on
both the Shmem and ROFI Lamellaes, some care must be
taken to ensure any distributed synchronization calls are cor-
rectly matched. Given that it is currently hard to reason about
these calls at compile time, we perform some limited runtime
analysis to warn users of theses issues. Additionally, our
documentation explicitly highlights which calls are collective
calls and which are one-sidied

B. Thread Pool Layer

Above the Lamellae layer in the Lamellar stack is the
Thread Pool layer, which is responsible for managing all
the worker threads in a PE (including enqueuing and ex-
ecuting asynchronous tasks). Lamellar fully supports Rust
Futures and the async/await programming model; as
such, Lamellar thread pools are considered Rust Execut ⌋

ors [30]. Generally, the thread pool manages asynchronous
tasks generated by various runtime APIs, including both the
execution of AMs and the communication tasks produced
by the Lamellae (which handle data transfers). Lamellar
enables users to submit their own Futures for execution on
the thread pool; this enables compatibility with popular third
party Rust packages such as Async-std [31] and a subset of
the Tokio Framework [27].

The Lamellar thread pool utilizes a work-stealing imple-
mentation with respect to individual PEs. This provides a
general-purpose baseline approach. Future work will explore
other implementations, such as the ability to utilize compute
node topologies to minimize performance degradation when
running across multiple NUMA domains, work-stealing across
PEs and an API to enable user-defined custom thread pool
implementations.

C. Active Message Layer

Active Messages (AMs) are a computing model where mes-
sages contain both data (that you want to compute something
with) and metadata that indicates how to process this data
when it arrives at its destination, e.g. a function pointer.
Lamellar is built upon asynchronous AMs. The runtime allows
for sending and executing user defined AMs on remote PEs
in distributed environments.
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AMs in Lamellar are exposed to users via a Rust Trait called
LamellarAM and a powerful Rust language feature called a
Procedural Macro. At a high level, Rust Procedural Macros
allow you to execute code at compile time to provide custom
syntax that is converted into valid Rust code. Using Procedural
Macros, it is possible to create Domain Specific Languages
(DSLs) and then have them be transformed into Rust code at
compile time [32].

The “Hello World” application in Listing 1 covers the use
and semantics of Lamellar AMs. Line 2 uses a “prelude
module” to import the data structures and Traits required to
construct an AM-based Lamellar application. Line 4 defines
a struct for the AMs input data. This example shows a
struct with a single member, but more complicated data
structures are possible as long as they adhere to restrictions set
by the AMs Trait Bounds. Trait bounds for AMs include
(de)serialization [33], safe referencing from multiple threads
(Sync [34]), and safety to send from one thread to another
(Send [34]) (see the Lamellar documentation [3] for more
details). Line 3 registers the struct with the runtime using
the #[AmData] procedural macro, which parses the struct
definition at compile time and attempts to automatically imple-
ment the required Traits (if this fails, a compile-time error is
produced). Using a procedural macro reduces repetitious work
that can often be automatically produced and is the expected
practice in the Rust community [35].

Lines 7-12 define the computation that will be performed
on the data in the AM. Line 7 is a procedural macro; it ingests
the AM implementation (Lines 8-12) and generates the code
needed to perform serialization, deserialization, execution, and
the preparation of return data. The macro also assigns each
AM to a unique identifier which is registered in a runtime
lookup table, enabling AMs to properly deserialize and execute
on remote PEs. Line 8 shows how to implement a Trait for a
given type in Rust, in this case the LamellarAM Trait for the
HelloWorldAM type. LamellarAM defines a single function,
async fn exec(self), that must be implemented. The
keyword async signals that AMs are asynchronous tasks.
For further details on Asynchronous Rust see [36], [37].

Next we examine the body of the AM and see that we
want to print something. println! is a Rust provided macro
similar to printf in C. In this example we print the PE id
where the AM is executing, and the value contained in the
AMs name member. The value for the PE id is provided by
Lamellar::current_pe. Other commonly used functions
include: Lamellar::num_pes, which returns the total PEs
in the world; Lamellar::world, a reference to the World;
and Lamellar::team, a reference to the Team that launched
the AM.

Though not shown in this example, both Lamellar::world
and Lamellar::team can be used to launch new AMs from
within a currently executing AM. This allows users to easily
construct AM dependency chains and use recursive design
patterns. It should be noted that this example does not return
any data from the AM, but Lamellar supports returning both
“normal” data (essentially anything that can be serialized

and deserialized) and AMs. Details on these capabilities are
available in the documentation [3].

Finally, Lines 13-24 show the main function for the Hello
World example. Line 14 initializes the runtime environment,
using a “builder” pattern to configure Lamellar at runtime.
The build() initializes the underlying Lamellae and thread
pools, and returns a LamellarWorld instance. Line 15 creates
an instance of our HelloWorldAM. Line 16 launches the
AM, directing the AM to be sent to, and executed on, every
PE. This call produces a Rust Future, which allows us to
await the result of this specific request, as shown in Line 17
(if our AM returned data, it would be returned here). Note
that block_on only blocks the calling PE, while world. ⌋

barrier() is a global synchronization point. Lines 19 - 23
show how to send AMs to one (not all) PEs, and illustrates
the wait_all() function (Line 22) which blocks the calling
PE until all of the AMs it launched have completed.

Calls to exec_am_*(...) will place the supplied AM
into the thread pool, where it will either execute locally or be
serialized, stored in a message buffer, and the transferred to a
remote PE. Upon arrival at the remote PE, the communication
task will create an asynchronous task to deserialize, execute
and return results from each AM in the buffer.

In this example is there is no explicit finalize function
call; rather we utilize Rust lifetimes and scoping rules. Specif-
ically, the world variable is automatically dropped in Line
27 at the end of the main function, which in turn executes
the Lamellar deinitialization process. Each PE remains active
until all other PEs are ready to deinitialize. In this example,
PE0 exits its main function before every other PE, but because
it is still alive, its thread pool is still able to process AMs sent
to it by other PEs.

1 // import necessary data stuctures and traits
2 use _______::active_messaging::prelude::*;
3 #[AmData] //this is an "attribute-like" procedural

macro↪→
4 struct HelloWorldAM{
5 name: String,
6 }
7 #[am] //this is also an "attribute-like" procedural

macro↪→
8 impl _______AM for HelloWorldAM
9 async fn exec(self) {

10 println!("PE{}:
hello{}!",_______::current_pe,self.name);↪→

11 }
12 }
13 fn main(){
14 let world = _______WorldBuilder::new().build();
15 let am = HelloWorldAM{ name: String::from("World") };
16 let request = world.exec_am_all(am); //all PEs to all

PEss↪→
17 world.block_on(request); //only blocks local PE
18 world.barrier(); //global sync
19 if world.my_pe() != 0 {
20 let am = ExampleAm{ name: String::from("World2") }
21 world.exec_am_pe(0,am); //send to PE0
22 world.wait_all();//only blocks local PE
23 }
24 }

Listing 1: Hello World in Lamellar

1240



D. PGAS Layer

The Lamellar runtime uses RDMA operations to transfer
AMs from PE to PE. Because these operations are inherently
unsafe, Lamellar controls user access with two levels of PGAS
abstraction: low (unsafe) and high (safe). High-level abstrac-
tions are designed specifically for end users, and provide a
range of robust safety and productivity features. Low-level
abstractions are designed for internal use by the runtime itself.
They provide fewer safeguards, and their use by end users is
discouraged. Where the need for fine-grained control makes
low-level abstractions essential, users must confine their use to
code regions fenced by the unsafe keyword. Minimizing the
footprint of these fenced regions can substantially reduce risk
of exposure (as well as code complexity), even when use of
low-level abstractions are unavoidable1. This section describes
low-level abstractions; high-level abstractions are described in
Sec. III-F.

1) Shared Memory Regions: A SharedMemoryRegion
is essentially a small wrapper around an RDMA Memory
Region collectively allocated to the PEs of a team. The
allocation occurs directly from the underlying network fabric
(not the runtime-maintained heap). Although creating a new
SharedMemoryRegion is a collective blocking call it only
blocks the calling thread (typically main), allowing the thread
pool to execute other tasks. SharedMemoryRegions will
allocate the same-size RDMA Memory Region on every PE
on which they are created.

A SharedMemoryRegion object provides methods to
read and write to the corresponding memory regions on
Remote PEs in the form of fn put(dest_pe, index,
src_buf) and fn get(src_pe, index, dst_buf)
(full API signatures and descriptions are documented in [3]).
We provide both non-blocking versions of put/get, which
rely on the user to determine when a transfer has completed,
and blocking versions which use runtime provided transfer
detection. A SharedMemoryRegion also provides direct
local access to the underlying data as a Rust slice or ptr.
As with the rest of the SharedMemoryRegion API, this is
unsafe as there are no protections against remote PEs writing
to local data while you hold a non-mutable reference.
SharedMemoryRegions are specialized types of dis-

tributed atomically reference counted objects (Darcs), which
allows them to be passed along as a member of an AM.
General purpose Darcs are introduced in Sec. III-E, but the
key attribute is that they enable the runtime to track lifetimes
of distributed objects in a way that guarantees an object is alive
on all PEs it was created on as long as any PE still holds a
reference to it (one can think it as a C++ std::shared_ptr

in a distributed fashion).
2) OneSided Memory Regions: The OneSidedMemory ⌋

Region is similar to the SharedMemoryRegion, except
instead of requiring a blocking collective call across PEs, only

1The division of code into safe vs. unsafe blocks is a core paradigm
in Rust programming [38]. It reflects a philosophical approach to computing
that emphasizes explicit demarcation, and integrates natively with other design
features, e.g. informative compiler errors.

the calling PE is involved in the allocation of the RDMA
memory segment. This operation tends to be efficient, as
the runtime can often allocate the memory directly from its
internal RDMA memory heap. OneSidedMemoryRegions
also expose blocking and non-blocking put/get APIs, with
the key difference being that no remote PE is supplied as
an argument. The put/get will always refer to to original
constructing PE. OneSidedMemoryRegions are also spe-
cialized Darcs, so PEs can send them in AMs.

E. Distributed Atomic Reference Counting (Darcs) Layer

As indicated in the PGAS Sec. III-D, Lamellar introduces
a new smart pointer type called a Darc, or Distributed
Atomically Reference Counted pointer. Darcs are a distributed
extension to Rust language-provided Arcs (Atomically Refer-
ence Counted smart pointers). The Arc API is a cornerstone
of safe concurrent (i.e. multi-threaded and asynchronous)
programming in Rust, and allows for safe shared ownership
of objects [39]. Darcs provide similar abstractions within a
distributed environment.

The Darc API is a safe distributed computation abstraction
exposed to the user, and used internally by the runtime. Specif-
ically, Darcs have global lifetime tracking and management,
meaning that the pointed-to objects remain valid and accessible
as long as any PE maintains a reference to it. Inner mutability
of the object pointed to by the Darc is disallowed by default.
Similar to Arcs, if you need to mutate through a Darc you
can use Mutex, RwLocks, or objects that implement the
Sync Trait (such as Atomic types).
Darcs are passed via AMs and allow distributed access-

to- and manipulation-of- Rust objects. Allocating a Darc is
a collective call amongst all PEs on a team. Each PE must
pass in an instance of the pointed-to type, as shown in the
following (simplified) API: fn Darc::new<T>(team, ⌋

item: T). The data structure for the Darc itself is located
in an RDMA Memory Region, which allows it to be sent
in AMs. The inner object can exist on the Rust heap or in
an RDMA memory region. When a Darc is created, each
PE will maintain its own independent instance of the inner
object. There does not exist a single shared instance across
PEs; instead the Darc provides a mechanism for accessing a
remote PE’s instance.

Reference counting occurs as normal during Clone [40] ,
serialization and deserialization is used to track the transfer
of Darcs to remote PEs in AMs. Destruction of a Darc is
asynchronous and occurs once every PE agrees that no further
references to the object exist. This is tracked in status bits
in the RDMA memory regions and an AM does the actual
deallocation.

F. LamellarArray Layer

Building upon all the layers below it, we end with the
LamellarArrays layer, which provides a safe PGAS abstrac-
tion of distributed arrays. LamellarArrays utilize both Darcs
and SharedMemoryRegions, so constructing an array is
a blocking and collective operation with all PEs on a team.
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While SharedMemoryRegions explicitly require users to
calculate a PE-specific offset, LamellarArrays use 0-based
indexing, with offsets calculated automatically by the runtime.
LamellarArrays provide a range of features: multiple array
types (depending on the safety guarantees required), safe
RDMA put/get interfaces, element-wise operations, Block
or Cyclic data layouts, iteration methods, reductions, and the
ability to create sub arrays. We discuss some of these features
below.

1) Lamellar Array Types: Lamellar supports four main
array types varying by data-access based safety guarantees:
1) UnsafeArray - No Safety guarantees; PEs are free to read/write

anywhere in the array with no access control. Similar to Memory
Regions, UnsafeArrays are intended for internal use, but are
exposed to users and marked unsafe.

2) ReadOnlyArray - No write access is permitted. PEs are free
to read from anywhere in the array with no access control.

3) AtomicArray - Access to each element is an atomic (either
intrinsically or enforced via the runtime), represented as the two
sub types below:
a) NativeAtomicArray - Elements are Rust atomic types,

such as
AtomicUsize, AtomicI8, etc.

b) GenericAtomicArray - Elements are protected by a 1-byte
Mutex.

4) LocalLockArray - The entire data region on each PE is
protected by a single locally constructed RwLock.

LamellarArray instances can be converted between types,
either via the Rust Into/From Traits, or by Lamellar APIs
such as array.into_atomic(), array.into_read ⌋

_only(), etc. Conversion is a collective call involving all
PEs that originally constructed the array. It is also a blocking
call that only succeeds when there is precisely one reference
to the array on each PE, specifically, the reference which is
executing the conversion call. These conditions guarantee that
the underlying data is only ever pointed-to by one array type
at any time, ensuring that the safety guarantees of each type
are honored 2.

2) RDMA like operations: LamellarArrays provide
RDMA like put/get operations similar to Shared/On ⌋

eSidedMemoryRegions but each array obeys the safety
guarantee corresponding to its type. Generally this means,
the safe array types utilize AMs to emulate the behavior of
direct RDMA operations, so all access to a remote PEs data is
actually managed on that PE rather than by the PE initiating
the access. UnsafeArrays provide unsafe APIs allowing
for direct RDMA between PEs, as well as the AM based
methods, but again we recommend users to avoid this array
type, and instead use a safe variant. Due to the non-mutable
access guarantee provided by ReadOnlyArrays we are also
able to provide a direct RDMA get operation, as we know
the underlying data cannot change (put does not exist for
ReadOnlyArrays).

3) Element-wise Operations: LamellarArrays provide a
number of operations for individual elements in the array,

2Conversion can induce deadlock due to Rust’s scoping rules (the compiler
does not do deadlock detection)

including arithmetic (+,-,*,/,%), bit-wise operators ( ⌋

&,|,ˆ,/), shift left and shift right operators,
compare_and_exchange operators, and load, load ⌋

, swap operators. Operators apply either as single-element
requests, or using a batch API that aggregates multiple op-
erations in to a single request. Single element operators take
the form array.op(index, val), for example array ⌋

.add(5, 100) adds 100 to the element at index 5. Batch
operators have several forms: Many Indices - One value, One
Index - Many values, and Many Indices - Many values (one-
to-one). For example, array.batch_store([20, 2],
10) sets the elements at indices 20 and 2 to 10, whereas
array.batch_mul(20, [2, 10]) first multiplies the
element at index 20 by 2, then multiplies the result by
10, and in the call array.batch_bit_or([0, 105,
67], [127, 0, 64]) the element at index 0 performs a
bit-wise Or with 127, the element at index 105 performs one
with 0, and the element at index 64 performs one with 64.
Lamellar also exposes fetch variants that return the current
value before applying the operation.

The runtime calculates the correct PEs and offsets for each
array index, batching operations by destination PE within a
single message. Batched messages can only contain operations
of the same type. Generally, operations are executed in the
same order they are launched, but the runtime makes no or-
dering guarantees. Each operation returns a Future that can
either be awaited for completion, or, for fetch operations,
used to retrieve a result.

4) Iteration: LamellarArrays offer three powerful iter-
ators: DistributedIterator, LocalIterator, and
OneSidedIterator.
DistributedIterator enables distributed and parallel

iteration over elements. It is blocking and collective over
all PEs that contain the array’s data. Generally, the runtime
tries to have PEs only iterate over their own data, but
will automatically manage data transfer from remote PEs
as needed. DistributedIterators support the meth-
ods collect, enumerate, filter, filter_map ⌋

, for_each, map, skip, step_by, take.
LocalIterator is a one-sided iterator which enables

parallel iteration over the calling PEs local data. From
the perspective of the iterator it is completely unaware
that it exists within a distributed context, therefore it will
never transfer data from a remote PE. LocalIterator
supports collect, chunks, enumerate, filter,
filter_map, for_each, map, skip, step_by,
take, zip.

Both DistributedIterator and LocalIterator
are asynchronous and return a Future after calling for ⌋

_each or collect. Thus users must await this future to
ensure the iteration has completed.

Lastly, OneSidedIterator enables serial iteration over
all the elements of the array on the calling PE. This iterator
operates over the entire array, thus data transfer from remote
PEs must occur, but it is managed by the runtime. OneSide ⌋

dIterator implements chunks, skip, step_by, ⌋
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zip to reduce data movement, but otherwise can be used with
any iterator methods supported by the Rust standard library (by
calling into_iter() to convert the OneSidedIterator
into a normal Rust Iterator).

We provide a fully executable example showing how we
use an AtomicArray to implement the Histogram benchmark
discussed in Sec. IV-B1. Of particular note to the Lamellar
arrays abstractions, are creating a new array in line 8. We
specify the array type, tell the compiler the element type (us ⌋

ize), associated the array with a team (in this case the world),
provide a global length, and specify the distributed data layout.
Line 15 performs a batch_add operation, accepting a list
of random indices (lines 9-12) and indicating we want to add
1 to the element at each index. Although not discussed above,
we show in line 18 applying a sum reduction on our array.
We use this sum to ensure no updates were missed (line 19).

1 use _______::array::prelude::*;
2 use rand::Rng;
3 use std::time::Instant;
4 const T_LEN: usize = 1_000_000; //global len
5 const L_UPDATES: usize = 10_000_000; //updates per pe
6 fn main() {
7 let world = _______WorldBuilder::new().build();
8 let table = AtomicArray::<usize>::new(&world, T_LEN,

Distribution::Block);↪→
9 let mut rng = rand::thread_rng();

10 let rnd_i = (0..L_UPDATES) //generate random indices
11 .map(|_| rng.gen_range(0, T_LEN))
12 .collect::<Vec<_>>();
13 world.barrier();
14 let timer = Instant::now();
15 world.block_on(table.batch_add(rnd_i, 1));

//histogram kernel↪→
16 world.barrier();
17 println!("Elapsed time: {:?}", timer.elapsed());
18 let sum = world.block_on(table.sum());
19 assert_eq!(sum, L_UPDATES * world.num_pes());
20 }

Listing 2: Example AtomicArray Histogram implementation

IV. BENCHMARKS

This section examines Lamellar performance. Sec. IV-A dis-
cusses bandwidth curves for put- like operations and Sec. IV-B
compares Lamellar to existing C and C++ approaches built on
top of OpenSHMEM and Chapel based implementations of a
subset of the BALE Kernel suite [41].

All results were gathered using a 48 node local cluster.
During testing only 32 nodes were available. Each node
contains dual socket AMD EPYC 7543 32 Core CPUs with 8
Numa nodes per CPU (64 cores and 16 Numa nodes total per
compute node). There is 256 GB of DDR4-3200 memory per
compute node. The network consists of Mellanox HDR-100
ConnectX-6 InfiniBand HBA cards, with a peak bandwidth of
100Gb/s (12.5GB/s), organized as a full fat tree. The cluster is
comprised of 4 racks, 12 nodes each. Each rack has a Mellanox
Spectrum®-3® SN4600 64-port 100GbE leaf switch. 24 ports
are used to connect the 12 nodes within a rack to the switch.
Each leaf switch is connected to three spine switches with
8 connections to create a fat-tree. The spines are Mellanox
Spectrum® SN2700 32-port 100GbE switches.

.

Fig. 2: Put-like bandwidth curves (higher is better).

A. Bandwidth

As detailed in Secs. III-D and III-C there are numerous
communication primitives Lamellar can use to transfer data.
Our first set of results compares the potential performance
of each method on put like operations. Performance (MB/s)
was measured while conducting N transfers of various sizes.
For transfer sizes in the range 1B - 4KB we perform
262143 individual transfers. The remaining transfer sizes send

1GB
transfer size individual transfers. Results are presented as
bandwidth curves. The tests are performed on two PEs, located
on different compute nodes, each PE occupied a single CPU.

Fig. 2 shows these results. The theoretical max bandwidth
of our network is shown by the red dotted-line. Put oper-
ations take data stored on PE0 and transfer it to PE1. The
Rofi(libfabric) performance presented is essentially an upper-
bound on Lamellar’s performance. MemRegion is the lowest-
level Lamellar call (unsafe); i.e. light-wrappers around the
Rofi(libfabric) calls. For the distributed arrays, data is stored
in a OneSidedMemoryRegion on PE0 and transferred into
the array on PE1. The AM-based implementation contains a
Vec<u8>, and the exec function returns immediately (on
PE1).

The Rofi(libfabric), MemRegion, and “unchecked” Un ⌋

safeArray all perform manual termination detection, e.g.
checking for a known pattern and entering a barrier
(which PE0 will be blocked in). The remaining methods rely
on the runtime to provide termination detection, i.e. calling
wait_all().

These results show that safety comes with a perfor-
mance cost. Reducing this gap is a focus of future work.
Rofi(libfabric), MemRegion, and “unchecked” UnsafeA ⌋

rray have similar performance, with Rofi(libfabric) and ⌋

MemRegion performing slightly better than “unchecked”
UnsafeArray. The difference between these cases can be
attributed to Lamellar runtime overhead. All three approaches
perform near the maximum of the network for transfer sizes
32KB and larger. The drop in performance between 128B
and 256B corresponds to a threshold in the libfabrics verbs
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provider to switch between fi_inject_write (which is
optimized for small messages) and fi_write.

The LamellarArray and AM based approaches are similiar
to each other up to 100KB, though they exhibit a runtime
cost vs. Rofi(libfabric) and MemRegion approaches. The array
approaches copy data into a Vec, which is then transferred to
PE1. When it arrives, the array type store the data according
to its safety guarantees. UnsafeArray does a memcopy.
LocalLockArray first grabs the local RwLock, and then
performs a memcopy. Finally, AtomicArray iterates through
the the elements of the Vec and performs an atomic store to
the corresponding array element. The overhead of these safety
guarantees results in worse performance when comparing
against the UnsafeArray, which itself performs slightly
worse than the AM approach due to the additional memcopy.

For messages larger than 100k, there is an initial dip in
performance because the runtime performs aggregation for
messages sizes smaller than 100K (this threshold is config-
urable; 100KB is the default, with this test indicating 512KB
- 1MB are more appropriate for our system). Fig. 2 shows
UnsafeArray starts to perform significantly better than the
other array types and the AM approach around the 100KB
threshold as well. This is for two reasons, first the cost
of copying data into the AM Vec becomes non-trival at
larger message sizes. Second, UnsafeArray uses the same
aggregation threshold to switch transfer methods from the Vec
AMs to using an RDMA get from the target (PE1). (It does
not use RDMA put from PE0 into PE1 because termination
detection can be difficult without explicit coordination from
PE1, we hope to resolve through future work on Rofi). 3

B. Bale Kernel Suite

Bale is a suite of kernels designed as “... a vehicle for dis-
cussion for parallel programming productivity” [41]. Bale ker-
nels are an appropriate benchmark because Bale’s design goals
include demonstrating patterns for (1) irregular distributed
parallel applications (2) with internode communication (3)
to make it easier to write/maintain/achieve top performance.
These goals align well with Lamellar’s.

We compare to five other Bale aggregation implementations.
Three C implementations are evaluated: Exstack, which is
synchronous and resembles Bulk Synchronous Programming,
Exstack2 which is an asynchronous version of Exstack, Con-
veyors [23], [41] which implements a multi-hop aggregation
approach to reduce memory footprint and increases bandwidth
utilization. Conveyors-rs is a Rust implementation of convey-
ors, which we were unable to successfully build on our system,
and thus excluded. One C++ implementation is evaluated:
Selectors [25] which is built upon HClib an asynchronous
many-task (AMT) programming model-based runtime. We
were unable to find the source for the Rust implementation
of Selectors in [26], but based on the results there, its perfor-
mance was comparable to the C++ version [25]). The last is

3Lamellar get transfers follow the same trends as put and are omitted
for brevity.

.

Fig. 3: Histogram kernel performance (higher is better).

implemented using the automatic aggregation capabilities of
Chapel. We compare Lamellar to these five implementations
using the Histogram, IndexGather, and Randperm kernels.

For all experiments, Exstack, Exstack2, Conveyors, and
Selectors were built using OpenSHMEM v5.0.0rc2, with an
OpenSHMEM PE allocated per core, for 64 PEs per node.
Lamellar and Chapel were tested in several configurations of
PEs per node. In all cases presented, Lamellar implementations
performed best with 16 PEs per node (1 PE per NUMA
node) utilizing 4 threads per PE (1 thread per core). Chapel
implementations performed best with a varying number of
Locales per node at each scale (within the range of 1 - 8
Locales per node) The average results of 10 runs is presented
for each approach.

1) Histogram: Histogram is a simple kernel similar to the
GUPS benchmark. Each PE generates N indices uniformly
at random from the range of a distributed array. It then
increments the table’s value at that index. Although the kernel
is simple it represents a common communication pattern
(small message all-to-all) in many parallel applications.

Fig. 3 presents benchmark results. The first Lamellar ver-
sion 4 uses AMs to manually aggregate indices (into a Vec) by
destination PE. This method iterates over the random indices
in parallel, each thread maintains its own update buffers (in an
effort to match the PE per core behavior of the OpenSHMEM
based approaches). When executing on a remote PE, the AM
iterates through the Vec of indices and atomically updates the
corresponding entries in the distributed table.

The second Lamellar approach utilizes the batch_ad ⌋

d API on an AtomicArray. A reduced (but executable)
example of our implementation is shown in Listing 2. The
actual Histogram kernel is shown in line 15. Experiments used
a distributed table with 1,000 elements per core, performed
10,000,000 updates per core, and limited aggregations to
10,000 operations per buffer. For AtomicArray, the runtime
automatically splits batch_add into sub-batches of up to
10,000 elements.

4Lamellar full Histogram code is available at [42], [43].
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Fig. 3 shows that all seven approaches have similar scaling
properties, with the Lamellar AM approach performing best
as scale increases, followed by the Lamellar AtomicArray
approach. The AM approach includes many hand-optimized
components utilizing only safe abstractions and represent
opportunities we may be able to apply to the runtime. In
comparison, the AtomicArray also only uses safe API, but
places all responsibility of the computation on the runtime,
including creating sub-batches (by batch size and destination
PE), multi-threaded batch dispatch, and creation and execution
of the internal AMs. The runtime tries do this as efficiently
as possible, but introduces overhead related to resource allo-
cation, batching, and execution of the array operations (that
the manually aggregated AM approach can avoid). These
inefficiencies appear to scale with the number of PEs, and
highlights an area of focus for future work.

Overall, the Lamellar based approaches efficiently aggregate
the small messages and achieve good scaling performance, us-
ing safe abstractions. Although manual aggregation performs
better, the AtomicArray approach is simpler to implement
and still achieves respectable performance.

2) IndexGather: IndexGather is similar to Histogram, how-
ever it reads random elements from a table (instead of writing
to random elements). IndexGather is more difficult to execute
efficiently since the runtime needs to both (1) manage the
initial remote read requests and (2) return the results of those
reads. Psuedocode for IndexGather is:
for (i, rand_i) in random_indices.enumerate(){

target[i] = table[rand_i];
}

target is a local array that stores the remote read results.
The Lamellar IndexGather implementations 5 are similar

to the Histogram kernel, adding a ReadOnlyArray imple-
mentation in place of an AtomicArray. The core line for
ReadOnlyArray is shown below:
target =

world.block_on(table.batch_load(rnd_idxs));↪→

Calls to batch_load will return a Vec containing the values
at the indices specified in rnd_idxs.

Experiments used a distributed table with 1,000 elements
per core, performed 10,000,000 requests per core, and limited
aggregations to 10,000 operations per buffer. Index gather
results are shown in Fig. 4, Generally, it is not surprising
that IndexGather performance is less than Histogram as the
operation includes a return value (a 2nd message) in addition
to the index value that is transferred in Histogram.) Chapel
achieves highest performance as internally this implementation
uses a specialized CopyAggregator, which is optimized for
simple assignment operations and allocates additional buffers
for each PE to communicate with one another using RDMA.
The performance curves of the Lamellar based implementa-
tions have reversed, with the ReadOnlyArray performing
better at larger scales that the Active Message approach. In part
this is because the runtime based aggregation is better able to
balance both sending and receiving data simultaneously.

5Lamellar IndexGather is available at [44].

.

Fig. 4: IG kernel performance (higher is better).

3) Randperm: Randperm creates, in parallel, a distributed
array of size N that holds a random permutation of 0..N − 1.
Although there are communication-free ways to implement
this kernel [45], Bale employs the “dart throwing algo-
rithm” [46]. Each PE manages a contiguous slice of the array,
whose indices are called “darts.” There is a distributed target
array at least as large as N (fewer messages are needed as
target table size goes up). Each PE “throws” its darts to random
locations in target array. A dart that hits an empty location
sticks, and its value is recorded at that location in the target.
If the location is already occupied, the dart must be thrown
again until it sticks. Once all darts have stuck, the target array
iterates to collect darts in the order they appear, forming a
size-N random permutation.

We present four implementations, highlighting the flexibility
of AMs, Darcs, and LamellarArrays in distributed kernels.
The first (“Array Darts”) uses AtomicArrays for storage; it
throws darts with batch_compare_exchange, and moves
results to the final permutation with the Collect iterator.
The second (“AM Dart”) uses AMs to manually aggregate
(1) darts by destination PE, and (2) throw results. The two
remaining implementations may not maintain the “uniform
at random” property in all cases, but they do highlight the
ability to quickly iterate designs for different constraints. The
third (“AM Dart Opt”) removes some communication from
the second: when a dart encounters a occupied slot, it will
randomly select a new location on the current PE (unless all
locations on this PE are filled). The final implementation (“AM
Push”) first randomizes the darts slice on each PE (locally),
then randomly selects another PE for each dart. When the dart
arrives, it is pushed to the end of the Target vector on that PE,
a dart throw never fails, so communication is minimized. All
AM approaches and use Darcs for remote access to the target
arrays. 6 For all implementations, the desired array will have
1,000,000 elements per core, with the target array being twice
that size. Fig. 5 presents the results. Ideally, the execution
time would remain constant regardless of the number of
cores used (as the work per core remains the same). While

6Lamellar Randperm code is available at [47].
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.

Fig. 5: Randperm kernel running time (lower is better).

this is not true across all cores for any implementation, the
Lamellar approaches and Conveyors exhibit more consistent
behavior. The OpenSHMEM implementations exhibit good
single node performance, but exhibit a noticeable performance
penalty at 2048 cores. This could stem from our network
topology (two racks for 1024 cores, versus four racks for
2048 cores). Unsurprisingly, the two Lamellar approaches
that minimize communication (Am Darts Opt and Am Push)
perform best, while the other two Lamellar approaches exhibit
similar communication patterns and performance.

V. CONCLUSIONS AND FUTURE WORK

The increasing discussion around memory-safe program-
ming languages underscores a significant shift in the industry
towards prioritizing security, reliability, and developer pro-
ductivity, making them essential tools for current and future
software development. This work introduces Lamellar, an
asynchronous task and PGAS runtime targeting HPC which
has been written in Rust, one such “memory safe” language.
Lamellar supports single process, single node shared memory
SMP, and distributed shared memory environments. Further-
more, Lamellar does this using Rust-provided memory and
async/await task management tools, enabling both perfor-
mance and safety through techniques that are common in the
Rust community.

The Lamellar runtime exposes diverse abstractions for
remote communication and computation. The recommended
safe PGAS interface is provided by LamellarArray, with
different implementations providing different access charac-
teristics and safety guarantees. All arrays provide access and
iterator patterns familiar to Rust programmers and useful
for distributed programming, as well as optimized routines
for common distributed-memory operations. The runtime also
provides low-level (but unsafe) PGAS APIs via Shared
and OneSidedMemoryRegions. Finally, Lamellar supports
asynchronous tasking via its Active Message interface, utiliz-
ing Rust Proc-Macros to allow users to provide their own im-
plementations. We showed that raw performance is accessible
via Lamellar, and acceptable performance is often convenient.
Across all examined kernels, we find Lamellar is expressive

enough to quickly enable numerous safe approaches when
developing distributed applications.

Future work on Lamellar includes (1) improving automatic
aggregation in the runtime to improve performance, (2) ex-
panding array iterator types to improve parity with standard
Rust arrays and (3) reducing the overhead of array types to
make truely high-performance more accessible. We plan to
work with domain scientists to further test the viability of
Lamellar in specific domains. Industry has already started to
embrace memory safe languages such as Rust, and we believe
there is a use case for them in HPC as well.
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[45] P. Sanders, S. Lamm, L. Hübschle-Schneider, E. Schrade, and
C. Dachsbacher, “Efficient parallel random sampling—vectorized,
cache-efficient, and online,” ACM Trans. Math. Softw., vol. 44, no. 3,
jan 2018. [Online]. Available: https://doi.org/10.1145/3157734

[46] P. B. Gibbons, Y. Matias, and V. Ramachandran, “Efficient low-
contention parallel algorithms,” Journal of Computer and System
Sciences, vol. 53, no. 3, pp. 417–442, 1996. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0022000096900793

[47] R. D. Friese, R. Gioiosa, J. Cottam, E. Mutlu, and G. Henselman-
Petrusek. (2024) Lamellar: randperm benchmark. [Online]. Available:
https://github.com/pnnl/lamellar-benchmarks/tree/april 2023/randperm

1247



Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 Introduction Lamellar, a new asynchronous active
message and PGAS runtime for HPC written in the
Rust programming language.

C2 In-depth overview of the various layers of the run-
time.

C3 Performance comparison against various other run-
times.

B. Computational Artifacts

A1 https://github.com/pnnl/lamellar-runtime
A2 https://github.com/pnnl/rofi
A3 https://github.com/pnnl/rofi-sys
A4 https://github.com/pnnl/lamellar-benchmarks
A5 https://github.com/jdevinney/bale/tree/master/src/

bale classic
A6 https://github.com/chapel-

lang/chapel/tree/main/test/studies/bale
A7 https://github.com/singhalshubh/hclib/tree/

bale actor

Artifact ID Contributions Related
Supported Paper Elements

A1, A2, A3 C1, C2, C3 Listings 1-2
Figures 1-5

A4, A5 C3 Figures 2-5
A6, A7

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This is the main Lamellar Runtime Repository, providing
the various abstractions detailed in the paper. It also contains
the application implementations for performing the bandwidth
tests.

Expected Results

It is expected that safe abstractions exposed by the runtime
perform at least as well as legacy ”unsafe” runtimes.

Expected Reproduction Time (in Minutes)

The expected time to build the artifact is 15-25 minutes
depending on hardware (e.g. storage performance).

The expected execution time of the bandwidth tests is 2-3
minutes per test, with 7 tests executed.

Artifact Setup (incl. Inputs)

Hardware: All results were gathered using a 48 node cluster
at PNNL. During testing only 32 nodes were available. Each
node contains a dual socket with AMD EPYC 7543 32 Core
CPUs with 8 Numa nodes per CPU (64 cores and 16 Numa
nodes total per compute node). There is 256 GB of DDR4-
3200 memory per compute node. The network is constructed
from Mellanox HDR-100 ConnectX-6 InfiniBand HBA cards,
with a peak bandwidth of 100Gb/s (12.5GB/s), organized as a
full fat tree. The cluster is comprised of 4 racks, 12 nodes each.
Each rack has a Mellanox Spectrum®-3® SN4600 64-port
100GbE leaf switch. 24 ports are used to connect the 12 nodes
within a rack to the switch. Each leaf switch is connected to
three spine switches with 8 connections to create a fat-tree.
The spines are Mellanox Spectrum® SN2700 32-port 100GbE
switches.

Software: Rust Programming Lanugage v
1.78.0 – https://www.rust-lang.org/ All other
dependencies managed and contained in the lamellar
”Cargo.toml” file – https://github.com/pnnl/lamellar-
runtime/blob/master/Cargo.toml

Datasets / Inputs: N/A
Installation and Deployment: Rust Programming Lanugage

v 1.78.0 – https://www.rust-lang.org/ It should be possible
to simply clone the repository and then run the following
command:

• cargo build –release –features enable-rofi -j4 –examples

Artifact Execution

All presented Lamellar application results rely on this
artifact. This artifact in turn relies of A2 and A3 to execute
within a distributed environment.

The implementation of all the bandwidth tests require no
parameters to be provided and can be executed as pro-
vided. For transfer sizes in the range 1B - 4KB we perform
262143 individual transfers. The remaining transfer sizes send
1GB/transfer size individual messages. Presented band-
width numbers are the average of all messages for a given
transfer size.

Artifact Analysis (incl. Outputs)

Output from the bandwidth applications are average perfor-
mance for each transfer size, these are injested by a python
script and plotted.

B. Computational Artifact A2

Relation To Contributions

This is the ROFI C-library repository, it is lightweight
transport layer between libfabrics and the higher levels of the
lamellar runtime.
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Expected Results

Generally, ROFI provides the same performance as achieved
by the libfabric providers. Lamellar performance is bounded
by ROFI performance

Expected Reproduction Time (in Minutes)

The expected time to build the artifact is less than 5 minutes.

Artifact Setup (incl. Inputs)

Hardware: Same as A1
Software: Tested with various versions of both CLANG and

GCC.
Libfabric v1.21 – https://ofiwg.github.io/libfabric/
Datasets / Inputs: N/A
Installation and Deployment: This should not be installed

manually, instead letting the Lamellar crate handle installation
as described in artifact A1.

Artifact Execution

All presented Lamellar application results rely on this
artifact. This Artifact is a direct dependency of A3

Artifact Analysis (incl. Outputs)

see A1.

C. Computational Artifact A3

Relation To Contributions

This is the rofi-sys repository, it is a crate providing Rust
bindings to the Rofi C-Library.

Expected Results

Generally, rofi-sys should not introduce any performances
regressions and should perform the same as ROFI.

Expected Reproduction Time (in Minutes)

The expected time to build the artifact is less than 5 minutes.

Artifact Setup (incl. Inputs)

Hardware: Same as A1
Software: Rust Programming Lanugage v 1.78.0 –

https://www.rust-lang.org/
All other dependencies contained in the crate Cargo.toml

file.
Datasets / Inputs: N/A
Installation and Deployment: This should not be installed

manually, instead letting the Lamellar crate handle installation
as described in artifact A1.

Artifact Execution

All presented Lamellar application results rely on this
artifact. This Artifact is a direct dependency of A1.

Artifact Analysis (incl. Outputs)

See A1.

D. Computational Artifact A4

Relation To Contributions
This repository contains our implementations of the pre-

sented benchmarks.

Expected Results
Generally, we expect our implementations to perform better

than those in A5 and A7, and be competitive with those in
A6.

Expected Reproduction Time (in Minutes)
The expected time to build the artifact is 10 minutes.
Expected time to run a complete set of experiments for

each algorithm implementation is less than 1 hour. There are
2 implementations for the Histo and IndexGather kernels, and
4 implementations of the Randperm kernel. Many of these tests
can be run in parallel (when utilizing less than 32 nodes).

Artifact Setup (incl. Inputs)
Hardware: Same as A1.
Software: Rust Programming Lanugage v 1.78.0 –

https://www.rust-lang.org/
All other dependencies automatically managed and listed in

each applications Cargo.toml file.
Datasets / Inputs: All inputs generated as part of the tests.
Installation and Deployment: Install by cloning the repos-

itory and executing:
• cargo build –release

Artifact Execution
All presented results depend on A1,A2,A3.
Each benchmark accepts input parameters for specifying the

problem size and the number of times to run the test. For
Histogram and Indexgather:

• 1000 elements in distributed table per core.
• 10,000,000 operations performed per core.
• aggregation limited to 10000 operations.
• Each test executed 10 times

For Randperm
• 1,000,000 elements per core to be permuted.
• 2,000,000 elements per core in ”target” array.
• Each test executed 10 times
Additional parameters we experiment with are the number

of Processes per node, controlled through the clusters job
management system. The number of total threads per node
remained constant regardless of the number of processes per
node, and was equal to the number of cores. For example
a single process per node would launch 64 threads, while 8
processes per node would only launch 8 nodes.

Artifact Analysis (incl. Outputs)
Each run of an implementation prints the average value

over however many runs were executed. The output of each
execution is stored into a file, with the path describing the
number of nodes used, the number of processes per node, and
the implementation used. A python script parses an ingests
these files to plot the final results.
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E. Computational Artifact A5

Relation To Contributions

This repository contains the original implementations of the
BALE suite implemented in C utilizing OpenSHMEM.

Expected Results

Generally, we expect these to perform below the Lamellar
implementations

Expected Reproduction Time (in Minutes)

The expected time to build the artifact is 10 minutes.
Expected time to run a complete set of experiments for each

algorithm implementation is less than 1 hour. There are three
implementations for each application.

Artifact Setup (incl. Inputs)

Hardware: Same as A1.
Software: Tested with various versions of GCC. Tested with

OpenSHMEM v5.0.0rc2
Datasets / Inputs: All inputs generated as part of the tests.
Installation and Deployment: Followed the directions pro-

vided in the README.

Artifact Execution

Each benchmark accepts input parameters for specifying the
problem size and the number of times to run the test. For
Histogram and Indexgather:

• 1000 elements in distributed table per core.
• 10,000,000 operations performed per core.
• aggregation limited to 10000 operations.
• Each test executed 10 times

For Randperm
• 1,000,000 elements per core to be permuted.
• 2,000,000 elements per core in ”target” array.
• Each test executed 10 times
OpenSHMEM operates with a single Process per core.

Artifact Analysis (incl. Outputs)

Each run of an implementation prints the average value
over however many runs were executed. The output of each
execution is stored into a file, with the path describing the
number of nodes used, the number of processes per node, and
the implementation used. A python script parses an ingests
these files to plot the final results.

F. Computational Artifact A6

Relation To Contributions

This repository is from the Chapel programming language,
and provides implementations of the tested bale kernels.

Expected Results

Generally, we expect these implementations to be as good
as Lamellar.

Expected Reproduction Time (in Minutes)

The expected time to build the artifact is 10 minutes.
Expected time to run a complete set of experiments for

each algorithm implementation is less than 1 hour. There is
one implementation for each benchmark.

Artifact Setup (incl. Inputs)

Hardware: Same as A1.
Software: Chapel V2.0
Datasets / Inputs: All inputs generated as part of the tests.
Installation and Deployment: Followed the directions pro-

vided in the README.

Artifact Execution

Each benchmark accepts input parameters for specifying the
problem size and the number of times to run the test. For
Histogram and Indexgather:

• 1000 elements in distributed table per core.
• 10,000,000 operations performed per core.
• aggregation limited to 10000 operations.
• Each test executed 10 times
Additional parameters we experiment with are the number

of Processes per node, controlled through the clusters job
management system. The number of total threads per node
remained constant regardless of the number of processes per
node, and was equal to the number of cores. For example
a single process per node would launch 64 threads, while 8
processes per node would only launch 8 nodes.

Artifact Analysis (incl. Outputs)

Each run of an implementation prints the average value
over however many runs were executed. The output of each
execution is stored into a file, with the path describing the
number of nodes used, the number of processes per node, and
the implementation used. A python script parses an ingests
these files to plot the final results.

G. Computational Artifact A7

Relation To Contributions

This repository is a fork of HCLib and contains C++
”Selectors” implementations of the examined kernels.

Expected Results

Generally, we expect these implementations to be on par
with the OpenSHMEM implementations.

Expected Reproduction Time (in Minutes)

The expected time to build the artifact is 10 minutes.
Expected time to run a complete set of experiments for

each algorithm implementation is less than 1 hour. There is
one implementation for each benchmark.

Artifact Setup (incl. Inputs)

Hardware: Same as A1.
Software: automake modern versions of gcc or clang
Datasets / Inputs: All inputs generated as part of the tests.
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Installation and Deployment: Followed the directions pro-
vided in the README.

Artifact Execution

Each benchmark accepts input parameters for specifying the
problem size and the number of times to run the test. For
Histogram and Indexgather:

• 1000 elements in distributed table per core.
• 10,000,000 operations performed per core.
• aggregation limited to 10000 operations.
• Each test executed 10 times

For Randperm
• 1,000,000 elements per core to be permuted.
• 2,000,000 elements per core in ”target” array.
• Each test executed 10 times
Selectors execute with a single process per core.

Artifact Analysis (incl. Outputs)

Each run of an implementation prints the average value
over however many runs were executed. The output of each
execution is stored into a file, with the path describing the
number of nodes used, the number of processes per node, and
the implementation used. A python script parses an ingests
these files to plot the final results.
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