
Applying a Task-Based Approach to Distributed
Machine Learning Workflows

Fernando Vázquez-Novoa , Daniele Lezzi , Francesc Lordan
Department of Computer Sciences
Barcelona Supercomputing Center

Barcelona, Spain
{ fernando.vazquez, daniele.lezzi, francesc.lordan }@bsc.es

Fatemeh Baghdadi , Davide Cirillo
Department of Life Sciences

Barcelona Supercomputing Center
Barcelona, Spain

{ fatemeh.baghdadi, davide.cirillo }@bsc.es

Abstract—The growing demands across various scientific fields
have led to a significant shift in applications that consume data at
the edge of the computing continuum. These applications require
unified programming models for the composition of components
and coordinating the execution of computational workloads,
including training machine learning (ML) models on distributed
resources. Personalized healthcare often leverages data generated
from wearable devices used to train ML models, can be benefited
from distributed computing approaches. Specifically, stroke care
can be greatly benefited from distributed ML with modifiable
risk factors that can be monitored using wearable devices. In this
work, we present an implementation that leverages distributed
techniques for large-scale ML workflows using electrocardiogram
(ECG) recordings for atrial fibrillation (AF) classification. The
application was evaluated using the PhysioNet database, show-
casing the potential of distributed, ML in stroke care, opening
the way for future creation of more advanced models embedded
in edge devices.

I. INTRODUCTION

In recent years the requirements of many scientific fields
have brought a trasformative shift on how applications are
developed, deployed, and operated; the availability of data
continuously generated by sensors, instruments and other
devices as in the case of farming 4.0 applications, predictive
maintenance, machine vision, sismology, personalize health-
care, etc., has fostered the evolution of computing paradigms
from centralized data centers to the edge of the network where
it has to be processed. One of the most common requirements
is the application of sophisticated machine learning (ML)
models to the data at the edge, allowing to send only essential
data to the HPC data centers, reducing bandwidth usage and
associated costs. The development and execution of such
distributed applications, involve the orchestration of complex
workflows that manage data and computation across the so
called computing continuum, requiring that a programmer has
to be an expert in both the application domain and the low-
level details of the platforms on which that application will be
deployed. On the other side, the workload burdens associated
with larger data sizes pose several challenges to scaling model
training and improving performances efficiently, in particular
in health applications where massive amounts of patients’
data are key to assisting high-stakes clinical decisions. In this
regard, distributed ML is emerging as a prominent approach
to address the challenges posed by extensive data volumes

in model development and to bring about novel technologi-
cal advancements in healthcare. Task-based workflows are a
good approach to developing compute-intensive applications
while exploiting distributed infrastructures as they allow the
automatic identification of the parallelism inherent to the
application and the task executions are distributed in parallel
across the underlying infrastructure.

A medical area that can greatly benefit from distributed
ML is stroke care. Stroke is a neurovascular condition due
to an acute focal injury in the central nervous system by a
vascular cause [1]. It is the second leading cause of death and
third leading cause of disability in adults worldwide [2]. 90%
of strokes are attributable to modifiable risk factors [3], such
as high blood pressure, smoking, diabetes, physical inactivity,
and, specifically for ischaemic stroke, atrial fibrillation (AF)
[4], which is an arrhythmia of the atrial chambers of the heart.
In recent years, new strategies for preventing and monitoring
stroke and its recurrence, in a continuous and non-invasive
way, have been developed, namely the use of portable and
wearable devices for cardiovascular monitoring [5].

In this work, we present the implementation of an appli-
cation that leverages distributed techniques to build large-
scale ML workflows in a completely sequential and effortless
manner. The application has been evaluated using different
implementations to train and test ML models using electrocar-
diogram (ECG) recordings, collected with a portable device,
obtained from the PhysioNet database [6], specifically the
dataset of the Computing in Cardiology (CinC) Challenge
2017 on AF classification [7].

The main contributions of this article are:
• Usage of data augmentation techniques to increase the

quantity of available data and preprocessing techniques
to improve the quality of the data.

• Comparison between three different machine learning
algorithms. The comparison was based on training time,
scalability of the execution time and performance of the
model.

• Training of a neural network following a distributed
approach and evaluating the performance of this solution.

This article is structured in five different sections. This first
section contains the introduction. Section II contains some
background and state of the art about the problem. In Section

1252979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00166

III we present our application. We describe the dataset we
are going to use, the transformations applied to the data to
improve its quality, the classical machine learning algorithms
we are going to use and their distributed version and the neural
network approach used. After describing our proposal we
make some tests, analyze the results obtained, evaluating the
solution and the algorithms used, this evaluation is contained
on Section IV. Finally, we draw some conclusions that are
contained on the last Section (V).

II. DISTRIBUTED ML FOR HEALTHCARE APPLICATIONS

Cardiology is recognized as one of the early adopters of
ML within the medical sector. Several studies have revealed
that ML applications in this domain outperform traditional
risk assessment using well-established cardiovascular disease
risk factors [8], [9], which are key for the prevention of
cerebrovascular events such as stroke. ML and neural net-
works, specifically, have been used to identify novel clinical
phenotype of AF, which is consistently associated with stroke
based on clinical data. With the rapid growth of digital clinical
data, ML, coupled with portable and wearable technologies,
has proven effective in predicting groups of patients that were
missed by conventional methods [10]. Scaling up such capacity
with distributed ML approaches would help immensely in
processing large volumes of electrophysiological signals as
well as analyzing and extracting insights to better identify
stroke-associated patterns and perform more accurate tasks,
such as AF detection.

The electrocardiogram (ECG) has become the most widely
used biomarker for the early diagnosis of AF. ECG is a graph-
ical representation of heart electrical activity that is used to
diagnose cardiovascular diseases and irregularities. It consists
of five major components: P wave, Q wave, R wave, S wave,
and T wave. During AF episodes, the heart’s atria are quicker
than normal beating resulting in the blood not being ejected
completely out of the atria and the formation of blood clots.
AF can be detected by observing three main features including
the P wave absence, the presence of fluctuating waveform (f-
wave) Instead of P wave, and heart rate irregularity. There
are several methods to detect these features of ECG during
AF episodes. RR interval-based methods are limited when the
ECG changes quickly between rhythms or when AF takes
place with regular ventricular rates. Moreover, the P wave
absence detection is difficult due to its small amplitude [11].
Time-frequency domain techniques have been proposed in this
paper to overcome these limitations and provide more accurate
detection.

A. Workflow manager

In the recent years the data available has increased at a
high rate. This increment surpasses the increment in the com-
putational resources and their performance. Training machine
learning and neural network models using a single CPU or
GPU using the data available would take very long times.
For this reason the need to distribute the computation across
various nodes and computational devices is significant. This

distribution reduces the computation times required at the
same time that it makes a more efficient usage of the available
resources.

PyCOMPSs is a programming framework whose main aim
is to facilitate the development of parallel applications that
use distributed computing. PyCOMPSs’ interface allows for
an easy development, at the same time its runtime system
efficiently leverages parallelism during the execution of the
applications.

PyCOMPSs is the Python binding of COMPSs [12]. By
using PyCOMPSs a regular Python script can be easily
transformed into a distributed application just by adding a
task decorator to the functions that will run in parallel.
Then, the runtime system is able to detect the dependencies
between tasks dependencies and exploitting their parallelism.
The dependencies are detected by the runtime based on their
input and output arguments. A task that has at least one input
argument that is the output of another task has a dependency
with that previous task.

PyCOMPSs builds a graph which contains the tasks present
on the application, and the dependencies between the different
tasks. This graph is built in execution time. One example of
graph generated by PyCOMPSs is shown in Figure 4. The
circles in this graph represent the different tasks (each type of
task has a different color in the image). The lines between the
different tasks represent the dependencies between the tasks.
The tasks placed in the same horizontal line in the image can
be executed concurrently.

B. dislib

Inspired by scikit-learn, a popular ML library for the Python
programming language, dislib [13] provides an estimator-
based interface that leverages the distributed data structure
(ds-array) that can be operated as a regular Python object.
The combination of this data structure and the estimator-based
interface makes dislib a distributed version of scikit-learn,
where communications, data transfers, and parallelism are
automatically handled behind the scenes by the PyCOMPSs
runtime [14].

All ML methods in dislib are provided as scikit-learn
estimator objects. An estimator is a function that is used
to infer the value of an unknown parameter in a statistical
model. dislib estimators implement the same API as scikit-
learn, which is mainly based on the fit and predict operators.
The typical workflow in dislib consists of the following steps:

• Reading input data into a ds-array
• Creating an estimator object
• Fitting the estimator with the input data
• Getting information from the model’s estimator or apply-

ing the model to new data

III. DESIGN OF A DISTRIBUTED ML APPROACH FOR
STROKE CARE

The healthcare application presented in this work concerns
with the development of distributed ML models for cardiovas-
cular monitoring using portable or wearable devices. Specifi-

1253

cally, it focuses on the detection of AF from ECG recordings,
which is a pivotal task for the future creation of risk stratifica-
tion models embedded in such devices operating in the edge-
cloud continuum in real-time. Continuous and non-invasive
ML-driven monitoring through portable or wearable devices
represents a promising strategy for preventing stroke and its
recurrence. Our work is a first step towards the realization of
a framework for the operation of distributed ML applications,
including AF detection, in computing continua. This work is
framed in the context of a use case on personalized healthcare
of the EU H2020 project AI-SPRINT (GA 101016577).

Figure 1 represents an overview of the AI-SPRINT use
case, with the ECG data from portable or wearable devices.
By harnessing HPC resources, the data is used to build a
classification model that is then used to detect AF at the edge
or close to where the data is generated (e.g., smartwatches). In
this paper, we focus on the first part of this pipeline (Training
in Figure 1), which consists in the training of the AF detection
model using distributed ML techniques, while the inference
analysis on the edge is part of future work.

Figure 1: A ML application for stroke care in the edge-
cloud continuum. Electrocardiogram (ECG) recordings from
portable or wearable devices are used to train an atrial fib-
rillation (AF) detection model in the cloud or HPC premises
using the dislib library, which is then deployed and used for
inference at the edge.

A. Dataset description

PhysioNet [6] is a repository of freely-available
medical research data, managed by the MIT Laboratory
for Computational Physiology. Among many resources,
the PhysioNet database of the Computing in
Cardiology (CinC) Challenge 2017 on AF classification
(https://physionet.org/content/challenge-2017/1.0.0/) contains
a total of 12186 single-lead ECG recordings, sampled as
300 Hz, donated by AliveCor, manufacturer of portable
ECG hardware. The data, collected from individuals at rest,
is available as Matlab V4 files (each including a .mat file
containing the ECG and a .hea file containing the waveform
information). It consists of 8528 recordings lasting from 9
to 61 seconds. The classes represented in the dataset are
(1) Normal (5154 recordings), (2) AF (771 recordings), (3)
Other rhythms (2557 recordings), and (4) Noisy recordings
(46 recordings). By achieving an F1-score of 0.79 in 5-fold

cross-validation on the AF class [15], a classifier based on
the Cascade Support Vector Machines (CSVM) algorithm
was among the winners of the CinC Challenge 2017. As
other classes are out of the scope of this work and its future
derivations, we only focused on the classification of AF and
Normal classes.

B. Data preparation

1) Data augmentation: Given the imbalance in AF (771
recordings) and Normal classes (5154 recordings) in the Phys-
ioNet dataset, we sought to synthetically augment the minority
class using a procedure specifically designed to maintain key
properties of ECG signals unaltered. The synthetic augmenta-
tion consists in randomly segmenting the signal into stretches
of 6 contiguous R peaks (patches), which is considered the
minimum ECG length needed to detect irregular rhythms [16],
separated by in-between regions (spacers), and then shuffling
their order to generate a new synthetic signal (Figure 2). This
procedure is performed on all AF signals at random until their
total amount is balanced with that of the Normal class. The
identification of the R peaks is performed using the Gamboa
segmenter of the Python library BioSSPy [17].

2) Zero-padding: The ECGs of the used dataset have
different lengths, ranging from 9 seconds to 61 seconds. The
inconsistency in signal lengths could introduce problems when
developing the ML models. To overcome this issue and make
all the ECGs even in terms of length, a zero-padding method
has been implemented. In this method, the length of the signal
is extended by adding zeros to the series to achieve the desired
length. Applying the zero-padding method to ECGs resulted
in each signal having a maximum length of 18300, which
corresponds to the maximum number of data points of longest
signal in the dataset. The corresponding duration in seconds
can be obtained by multiplying the length of the signal by the
300 Hz sampling frequency.

3) Short Time Fourier Transform: The ECG signal is non-
stationary data whose instantaneous frequency oscillates with
time. Thus, the properties of the changes in a signal cannot
be fully described by solely utilizing information derived from
the frequency components. The Short Time Fourier Transform
(STFT) is a non-stationary signal analysis approach that maps
signal information from the time domain to the time-frequency
domain and has been applied to signals as a feature extraction
method. The STFT is an optimized mathematical tool evolved
from the discrete Fourier transform (DFT) for discovering the
instantaneous frequency as well as the instantaneous amplitude
of localized waves with time-varying characteristics within a
window function [18]. Using the signal package of the Python
library SciPy [19], the spectrogram function computes and
returns the STFT of the input signal. Each column in the
output of the spectrogram function contains an estimate of
the short-term, time-localized frequency components of the
input signal. In this work, STFT has been applied to signals
as a feature extraction method to compute their frequency,
time, and amplitude components in each window segment.
The resulting array is a multi-dimensional array, and for

1254

ease of processing and dimensionality reduction, the array
elements are concatenated to produce a 1-dimensional array
of length 18810 using the flatten function. These arrays of
values are used as input for the classifiers after an additional
dimensionality reduction by Principal Component Analysis
(PCA).

4) Principal Component Analysis: In order to reduce the
dimensionality of the data, a Principal Component Analysis
(PCA) decomposition is performed before the fitting of the
models. In the covariance method, features are centered (the
mean is subtracted for each feature) but not standardized
(not divided by the standard deviation, which would be the
correlation method). Then, the covariance matrix is estimated
as x.T@x / (n samples - 1). Finally, the eigendecomposition
of this matrix is computed, yielding the principal components
(eigenvectors) and the explained variance (eigenvalues). In the
dislib implementation of the covariance method, centering the
features and estimating the covariance matrix are computed
in two successive map-reduce phases, partitioning the samples
only by row blocks. Hence, an unpartitioned covariance matrix
of shape (n features, n features) is obtained. This matrix is
processed by a single task which computes the eigendecompo-
sition using the numpy.linalg.eigh method. The PCA resulted
in only a loss of the 5% of the total information, preserving the
95% of the information contained in the features of the original
dataset. Despite preserving the majority of the information we
reduce the number of features drastically from 18810 features
to 3269. The top part of each PyCOMPSs execution graphs,
described in the next section, represents the PCA portion of
the execution.

Figure 2: Shuffling-based data augmentation procedure de-
signed to overcome class imbalance.

C. Traditional ML classification models

In this section we describe the three implementations of
distributed ML algorithms that we adopted for the training
of the models. For each model, a graph of the PyCOMPSs
execution is provided (Figures 4, 6, 8, 9). It is worth noticing
that these figures are shown to explain the complexity of the
workflows and the level of parallelism that can be achieved
with our proposal. However, these graphs represent only a
part of the actual tests described in the evaluation section. The
complete graphs would be indeed too complex to be displayed
fully.

1) CSVM: The code performs a training of the model
using the dislib implementation of the CascadeSVM (CSVM)

algorithm and then calculates the score returning the mean
accuracy on a given test data and labels. The CSVM estimator
implements a version of support vector machines that paral-
lelises training by using a cascade structure. The algorithm
(Figure 3) splits the input data into N subsets, trains each
subset independently, merges the computed support vectors of
each subset two by two, and trains again each merged group of
support vectors. One iteration of the algorithm finishes when
a single group of support vectors remains. The final support
vectors are then merged with the original subsets, and the
process is repeated for a fixed number of iterations or until a
convergence criterion is met. The fitting process of the CSVM
estimator creates the first layer of the cascade with the different
row blocks of the input ds-array. This means that the estimator
creates one task per row block at the first layer, and then
creates the rest of the tasks in the cascade. Each of these
tasks use scikit-learn’s SVC (C-Support Vector Classification)
internally for training and load a row block in memory. The
maximum amount of parallelism of the fitting process is thus
limited by the number of row blocks in the input ds-array. In
addition to this, the scalability of the estimator is limited by
the reduction phase of the cascade.

Figure 3: CSVM algorithm illustrative representation

The input dataset is loaded from the PhysioNet repository
files into ds-array objects as training set and labels after pre-
processing. The data is split by dislib in blocks of 500x500
thus generating 631 tasks managed by PyCOMPSs. Figure 4
depicts a reduced version of the PyCOMPSs execution graph.

sync

Figure 4: Execution graph of the CSVM algorithm. This is a
simplified version of the graph with less tasks than the real
executions.

2) KNN: The method implements a k-nearest neighbors
(KNN) algorithm that classifies the data based on the prox-
imity to a given point (Figure 5). The k value in the KNN

1255

algorithm defines how many neighbors will be checked to
determine the classification of a specific query point. The
parameters of the method are the following: (1) the number
of neighbors to use by default for kneighbors() queries; (2) an
optional Weight function used in prediction whose possible
values are: ‘uniform’ to have uniform weights meaning that
all points in each neighborhood are weighted equally, or
‘distance’ to weight points by the inverse of their distance;
in this case, closer neighbors of a query point will have a
greater influence than neighbors which are further away; (3) a
user-defined function which accepts an array of distances, and
returns an array of the same shape containing the weights.

Figure 5: KNN algorithm illustrative representation

The fit function uses the NearestNeighbors algorithm in
dislib that has parallelism based on the number of row blocks
the dataset is divided into. It launches a fit from the scikit-
learn NN into each row block. The predict also makes a task
per block in the row axis of the dataset. Figure 6 depicts the
execution graph of the workflow with K=5.

Figure 11b shows the times of scaling the data with the
StandardScaler and fitting the KNN classifier. The measure of
time was done with a block size of 250x250.

sync

Figure 6: Execution graph of the KNN algorithm

3) Random Forest: RandomForest (RF) is a classification
algorithm that constructs a set of individual decision trees, also
known as estimators. Each estimator classifies a given input
into classes based on decisions taken in random order. The
final classification of the model is the aggregate of the result
of all the estimators; thus, the accuracy of the model depends
on the number of estimators composing it.

Figure 7 illustrates how RF works depicting a 2-estimator
model. In this case, decision trees are limited to a depth
of 3. The leaves of the decision trees are the probability

Feat. 1
0.5

Feat. 4
7

Feat. 2
4

Feat. 3
5

Feat. 3
8

A: 25%
B: 75%

A: 30%
B: 70%

A: 10%
B: 90%

A: 60%
B: 40%

A: 80%
B: 20%

A: 95%
B: 1%

Feat. 3
7

Feat. 1
0.7

Feat. 2
9

Feat. 1
0.5

Feat. 2
5

A: 20%
B: 80%

A: 30%
B: 70%

A: 80%
B: 20%

A: 60%
B: 40%

A: 90%
B: 10%

A: 50%
B: 50%

Input: [0.7, 10, 5, 6]

output: A:70%, B:30%

A: 40%
B: 6%

Feat. 4
2

Figure 7: Random Forest algorithm graphical representation

distribution of those samples that fulfill the conditions required
by all the nodes in the path. Every input sample undergoes
a classification process on both estimators; each estimator
returns a predicted class according to the input values of each
feature. The first estimator returns a probability of 60% that the
sample belongs to class A while the second one estimates it on
an 80%. To compute the final prediction of the overall model,
the predictions of the composing estimators are averaged.

These tests use the implementation provided in dislib. This
is the only algorithm in dislib in which the number of
blocks and their size does not have a direct impact on the
computational time and number of tasks created during its
training; its parallelism is based on the number of estimators
and the parameter distr depth (limit of the depth of the tree
where the decisions are no longer computed in parallel). The
graph in Figure 8 depicts the workflow resulting from the
execution of this algorithm to train a model with 40 estimators.

The time results of the executions of RF are shown on
Figure 11c. The results show a very bad scalability, this can
have two causes. The first one is the small number of tasks that
this algorithm generates (it does not depend on the block size).
If there are a small number of tasks the use of more nodes
do not improve the execution times. The second cause can be
the unbalanced load. The division of the data on the different
decision trees can cause some tasks handle considerably more
data than other, increasing the execution time of the whole
algorithm. In addition, the difference between the execution
times with 2 and 3 nodes can be caused due to the increment
in the transference of data with 3 nodes. If all the tasks do not
fit concurrently in execution, neither with 2 nodes nor with
3, it can happen that the execution with 3 nodes takes a little
bit longer than the task that generates the data it depends on
due to the transference of data to tasks that are executed in a
different node.

D. Neural Network classification model

Neural Networks can solve a wide range of problems
and can be used for classification. In order to use Neural
Networks for this task, our initial step involved searching
for an appropriate architecture. Ultimately, we discovered an

1256

sync

Figure 8: Execution graph of the RF algorithm

architecture that demonstrates high accuracy by using two 1-
dimensional convolutional layers with 32 filters and a final
dense layer with 32 neurons. Our architecture search involved
assessing numerous alternatives with varying numbers of lay-
ers, filters, and other modifications. Additionally, we examined
architectures solely comprising dense layers; however, their
accuracy fell short of our expectations.

The training was parallelized using PyCOMPSs and in
addition we used EDDL [20], a deep learning library that
enables the parallelization of data between the resources of
the same node. As with the previous models, we performed a
cross validation (K-fold) with 5 folds.

In order to parallelize the training, we used different ap-
proaches. In the first approach, we used PyCOMPSs to dis-
tribute the data between different nodes, with EDDL running
on 4 GPUs inside each node, being EDDL in charge of
distributing the data between the different GPUs.

A different approach was to use the PyCOMPSs workers to
distribute the data between the different GPUs, and use EDDL
to train the model using only one GPU.

In both approaches, when an epoch is ended, the weights
of the neural network in each worker are retrieved and they
are merged and used in the next epoch.

We observed that these approaches raised an issue. As
depicted in 9, after each epoch a synchronization is required in
order to retrieve the updated weights of the neural network in
each worker. Each fold runs seven epochs corresponding to a
group of four training tasks each one running on a GPU in the
node and represented by a green circle. Each synchronization
stops the generation of tasks and prevents the possibility of
executing the training of the 5 folds in parallel. In order to
solve this issue, we decided to use a new PyCOMPSs feature
called nesting. This new paradigm enables the generation of
tasks inside other tasks and encapsulates the synchronizations
within a task.

In order to use nesting, for each of the folds we declared an
individual task that runs in parallel with respect to the other
folds. In this way, each synchronization is local to the fold and
does not block the other 4 folds. In Figure 10 the workflow
of this new approach is depicted; the training tasks of each
fold are now grouped and can be executed in parallel on five
nodes.

IV. EVALUATION

A. Testbed

In order to evaluate the performance of the implemented
algorithms, we executed a set of runs in the MareNostrum IV

main

1 2 3 4 5 6 7 8 9

sync

d19v2

10 12 14 16

sync

11

d (1)

18

d (1)

19

d (1)

20

d (1)

21

d (1)

13

d (1)

d (1)d (1)d (1) d (1)

15

d (1)

d (1)d (1)d (1) d (1)

17

d (1)

d (1)d (1)d (1) d (1)

22

d83v2

26

d83v2

27

d85v2

31

d85v2

23

d89v2

28

d91v2

24

d95v2

29

d97v2

25

d101v2

30

d103v2

32

d4v2 (1)

33

d4v2 (1)

34

d4v2 (1)

35

d4v2 (1)d4v2 (1)d4v2 (1)d4v2 (1) d4v2 (1)

d129v2d133v2

36 37 38 39

sync

d145v2 d148v2

40 41 42 43

sync

d158v2 d161v2

44 45 46 47

sync

d171v2 d174v2

48 49 50 51

sync

d184v2 d187v2

52 53 54 55

sync

d197v2 d200v2

56 57 58 59

sync

d210v2 d213v2

60 61 62 63

sync

d223v2 d226v2

64 656667 79 8081 828384 96 97

sync

69

d234v2

70

d234v2

68

d238v2

71

d240v2

98

d (1)

76

d (1) 72

d246v2

73

d246v2

74

d248v2

75

d248v2

d (1)

77

d (1) d (1)

78

d (1)

99

d (1)

100

d (1)

101

d (1)

86

d276v2

87

d276v2

85

d280v2

88

d282v2

d (1)

93

d (1) 89

d288v2

90

d288v2

91

d290v2

92

d290v2

d (1)

94

d (1) d (1)

95

d (1)

d (1) d (1) d (1) d320v2

d328v2

102 103 104 105

sync

d336v2

106 107 108 109

sync

d349v2

110 111 112 113

sync

d362v2

114 115 116 117

sync

d375v2

118 119 120 121

sync

d388v2

122 123 124 125

sync

d401v2 d404v2

126 127 128 129

sync

d414v2

130

131 132133 145 146147 148 149150153 162 163

sync

134

d425v2

135

d425v2

136

d427v2

137

d431v2

164

d (1)

142

d (1)

138

d437v2

139

d437v2

140

d439v2

141

d439v2

d (1)

143

d (1) d (1)

144

d (1)

165

d (1)

166

d (1)

167

d (1)

151

d467v2

152

d467v2

154

d473v2

159

d (1)

155

d479v2

156

d479v2

157

d481v2

158

d481v2d (1)

160

d (1)

d (1)

161

d (1)

d (1)

d (1) d (1)

d511v2

d515v2

168 169 170 171

sync

d527v2

172 173 174 175

sync

d540v2

176 177 178 179

sync

d553v2

180 181 182 183

sync

d566v2

184 185 186 187

sync

d579v2

188 189 190 191

sync

d592v2

192 193 194 195

sync

d605v2

196 197198 199 208 209210 211212 213 222 223

sync

200

d616v2

202

d616v2

201

d618v2

203

d620v2

224

d (1)

225

d (1)

206

d (1) 204

d630v2

205

d630v2

d (1)

207

d (1)

226

d (1)

227

d (1)

214

d649v2

216

d649v2

215

d651v2

217

d653v2

d (1) d (1)

220

d (1) 218

d663v2

219

d663v2

d (1)

221

d (1)

d (1) d (1)

d684v2

228229 230 231

sync

d700v2

232 233 234 235

sync

d713v2 d716v2

236 237 238 239

sync

d726v2

240 241 242 243

sync

d739v2

244 245 246 247

sync

d752v2

248 249250 251

sync

d765v2 d771v2

252 253 254 255

sync

d778v2

256 257 258 259 260 261262 263 264 265

sync

266

d (1)

267

d (1)

268

d (1)

269

d (1)d (1)

d811v2

270 271 272 273

sync

d827v2

274 275 276 277

sync

d840v2

278 279 280 281

sync

d853v2

282 283 284 285

sync

d866v2

286 287 288 289

sync

d879v2

290 291 292 293

sync

d892v2

294 295 296 297

sync

d905v2

EddlDistributedConmutativo.EddlDistributedConmutativo.build
dislib.data.io._read_from_buffer

dislib.data.array._filter_block
dislib.utils.base._choose_and_assign_rows_xy

dislib.utils.base._merge_shuffle_xy
EddlDistributedConmutativo.EddlDistributedConmutativo.train_batch_GPU

dislib.model_selection._split._merge_rows_keeping_cols

Figure 9: Execution graph of the CNN algorithm

Figure 10: Execution graph of the CNN algorithm with nesting
enabled

supercomputer. In particular, we tested the ML algorithms’
implementations using the PhysioNet database on the general
purpose part of the cluster that contains 3456 nodes (48 servers
of 72 nodes) with two 24-core Intel Xeon Platinum 8160 and
98 GB of main memory each.

For the evaluation of the CNN we executed a set of
runs in the CTE-Power cluster, a Power 9 GPU partition

1257

of the MareNostrum supercomputer. This cluster contains 52
compute nodes, each of them with 2 IBM Power9 8335-
GTH @ 2.4GHz CPUs, 512GB of main memory and 4 GPU
NVIDIA V100 (Volta) with 16GB HBM2.

B. Test results

Each algorithm is implemented with an ensemble of runs,
trained with K-fold (K=5). In the results, we did not consider
the time of executing the PCA, that is the same for each
algorithm and takes about 850 seconds.

The experiments conducted were slightly different depend-
ing on the algorithm used. The pre-processing of the Phy-
sioNet data was the same for all the experiments but one
of them included an extra step, namely the KNN algorithm,
which included the application of a StandardScaler to the
data. This scaler removes the mean value of the features and
divides the data by its standard deviation in order to reduce
the variance to a unit. The StandardScaler is part of the dislib
library, the parallelism being based on the number of row
blocks. This additional step is necessary for the KNN to adjust
the values of all the features used to the same range (if the
values of the features are in different ranges some features
will have a higher impact on the distance of the neighbours
than others).

Figure 11 compares the evolution of the training time using
the traditional ML algorithms according to the number of
cores in the infrastructure. Figure 11a represents the results
of the tests on CSVM implementation where each node of
the cluster hosted the execution of 6 tasks, each using 8
cores. The results highlight that, for this specific configuration,
we can achieve performance improvements thanks to the
PyCOMPSs parallelisation, up to 192 cores. Figure 11b depicts
the execution of the training of the model using the dislib
KNN implementation. The test was conducted using, on each
node, up 12 PyCOMPSs tasks (each using 4 cores). Figure 11c
depicts the performance of the execution of the RF algorithm.
In this case, we experienced some issues related with the
scalability, due to a possible mismatch between the number
of the blocks, their size and the number of nodes.

Figure 12 depicts the comparison of the execution time re-
quired to train the model with the different implementations of
neural networks using EDDL. In the version without nesting,
each epoch can run up to four tasks in parallel; for this reason,
we considered two options: i) assign four GPUs in one node
to each task (therefore we needed four nodes to host all the
epoch training in parallel); ii) assign one GPU to each task,
with a single node we can run the epoch in parallel. Since the
version with nesting allows more parallelism (5 folds with 4
tasks in parallel), we could use five nodes assigning one GPU
to each task.

Using one single GPU per task achieves better performance
than using 4 GPUs since it reduces the communication be-
tween the different GPUs as each task will use only one.
The dataset is not big enough to fill the 4 GPUs in each
node, and the communication between the GPUs is causing
unnecessary overhead. Hence, removing the communication

will be translated into a reduction of the training time (1.2x
faster). Since the nested version allows a higher degree of
parallelism; it requires a larger infrastructure to cope with
the workload. By parallelizing the training of each fold in
a different node, the overall execution time is reduced to 340
seconds (2.24x faster). Although the 5 folds can be trained in
parallel, the solution does not achieve a 5x scalability due to
the part of the workflow previous to the training of the folds
which includes the partitioning and distribution of the dataset.

The scalability of the three machine learning algorithms is
limited, no one of them has a good scalability. The solution
using Neural Networks scales better than the other three
algorithms. However, the solution based on Neural Networks
requires specific hardware like GPUs, which is specialized
hardware, and their availability may be limited.

Table I compares the accuracy obtained with each algorithm.
CSVM obtains an accuracy of 74.9%. Table Ia reports the
confusion matrix of one of the 5-folds (a total of 2006 samples)
that contains, in the rows, the fraction of instances of true AF
and Normal classes, and in the columns the predicted classes.
In this run, out of 1013 AF samples, the algorithm correctly
predicted 762 samples as AF and 251 were wrongly classified
as Normal (false negatives). Out of 993 Normal samples, the
algorithm wrongly predicted 251 as AF (false positives) and
742 as Normal (true negatives).

The accuracy obtained with the KNN algorithm is 52%. The
confusion matrix of one of the 5-folds (2006 samples) in Table
Ib shows that, out of 1003 AF samples, 999 were correctly
predicted as AF class (true positives), 4 wrongly classified as
Normal class (false negatives); out of 1003 Negative samples,
983 were wrongly classified as AF (false positives) and 20
classified as Normal (true negatives).

The best accuracy was reached using the RF algorithm
(86.8%). The confusion matrix of one of the 5 folds (2006
samples) is shown in Table Ic. Where we can see that out
of 1012 AF samples it correctly classified 915 as AF (true
positives) and 97 as Normal (false negatives). With regard to
the Normal class samples, there are a total of 994 and the
model incorrectly classifies 143 as AF (false positives) and
851 correctly as Normal (true negatives).

With the CNN implementation, the accuracy obtained is
90%. That increases the performance with respect to the

Prediction
AF N

AF 0.379 0.125
N 0.125 0.369

(a) CSMV

Prediction
AF N

AF 0.498 0.001
N 0.490 0.009

(b) KNN

Prediction
AF N

AF 0.456 0.048
N 0.071 0.424

(c) RF

Prediction
AF N

AF 0.454 0.066
N 0.009 0.469

(d) CNN

Table I: Average confusion matrices of the 5-folds obtained
for the executed algorithms

1258

(a) CSVM

0

100

200

300

400

500

600

700

800

48 96 144 288 384 768

Ti
m

e
(s

ec
)

Cores

KNN Kfold

(b) KNN (includes scaler computation)

0

200

400

600

800

1000

1200

48 96 144 288 384 768

Ti
m

e
(s

ec
)

Cores

Random Forest K-Fold

(c) Random Forest

Figure 11: Execution time of the algorithms in the Marenostrum cluster

900

760

340

0

100

200

300

400

500

600

700

800

900

1000

4 nodes/4 GPUs per node/1 task per node 1 node/4 GPUs/1 task per GPU 5 nodes/4 GPUs per node/1 task per GPU

Ti
m

e
(s

ec
)

EDDL CNN

Figure 12: Performance results of the runs of training execu-
tions using EDDL on a GPU cluster

previous tests using classic ML algorithms. This accuracy
is slightly lower than the accuracy obtained with the most
recent models like the one present on [21], which was of
93%. However, the accuracy obtained using both solutions is
comparable and the main focus of this paper was not to reach
or surpass the actual solutions accuracy but to also tackle the
scalability and distribution of the computation. The confusion
matrix obtained using our CNN solution is shown in Table Id.
Out of 1045 AF samples, it correctly classified 911 as AF
(true positives) and 134 as Normal (false negatives). For the
961 Normal class samples, it correctly classified 19 as AF
(false positives) and 942 as N (true negatives).

V. CONCLUSIONS

In this work, we presented an application leveraging dis-
tributed techniques for large-scale ML workflows, specifically
for AF classification using ECG recordings. Our implemen-
tation has shown promising results, highlighting the poten-
tial of distributed ML in improving prevention and patient
management in stroke care. Further research and technical
developments in this domain hold great promise for advancing
healthcare and improving patient outcomes.

From an application standpoint, it is important to emphasize
that different scenarios and requirements can influence the

selection of the most suitable model and training approach,
especially in healthcare applications. Specifically, our explo-
ration of different models and training solutions for stroke
care focuses on three main dimensions: (1) training time;
(2) available resources; (3) model performance. Depending
on the application, it is desirable to prioritize one or more
of these dimensions. Considering training time is crucial
when processing; speed and responsiveness are important for
instance when retraining a model with real-time data streams.
In such cases, models with poor training scalability, like RF in
our case, should be avoided. The number of available resources
is important when there are limitations related to this aspect.
In such a scenario, models trained on GPUs, such as CNN in
our case, should be avoided. Considering model performance
is crucial for high-stakes applications, such as in stroke care. In
such cases, more important than overall accuracy is choosing
a model based on clinical priorities, specifically whether it
should have a precision focus or a recall focus. A precision
focus aims to minimize false positives, while a recall focus
aims to minimize false negatives. In the context of real-world
stroke intervention, it is preferable for a classifier to predict a
normal signal as AF (false positive) rather than predicting AF
as a normal signal (false negative).

Future work encompasses the improvement of the scalability
of all the presented algorithms, specifically RF as it showed
the worst scalability compared with the others. Moreover, our
approach could incorporate federated learning in the future to
train multiple models, which is particularly relevant for health-
care applications due to privacy constraints on data sharing. In
this setup, various devices with local data contribute to training
local models, and the resulting outcomes are then combined
by a general model.

ACKNOWLEDGMENT

Author Fernando Vázquez is supported by PRE2022-
104134 funded by MICIU/AEI /10.13039/501100011033 and
by the FSE+. This work has been supported by the Span-
ish Government (PID2019-107255GB) and by MCIN/AEI
/10.13039/501100011033 (CEX2021-001148-S), by General-
itat de Catalunya (contract 2021-SGR-00412), and by the
European Commission through the Horizon Europe Research

1259

and Innovation program under Grant Agreement 101016577
(AI-SPRINT project).

REFERENCES

[1] B. Campbell and P. Khatri, “Stroke,” The Lancet, vol. 396,
no. 10244, pp. 129–142, Jul. 2020. [Online]. Available: https:
//doi.org/10.1016/s0140-6736(20)31179-x

[2] “Global, regional, and country-specific lifetime risks of stroke,
1990 and 2016,” New England Journal of Medicine, vol. 379,
no. 25, pp. 2429–2437, Dec. 2018. [Online]. Available: https:
//doi.org/10.1056/nejmoa1804492

[3] M.J. O'Donnell et al., “Risk factors for ischaemic and intracerebral
haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-
control study,” The Lancet, vol. 376, no. 9735, pp. 112–123, Jul. 2010.
[Online]. Available: https://doi.org/10.1016/s0140-6736(10)60834-3

[4] S.S. Chugh et al., “Worldwide epidemiology of atrial fibrillation,”
Circulation, vol. 129, no. 8, pp. 837–847, Feb. 2014. [Online].
Available: https://doi.org/10.1161/circulationaha.113.005119

[5] K. Bayoumy et al., “Smart wearable devices in cardiovascular care:
where we are and how to move forward,” Nature Reviews Cardiology,
vol. 18, no. 8, pp. 581–599, Mar. 2021. [Online]. Available:
https://doi.org/10.1038/s41569-021-00522-7

[6] A.L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet,”
Circulation, vol. 101, no. 23, Jun. 2000. [Online]. Available:
https://doi.org/10.1161/01.cir.101.23.e215

[7] G. Clifford et al., “Af classification from a short single lead ecg
recording: The physionet/computing in cardiology challenge 2017,” Feb
2017. [Online]. Available: https://physionet.org/content/challenge-2017/
1.0.0/

[8] I.A. Kakadiaris et al., “Machine learning outperforms ACC/AHA
CVD risk calculator in MESA,” Journal of the American Heart
Association, vol. 7, no. 22, Nov. 2018. [Online]. Available: https:
//doi.org/10.1161/jaha.118.009476

[9] A.M. Alaa et al., “Cardiovascular disease risk prediction using
automated machine learning: A prospective study of 423, 604 UK
biobank participants,” PLOS ONE, vol. 14, no. 5, p. e0213653, May
2019. [Online]. Available: https://doi.org/10.1371/journal.pone.0213653

[10] A.S. Tseng and P.A. Noseworthy, “Prediction of atrial fibrillation using
machine learning: A review,” Frontiers in Physiology, vol. 12, Oct.
2021. [Online]. Available: https://doi.org/10.3389/fphys.2021.752317

[11] S. Aziz, S. Ahmed, and M.-S. Alouini, “ECG-based machine-
learning algorithms for heartbeat classification,” Scientific Reports,
vol. 11, no. 1, Sep. 2021. [Online]. Available: https://doi.org/10.1038/
s41598-021-97118-5

[12] F. Lordan, R. M. Badia et al., “ServiceSs: an interoperable programming
framework for the Cloud,” Journal of Grid Computing, vol. 12, no. 1,
pp. 67–91, 3 2014.

[13] J. Álvarez Cid-Fuentes et al., “dislib: Large Scale High Performance
Machine Learning in Python,” in Proceedings of the 15th International
Conference on eScience, 2019, pp. 96–105.

[14] E. Tejedor et al., “Pycompss: Parallel computational workflows in
python,” The International Journal of High Performance Computing
Applications, vol. 31, no. 1, pp. 66–82, 2017. [Online]. Available:
https://doi.org/10.1177/1094342015594678

[15] S. Datta et al., “Identifying normal, af and other abnormal ecg rhythms
using a cascaded binary classifier,” in 2017 Computing in Cardiology
(CinC), 2017, pp. 1–4.

[16] Hesi, Comprehensive review for the nclex-pn(r) examination - E-book,
7th ed., D. M. Korniewicz, Ed. Elsevier, Oct. 2022.

[17] C. Carreiras, A. P. Alves, A. Lourenço, F. Canento, H. Silva, A. Fred
et al., “BioSPPy: Biosignal processing in Python,” 2015–, [Online;
accessed]. [Online]. Available: https://github.com/PIA-Group/BioSPPy/

[18] J. Huang et al., “ECG arrhythmia classification using STFT-based
spectrogram and convolutional neural network,” IEEE Access, vol. 7,
pp. 92 871–92 880, 2019. [Online]. Available: https://doi.org/10.1109/
access.2019.2928017

[19] P. Virtanen et al., “SciPy 1.0: fundamental algorithms for scientific
computing in python,” Nature Methods, vol. 17, no. 3, pp. 261–272, Feb.
2020. [Online]. Available: https://doi.org/10.1038/s41592-019-0686-2

[20] J. Flich, C. Hernandez, E. Quiñones, and R. Paredes, “Distributed
training on a highly heterogeneous hpc system,” in Embedded Com-
puter Systems: Architectures, Modeling, and Simulation, A. Orailoglu,

M. Jung, and M. Reichenbach, Eds. Cham: Springer International
Publishing, 2020, pp. 359–370.

[21] X. Zhao, R. Zhou, L. Ning, Q. Guo, Y. Liang, and J. Yang, “Atrial fib-
rillation detection with single-lead electrocardiogram based on temporal
convolutional network–resnet,” Sensors, vol. 24, no. 2, p. 398, 2024.

1260

APPENDIX

ARTIFACT DESCRIPTION

In order to facilitate the reproducibility of the experiments
contained in this article we uploaded to a public repository
the scripts with the code used in the experiments. The public
repository is a GitHub project and its link is: https://github.
com/lezzidan/aisprint dislib. The repository contains also the
launching scripts used in MareNostrum4 and Power-9. The
unique requirement to reproduce correctly the experiments is
to adjust the number of nodes desired to use.

In the repository there is a folder which contains the scripts
of the Neural Networks, both the nesting and the normal
execution together with the corresponding launching scripts.

This repository is still alive, and their scripts may suffer
changes from the versions used in this article. For this reason
we made a release in GitHub available at https://doi.org/10.
5281/zenodo.13836996.

The dataset used in the experiments can be
downloaded from B2Drop, using the following URLs:
https://b2drop.bsc.es/index.php/s/8Q8MefXX2rrzaWs/
download?path=%2Fdata&files=balanced training2017.
tar.gz&downloadStartSecret=kndjafzsfu, for the data used
in the training experiments, and https://b2drop.bsc.es/index.
php/s/8Q8MefXX2rrzaWs/download?path=%2Fdata&files=
balanced validation2017.tar.gz for the data used to compute
the validation accuracy of the models.

Using the data contained on this repository together with the
scripts in the GitHub the tests can be easily reproduced on a
supercomputer or cluster where dislib, EDDL and PyCOMPSs
are installed. A docker container using the Dockerfile con-
tained in the GitHub repository can be generated in order to
execute the tests without the need of installing PyCOMPSs
neither dislib.

An execution of each of the machine learning algorithms
were documented using provenance. The information of the
executions obtained using provenance was uploaded to work-
flowhub in order to ensure the reproducibility and register
the details of the executions. The CascadeSVM information
execution is on https://workflowhub.eu/workflows/1124, the
execution of kNN is on https://workflowhub.eu/workflows/
1123 and the Random Forest information execution on https:
//workflowhub.eu/workflows/1122.

We registered the logs of various executions of the kNN
algorithm, which are uploaded to Zenodo: https://zenodo.org/
records/7426459, because we included traces of the execu-
tions.

This document has been uploaded to Zenodo and a DOI
has been created for it. The DOI is: https://zenodo.org/doi/10.
5281/zenodo.13691927

ARTIFACT EVALUATION

In order to reproduce the experiments it is required to have
installed dislib-0.9.0 (https://dislib.readthedocs.io/en/release-0.
9/), COMPSs (https://compss-doc.readthedocs.io/en/stable/),
the python binding PyCOMPSs, and the Neural Network
library EDDL(https://deephealthproject.github.io/eddl/) and its

python binding PyEDDL(https://deephealthproject.github.io/
pyeddl/).

COMPSs and its binding PyCOMPSs both have an
installation manual. This manual is publicly available at:
https://compss-doc.readthedocs.io/en/stable/Sections/01
Installation.html. Following the instructions on this manual
it is possible to install them in a personal laptop or in a
Supercomputer or cluster.

Like COMPSs and PyCOMPSs, both EDDL and PyEDDL
have installation manual. The manual to install the EDDL
library is available at https://deephealthproject.github.io/eddl/
intro/installation.html, and the instructions to install PyEDDL
are available at https://deephealthproject.github.io/pyeddl/
installation.html.

Dislib can be easily installed through the usage of pip:
> python3 -m pip install dislib

Once all the requirements are installed, the executions
registered in WorkflowHub can be reproduced by executing
the instructions to re-execute a COMPSs workflow without
data persistence that are in the following URL: https:
//compss-doc.readthedocs.io/en/stable/Sections/05 Tools/
04 Workflow Provenance.html?highlight=reproducibility#
re-execute-a-compss-workflow-published-in-workflowhub.

Once this workflows have been correctly executed, in order
to execute the rest of the executions present on the paper it will
only be required to change the number of computing nodes in
the enqueue compss command.

Other form to reproduce the machine learning experiments
is to download the source code and the launching script from
the Zenodo link https://doi.org/10.5281/zenodo.13836996,
adapting the paths, changing the python script for the correct
one in the bash scripts, and execute them just like (e.g.):
> ./launch_train_kfold.sh

The README.md contains additional instructions on how
to change the configuration for different machines, including
in a local machine.

In order to reproduce the Neural Network experiments
it will be required to download the source code and
the launching scripts from the GitHub repository
https://github.com/lezzidan/aisprint dislib. Upload them
to the supercomputer or cluster where the experiments are
going to be reproduced and launch each of the experiments
by adjusting the required paths in the enqueue and bash
scripts. Then this scripts can be easily launched just by doing
(e.g.):
> ./launch_train_4_gpus_per_work.sh

1261

