
Mitigating synchronization bottlenecks in
high-performance actor-model-based software

Kyle Klenk
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

kyle.klenk@usask.ca

Mohammad Mahdi Moayeri
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada

m.moayeri@usask.ca

Junwei Guo
Department of Civil Engineering

University of Calgary
Calgary, Canada

junwei.guo@ucalgary.ca

Martyn P. Clark
Department of Civil Engineering

University of Calgary
Calgary, Canada

martyn.clark@ucalgary.ca

Raymond J. Spiteri
Department of Computer Science

University of Saskatchewan
Saskatoon, Canada
spiteri@cs.usask.ca

Abstract—Bulk synchronous programming (in distributed-

memory systems) and the fork-join pattern (in shared-memory

systems) are often used for problems where independent pro-

cesses must periodically synchronize. Frequent synchronization

can greatly undermine the performance of software designed

to solve such problems. We use the actor model of concurrent

computing to balance the load of hundreds of thousands of short-

lived tasks and mitigate synchronization bottlenecks by buffering

communication via actor batching. The actor model is becoming

increasingly popular in scientific and high-performance comput-

ing because it can handle heterogeneous tasks and computing

environments with enhanced programming flexibility and ease

relative to conventional paradigms like MPI. For a hydrologic

simulation of continental North America with over 500,000

elements, the proposed buffering approach is approximately 4

times faster than no buffering, outperforms MPI on single and

multiple nodes, and remains competitive with OpenMP on a

single node and MPI+OpenMP on multiple nodes.

Index Terms—actor model of concurrent computing, high-

throughput computing, scientific and high-performance comput-

ing, bulk synchronous programming, fork-join pattern

I. INTRODUCTION

The actor model of concurrent computing is increasingly
being applied with success to problems in high-performance
computing (HPC) [1]–[4]. This success stems from the sim-
plicity of expressing concurrency with the actor model, making
it an excellent fit for problems that use bulk synchronous
parallel (BSP), fork-join, or similar patterns. Typically, actor-
model implementations, such as the C++ Actor Framework
(CAF) [5], employ a work-stealing algorithm that is well-
suited for these patterns.

However, the performance of the actor model can be hin-
dered in computations that require frequent synchronization of
hundreds of thousands of short-lived tasks. This is especially
true when using the conventional approach of defining an actor
for each task, with a single actor responsible for synchroniza-
tion. In this paper, we show how to mitigate this performance
bottleneck by introducing an additional layer of actors to buffer

communication and reduce contention on the synchronization
actor. We compare the performance of this approach with the
conventional actor model, MPI, and OpenMP implementations
using single-node experiments, and to MPI and MPI+OpenMP
implementations using multi-node experiments.

The BSP or fork-join patterns on which we focus in this
study is that induced by the requirement of data assimilation.
Data assimilation is the common practice in simulation science
of incorporating observational data into computational models
in order to improve their predictive power. It has been used
for decades in meteorology and hydrology, and interest in
it has further increased recently with the incorporation of
machine learning and artificial intelligence in simulations, e.g.,
for creating digital twins, e.g., [6]–[8].

A simulation involving data assimilation generally consists
of the evolution of many state variables, which may vary
from tightly coupled to completely uncoupled (embarrassingly
parallel). At the synchronization points, observations are input,
and the state variables are adjusted to account for the new
information provided by the data. Accordingly, simulations of
all variables must wait at the synchronization points until they
have all reached it before they can proceed. This pattern is
called BSP when it occurs in a distributed-memory system or
fork-join when it occurs in a shared-memory system.

This study aims to mimic the process of data assim-
ilation in a hydrologic simulation over continental North
America. The simulation is performed using the SUMMA-
Actors [9], SUMMA-MPI, SUMMA-OpenMP, and SUMMA-
MPI+OpenMP models, which are all based on the SUMMA
(Structure for Unification of Multiple Modeling Alternatives)
land model [10]. The focus of this study is to compare the
performance of the actor model against the traditional parallel
programming paradigms of MPI, OpenMP, and MPI+OpenMP
in the context of data assimilation, while proposing a solution
to mitigate synchronization bottlenecks that can occur when
using the actor model.

1274979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00168

SUMMA characterizes the spatial domain in terms of two
hierarchical elements: grouped response units (GRUs) and
hydrological response units (HRUs). GRUs and HRUs com-
bine to represent a landscape that comprises the simulation
domain. GRUs are the higher-level element and contain one
or more HRUs. GRUs can be of any shape and size, but
they must be spatially contiguous. Similarly, HRUs can be
of any shape and size, but each must fit entirely within a
GRU. HRUs are defined to be spatial areas that have relatively
homogeneous hydrologic properties and hence may not be
spatially contiguous. Their main use is to capture sub-scale
variability within a GRU. SUMMA treats the GRUs of a
given simulation independently. In this study, all GRUs contain
exactly one HRU.

The usual way of running SUMMA is to run all GRUs
associated with a spatial domain in an embarrassingly parallel
fashion over a predefined number of data windows (timesteps)
until they all reach a final end time. We refer to this way
of performing a simulation as asynchronous mode. In order
to mimic data assimilation, we impose the constraint that all
GRUs must complete their data window before any computa-
tions on the next data window can begin. We refer to this way
of performing a simulation as data-assimilation mode.

Data-assimilation mode within SUMMA can be hard to
manage using traditional programming paradigms such as
MPI. Besides the high communication costs, which arguably
are part of the problem statement, the main challenge is that
the execution times of the GRUs on a given data window
are variable, and furthermore this variability also changes
depending on the data window. Accordingly, there is no
realistic way to load-balance the computations a priori to
minimize the straggler effect. In contrast, OpenMP can be
viewed as a more natural fit for data assimilation because it
can easily handle the fork-join pattern, but then it requires the
use of MPI to synchronize across nodes. The actor model on
the other hand, can handle the parallelism and synchronization
both on a single node and across nodes in a single framework.

The actor model has been increasingly emerging as a
performant and straightforward computational model for high-
performance computing. It offers a high-level computational
abstraction known as an actor, which developers can use to
express concurrency in a way that is easy to understand and
reason about. actor-model implementations, such as the C++
Actor Framework (CAF) [5] and Akka [11], typically offer
a straightforward syntax for defining actors and their inter-
actions, and this facility can reduce the cognitive burden on
developers who find themselves creating increasingly elaborate
applications.

Generally, under the hood of actor-model implementations
is a work-stealing algorithm that effectively manages the con-
current execution of actors. Work-stealing algorithms typically
keep tasks/actors from migrating between the threads/cores
in order to minimize cache misses between tasks/actors that
interact frequently [12]. In [9], the effectiveness of SUMMA-
Actors was demonstrated to improve the resource utilization
and fault tolerance of SUMMA run in asynchronous mode.

However, the fork-join model can severely impact performance
when a single actor serves as a synchronization point for
hundreds of thousands of actors that execute short-duration
tasks, such as the simulation of many GRUs over short
data windows. In order to mitigate this issue, we judiciously
assemble a hierarchy of actors that act to buffer commu-
nication between many actors. Accordingly, we can create
significant performance gains by reducing contention on a
single actor that is responsible for the synchronization of the
entire program.

We demonstrate how to apply the actor model with a sched-
uler based on a general work-stealing algorithm to mitigate
synchronization bottlenecks and hence improve code perfor-
mance while providing a comprehensive comparison of the
performance against MPI, OpenMP, and MPI+OpenMP. The
contribution of this study is three-fold. First, we demonstrate
a new application of the actor model to a common issue in
HPC, namely that of synchronization bottlenecks. We also
show how software designed to solve such problems actually
falls loosely into the category of the actor model, and more
specifically, how such software may actually benefit from
considering the point of view of the actor model. Second, we
explicitly demonstrate performance improvements from apply-
ing the actor model to problems that rely on the BSP or fork-
join patterns, specifically in the context of data assimilation
applied to a large hydrological simulation. Third, we provide
a detailed comparison of the performance of the actor model
against MPI, OpenMP, and MPI+OpenMP implementations of
SUMMA.

The rest of this paper is organized as follows. In section II,
we describe related work in the field of improving load
balancing and mitigating synchronization bottlenecks as well
as give some background on the actor model, the SUMMA
implementations, and a thorough introduction to the actors-
based code to handle data-assimilation mode. In section III,
we describe the methodology of our study and the experiments
performed. In section IV, we describe the results from the ex-
periments and provide some discussion. Finally, in section V,
we summarize our findings and conclusions and offer a few
directions for future work.

II. BACKGROUND

A. Related Work
A defining aspect of the BSP and fork-join patterns is

that they introduce a synchronization point in the execution
of a program. The presence of synchronization points can
significantly reduce performance. Profiling optimization tech-
niques [13] and lock-free synchronization mechanisms [14]
can help reduce synchronization bottlenecks and contention
at synchronization points. However, utilizing these techniques
often requires a deep understanding and even re-evaluation of
the software, potentially increasing complexity and compli-
cating the debugging process [14]. Event-driven programming
models can also handle synchronization bottlenecks implicitly
via event loops that process events in a non-blocking man-
ner [15]. The actor model falls into this category of an event-

1275

driven programming model, where actors are coordinated and
synchronized by the messages (events) they send to each other.
Nonetheless, synchronization bottlenecks can still occur within
the actor model, especially when many actors synchronize with
a single actor, as is typical in the BSP and fork-join patterns.

One specific area of interest that has emerged in the HPC
community is the development of a programming model
known as partitioned global address spaces (PGAS) and its
application to problems centered around the BSP and fork-join
patterns. PGAS models provide a global and coherent view of
memory across different nodes in a distributed system [16].
This model is characterized by a global memory address
space that is logically partitioned, where each partition is
local to a processing element. The key feature of PGAS is a
process can directly access memory with affinity to a different,
potentially remote process without the explicit involvement
of the target process. However, the PGAS model is not
immune to synchronization bottlenecks. The work carried out
in [17] addressed this issue by borrowing some principles
from the actor model, including mailbox data structures and
termination detection to improve the performance of BSP
applications. A key element of the approach was the utilization
of conveyors [18] to automatically aggregate messages. Mixing
concepts within the context of PGAS and the actor model
is not new and has been explored in implementations such
as ActorX10 [1] and Actor-UPC++ [19]. The novelty of our
batching approach, however, is that there is no mixing of
programming models; rather, the actor model itself can be used
to mitigate synchronization bottlenecks in a BSP or fork-join
pattern. This reduces the complexity arising from combining
various concepts that can burden programmer productivity and
challenge software maintainability.

Similarly, Shiina and Taura introduced a new task-parallel
runtime system called Itoyori to increase the performance of
global fork-join parallelism in distributed computing environ-
ments [12] by integrating efficient cache sharing within the
combination of PGAS and a task-parallel runtime system. In
the current study, we also focus on performance improvements,
but we target synchronization bottlenecks specifically in the
context of the actor model. We demonstrate how our approach
can be applied across multiple nodes in a distributed environ-
ment. We also compare the performance of the actor model
against MPI, OpenMP, and MPI+OpenMP, none of which
seem to be addressed in the literature.

Another fundamental component of addressing synchro-
nization bottlenecks and inefficiencies in BSP and fork-join
patterns within the context of the actor model and task-based
runtime systems is the underlying scheduler. Systems such as
Legion [20] and PaRSEC [21] offer parallelism by focusing
on tasks as the primary unit of computation and commu-
nication. Legion is a data-centric programming system that
automatically optimizes data movement and task execution for
the underlying hardware architecture. PaRSEC is a task-based
runtime system that emphasizes dynamic scheduling of fine-
grained tasks on distributed, heterogeneous architectures by
utilizing direct acyclic graphs to represent computational tasks

and their data dependencies.
On the other hand, dynamic load-balancing strategies, such

as work-stealing and off-loading in parallel computing sys-
tems [22], attempt to efficiently distribute computational tasks
among multiple processors or threads [23]. Work-stealing
aims to minimize idle time and ensure that all process-
ing units are equally engaged with useful work by allow-
ing idle processors to take tasks from those with excess
tasks in their queues. Different work-stealing strategies have
been developed for actor-based frameworks. For example,
Actor-UPC++ offers fully asynchronous, diffusion-based load-
balancing strategies, including global and local versions of
actor stealing and off-loading, to improve load distribution,
performance, and efficiency [22]. Charm++ [24] is a C++
parallel programming framework with a computational model
similar to the actor model. Charm++ decomposes the program
into a number of cooperating message-driven objects known
as chares. The Charm++ runtime system offers a variety of
dynamic load-balancing strategies, such as persistence-based,
communication- and topology-aware, and work-stealing. Pack-
StealLB is a notable example of a work-stealing load balancer
in Charm++ [25]. It is a distributed load balancer that com-
bines the packing technique with constrained and randomized
work-stealing heuristics. Another innovative approach within
Charm++ is distributed work-stealing via matchmaking [26].
The matchmaking scheduler efficiently pairs idle computing
nodes with those overloaded with tasks, operating with low
overhead. This scheduler employs a centralized or distributed
matchmaker that keeps track of both the availability of tasks
and the demand for tasks across the system. However, in
this study, we specifically highlight the importance of the
underlying scheduler, but in the spirit of reducing the cognitive
burden on the programmer, we offer a solution that does
not require specific modification of the scheduler itself to
increase performance. Instead, we show how an additional
layer of actors to buffer communication and reduce contention
on single actors can be introduced within an actor-model
implementation that uses a work-stealing scheduler.

B. Actor Model

The actor model is a computational model where users
compose their programs as a set of actors whose interac-
tions are defined in terms of messages [27]. This model is
increasingly being applied to problems in HPC because it is
conceptually easy to understand and has great potential to
fit the structure of many programs well while providing a
high degree of performance. The actor model is also highly
regarded as a safe model for concurrent programming that is
inherently free from race conditions and deadlocks [28]. This
inherent safety stems from the fact that actors are independent
entities with no direct access to each other’s state. Instead,
actors communicate via asynchronous message passing. Typi-
cally, actor-model implementations incorporate a mailbox data
structure where messages are stored until they are processed
sequentially by the receiving actor [29]. Because actors are
independent and use message-passing semantics, they can

1276

easily be extended into distributed systems, allowing actors
to easily communicate across different nodes in a network.

One of the most important parts of an actor-model imple-
mentation is the scheduler, which is responsible for managing
the execution of actors. The scheduler is usually transparent to
the user, allowing the user to focus on the logic and structure of
actors in their program. Different actor-model implementations
offer different scheduling strategies, and some even offer mul-
tiple strategies from which the user can select. Furthermore,
some actor-model implementations encourage users to imple-
ment their own custom scheduling strategies. A popular choice
for the scheduling strategy in actor-model implementations is
work-stealing. Work-stealing was a scheduling technique first
proved to be efficient in multithreaded programs by Blumofe
and Leiserson [30]. Today, it serves as the foundation for many
actor-model implementations, including CAF [5], Akka [11],
Pony [31], and React++ [32], to name a few. Moreover, work-
stealing is still a popular choice in general for scheduling tasks
for multi-core systems as well as distributed systems through
a hierarchical work-stealing design [33].

In this study, we observe that CAF’s work-stealing scheduler
can become a bottleneck when executing a BSP or fork-
join pattern with hundreds of thousands of actors attempting
to communicate with a single actor frequently. Although we
observe this behavior in CAF, we expect that it is a general
issue that can occur in any actor-model implementation that
uses a work-stealing scheduler.

C. SUMMA
SUMMA [34] is a hydrological model (a so-called land

model) that is used to simulate the thermodynamics and
hydrology of a given geographic region. SUMMA was de-
signed to be a framework that can be conveniently used to
represent and compare different theories and representations
of hydrological processes. Figure 1 depicts the domains and
primary fluxes represented in SUMMA.

Currently, there are four different implementations of
parallelization for SUMMA: actors, MPI, OpenMP, and
MPI+OpenMP. Each of these implementations is explained in
the subsequent sections.

1) SUMMA-Actors: Recently, SUMMA was parallelized
using the actor model via CAF, resulting in a code called
SUMMA-Actors. SUMMA-Actors successfully increased the
efficiency and fault tolerance of SUMMA and delivered su-
perior performance on HPC systems [9]. However, the imple-
mentation of SUMMA-Actors is limited to the independent
and asynchronous simulation of GRUs through its implemen-
tation of the hru_actor (now gru_actor). This method
is not suitable for real-time data analysis, where the objective
is to simulate all input data for a given data window before
the arrival of data for the next data window.

The initial design of SUMMA-Actors partitioned SUMMA
into a hierarchy of actors, each responsible for a different part
of the computation (see figure 2). This design provides a super-
vision structure for increased fault tolerance such that a parent
actor is responsible for supervising the computation of its child

Fig. 1. Schematic of the SUMMA land model.

actors. At the top of the hierarchy is the summa_actor,
which is primarily a supervisor actor, but it also provides the
ability for the program to be sub-batched as desired, e.g., when
the simulation is too large to fit into memory of a single sys-
tem. Although not depicted in the figure, the summa_actor
can be connected to a summa_client_actor and a
summa_server_actor for use in or for creation of ad-hoc
distributed computing environments [35]. The job_actor
is the child of the summa_actor and is responsible for
creating and managing the gru_actors that carry out the
simulation of the GRUs. The job_actor also creates and
supervises the file_access_actor, which handles all file
I/O operations.

2) SUMMA-MPI: The SUMMA-MPI implementation sep-
arates the simulation of the GRUs into separate MPI processes.
When a simulation starts, SUMMA-MPI evenly distributes
the GRUs among the MPI processes. Each MPI process is
then responsible for simulating its batch of GRUs, including
parallel file reading and writing. To fufill the requirements
of data-assimilation mode, SUMMA-MPI uses a barrier to
synchronize the MPI processes at the end of each data window.

3) SUMMA-OpenMP: The SUMMA-OpenMP implemen-
tation is the most straightforward of the four implementa-
tions. It uses OpenMP to parallelize the simulations of GRUs
by placing directives before the GRU simulation loop and
within the data window loop. With the above implemen-
tation, SUMMA-OpenMP meets the requirements of data-
assimilation mode using a fork-join pattern. For each data
window, the input data are read, and the simulation of each
GRU is performed in parallel. Once all GRUs have completed
their data window, their results are written, and the next data
window is started.

4) SUMMA-MPI+OpenMP: The last implementation of
SUMMA is a hybrid approach using both MPI and OpenMP to
construct SUMMA-MPI+OpenMP. This implementation uses

1277

summa_actor

job_actor

gru_actorgru_actor gru_actor

file_access_actor

Fig. 2. The initial Summa-Actors program and the diagram of Summa-Actors
in data assimilation mode with no batch_actors. Since its first publication,
SUMMA-Actors has replaced the hru_actor with the gru_actor to
handle scenarios where a GRU can contain multiple HRUs. This figure has
been updated to reflect this change.

MPI in the same way as section II-C2 to distribute the GRUs
among MPI processes, and uses a barrier to synchronize the
MPI processes at the end of each data window. Each MPI
process then uses OpenMP to parallelize the simulation of its
batch of GRUs within each data window. This hybrid imple-
mentation should provide better performance than SUMMA-
MPI because it can balance the load of the GRUs dynamically
and offers the ability to run in distributed environments which
SUMMA-OpenMP cannot do on its own.

D. SUMMA-Actors: Data-Assimilation Mode

To implement data-assimilation mode in SUMMA-Actors,
it is required that all gru_actors complete a given data
window before moving onto the next one. An obvious method
to implement this requirement is to modify the job_actor
to coordinate all gru_actors. The job_actor would send
a start message to each gru_actor and then wait for all
gru_actors to send a completion message before starting
them on the next data window. Although fine in theory, this
strategy quickly leads to a significant bottleneck in practice for
large problems. Because the job_actor is responsible for
coordination, it becomes overloaded when a large number of
gru_actors complete at essentially the same time. This sit-
uation occurs when the simulation of each GRU’s data window

is short-lived (and hence effectively uniform), and typically the
run-time is dominated by the sheer number of GRUs rather
than their computational difficulty. For continental domains,
the number of GRUs is in the hundreds of thousands. However,
in asynchronous mode (or when many data windows are
computed between synchronizations), which is the use case
for which SUMMA-Actors was designed, no communication
bottlenecks are observed because the job_actor only in-
teracts with the gru_actors at the start and end of their
simulations, and these events are well spaced in time.

To alleviate this bottleneck, we implement an additional
layer of actors to the hierarchical design of SUMMA-
Actors. Instead of the job_actor spawning and manag-
ing individual gru_actors, it spawns and manages several
batch_actors, which in turn spawn and manage individual
gru_actors. This hierarchy of actors is shown in figure 3.
The intent of the batch_actor is to reduce the contention
on the job_actor and increase the efficiency of CAF’s
work-stealing scheduler. The efficiency gains are provided by
the fact that the batch_actor is more likely to have it
and its children’s tasks scheduled on the same thread/core. To
ensure this is the case, the number of batch_actors is set
to the number of cores on the system at runtime. Furthermore,
the number of messages the job_actor receives is signif-
icantly reduced because now it only interacts with as many
batch_actors as there are CPU cores.

This application of an additional layer of actors for the
purpose of batching provides several advantages over other
potential solutions. First, the approach is general and can be
applied to a wide range of actor-model programs or task-based
parallel programs that exhibit a fork-join or similar pattern
where the parallel tasks are short-lived. The generality lies
in the ability for the user to implement their own specific
form of batch actor and apply it to their program. Second,
the method has a hierarchical design that enables users to
customize the batching process according to their program’s
demands. For instance, our application used a single layer
of batch_actors to manage over 500,000 GRUs. Should
the number of GRUs increase such that the initial batch
actor becomes insufficient, however, users have the flexibility
to add further batching layers. This flexibility helps to effi-
ciently manage significant changes in workload. Third, the
approach is straightforward and requires minimal and non-
invasive changes to the existing code. Fourth, this solution
does not require complicated analysis, tuning of scheduler
implementations, or the use of software packages in addition
to what is already being used.

This initial approach to data-assimilation mode, however,
is unable to span multiple nodes. To address this limita-
tion, we added another mode of operation by modifying
the hierarchy of actors within SUMMA-Actors. The struc-
ture of this mode is provided in figure 4. To achieve data-
assimilation mode in distributed environments, we replaced
the top-level summa_actor with the da_server_actor
and the job_actor with a da_client_actors that reside
on each node. These two new types of actors better align with

1278

summa_actor

job_actor

batch_actor batch_actor

gru_actor gru_actor gru_actor gru_actor gru_actor gru_actor

file_access_actor

Fig. 3. The SUMMA-Actors application in data-assimilation mode with the addition of batch_actors.

the task of distributing the simulation across multiple nodes.
In distributed data-assimilation mode, SUMMA-Actors

starts by spawning the da_server_actor on the
first node. The da_server_actor then spawns its
own local da_client_actor, reducing the need for
a separate node just for the da_server_actor. The
user specifies how many nodes are to take part in
the simulation, and the da_server_actor waits for
all da_client_actors to connect before starting the
simulation. Once all da_client_actors have con-
nected, the da_server_actor sends a start mes-
sage to each da_client_actor and then waits for
all da_client_actors to send a completion mes-
sage before moving onto the next data window. Each
da_client_actor then spawns and manages several
batch_actors, which in turn spawn and manage individual
gru_actors.

III. METHODOLOGY

To investigate the effect a single layer of batch_actors
has on SUMMA-Actors throughput in data-assimilation mode,
we performed several hydrological simulations over conti-
nental North America. We then compared the results to
SUMMA-Actors without a batch_actor, SUMMA-MPI,
and SUMMA-OpenMP in three single-node experiments.
For a multi-node experiment, we compared SUMMA-Actors

with a batch_actor to SUMMA-MPI and SUMMA-
MPI+OpenMP. The domain used consists of 517,315 GRUs
with forcing data from January, 2019. The forcing data were
obtained from the workflow described in [36] and are publicly
available at https://zenodo.org/records/13687422.

The three single-node experiments were performed on
the Copernicus cluster located at the University of
Saskatchewan in Saskatchewan, Canada. Copernicus con-
sists of 50 nodes, each with various CPU and GPU configu-
rations. The nodes used for the simulations consisted of dual-
socket Intel Xeon Gold 6142 (Skylake) processors, totaling 32
cores and 326 GB of RAM each. The nodes were connected
to a shared file system using a 100 Gbps Infiniband network.

The fourth experiment was a multi-node experiment per-
formed on the Niagara cluster located at the University of
Toronto in Ontario, Canada. Niagara is part of the Digital
Research Alliance of Canada1 and consists of 2024 nodes,
each with either 40-core Intel Skylake or 40-core Intel Cascade
Lake processors and 202 GB of RAM. The nodes were
connected to a shared file system using an EDR Infiniband
network.

The experiments performed were
E1: a one-day simulation (24 hourly data windows) executed

on a single node,

1https://alliancecan.ca/en

1279

da_server_actor

da_client_actor da_client_actor

batch_actor batch_actor batch_actor batch_actor

gru_actor gru_actor gru_actor gru_actor gru_actor gru_actor gru_actor gru_actor

file_access_actor file_access_actor

Fig. 4. The actors involved in running data-assimilation mode in a distributed environment. The dashed lines delineate the nodes in the distributed environment.
The da_server_actor resides on one of the nodes.

E2: a one-week simulation (168 hourly data windows) exe-
cuted on a single node,

E3: a one-month simulation (744 hourly data windows) exe-
cuted on a single node, and

E4: a one-month simulation (744 hourly data windows) exe-
cuted on 10, 20, and 40 nodes.

The first three experiments consisted of running the follow-
ing implementations and configurations of SUMMA:

1) SUMMA-Actors in data-assimilation mode with batch-
ing,

2) SUMMA-Actors in data-assimilation mode with no
batching,

3) SUMMA-MPI with a barrier to synchronize the MPI
processes at the end of each data window, and

4) SUMMA-OpenMP.

For Experiment 4, we investigated the scaling behavior of
the following implementations and configurations of SUMMA:

1) SUMMA-Actors in data-assimilation mode with batch-
ing,

2) SUMMA-MPI with a barrier to synchronize the MPI
processes at the end of each data window, and

3) SUMMA-MPI+OpenMP.
Each SUMMA implementation was run on 10, 20, and 40
nodes. Although each node on Niagara has 40 cores, hyper-
threading was enabled, so each job utilized 80 logical cores
per node.

IV. RESULTS AND DISCUSSION

A. Experiment 1: one-day simulation, single node

In Experiment 1, we simulated the hydrology over continen-
tal North America for one day (24 hourly data windows) using
a single node. The results of this experiment are shown in fig-
ure 5. In the top chart of the figure, we observe the duration of
each job as measured by Slurm. In the bottom chart, the total
GRU physics durations measured by SUMMA are displayed as
bars. Additionally, 1000 samples of the GRU physics durations
are plotted as dots within their respective bars to verify the
accuracy of the original measurements. Each sample was
taken by randomly selecting 517,315 GRUs with replacement

1280

and summing their physics durations. The durations for each
GRU were obtained using Fortran’s system_clock intrinsic
function. Each measurement was taken at the beginning and
end of SUMMA’s coupled_em subroutine, which is the
same for all implementations. The values in the bottom chart
are then achieved by summing all measured GRU timings.

Beginning with the top chart, we observe that SUMMA-
OpenMP required the least time to complete its job at 0.69
hours. This was followed by SUMMA-Actors with batching
at 0.76 hours, SUMMA-MPI at 0.78 hours, and SUMMA-
Actors without batching at 3.10 hours. Moving to the bot-
tom chart, we find the ranking changes, with SUMMA-
MPI spending the least amount of time computing the GRU
physics at 18.37 hours, followed by SUMMA-OpenMP at
18.77 hours, SUMMA-Actors without batching at 20.37 hours,
and SUMMA-Actors with batching taking the most time at
20.44 hours. Within each bar in the bottom chart, we see each
of the 1000 samples of the GRU physics durations are tightly
clustered around their original measurement. This indicates
little variability in the GRU physics durations, suggesting that
the original measurements are reliable.

Fig. 5. Comparison of the job durations for one-day simulations (24 hourly
data windows) as measured by Slurm (top chart) and the sum of the GRU
physics durations as measured by SUMMA (bottom chart). Dots within the
bottom bars represent the samples of the GRU physics durations taken using
the bootstrapping method.

Analyzing the results of Experiment 1, we see that the
batch_actor in SUMMA-Actors makes a significant dif-
ference in performance, marking a 121.2% improvement in job
duration. This improvement is likely due to reduced contention
on the job_actor because multiple batch_actors handle
communication with groups of gru_actors, buffering the
communication before an update to the job_actor. The
batch_actors are more likely to have their tasks scheduled
on the same CPU core, reducing the chance of migration be-
tween CPUs. Without the batch_actor, the job_actor
will migrate constantly between CPU cores as they become

available for it to service the updates from the gru_actors,
leading to increased contention and poor cache utilization.

This batching approach did not outperform SUMMA-
OpenMP, which completed 9.6% faster, but the batching
approach does outperform SUMMA-MPI by 2.5%. SUMMA-
MPI encounters the straggler effect, where processes that
finish their GRUs early must wait for others to complete
before proceeding to the next data window. Accordingly, the
applications that can balance the GRUs across CPUs are
expected to perform better than SUMMA-MPI.

To better understand how SUMMA-OpenMP outperforms
SUMMA-Actors with batching, we turn to the bottom chart.
We find that although SUMMA-OpenMP is the second most
efficient at computing the GRU physics, it balances the GRUs
across CPUs more effectively, enabling it to complete the
simulation in the least amount of time. SUMMA-Actors with
batching also balances the GRUs across CPUs well, allowing it
to outperform SUMMA-MPI. However, it suffers from slower
physics computations compared to SUMMA-OpenMP, which
enables SUMMA-OpenMP to complete the simulation faster.

Both SUMMA-Actors simulations show a reduction of
performance in computing the GRU physics compared to
SUMMA-MPI and SUMMA-OpenMP. This reduction is likely
due to the overhead of using Fortran and C++ to enable the
actor model in SUMMA-Actors. SUMMA-MPI and SUMMA-
OpenMP are written exclusively in Fortran, which likely
allows for better compiler optimization and cache utilization.
However, SUMMA-Actors must use C++ wrappers to call
Fortran code, leading to increased overhead and less efficient
data structures.

The difference in GRU physics performance between
SUMMA-OpenMP and SUMMA-Actors with batching is
8.5%, suggesting that without the increased overhead of using
two programming languages, SUMMA-Actors with batching
would perform closer to SUMMA-OpenMP in overall job
duration.

B. Experiment 2: one-week simulation, single node

In Experiment 2, the simulation was extended in duration
to one week (168 hourly data windows) in anticipation that
the implementations of SUMMA that have some form of load
balancing would perform better. The results of this experiment
are shown using the same format as Experiment 1 in figure 6.

Observing the results shown in the top chart, we again see
the same order of performance as in Experiment 1. SUMMA-
OpenMP required the least amount of time to complete its job
at 4.17 hours, followed by SUMMA-Actors with batching at
4.46 hours, SUMMA-MPI at 4.72 hours, and SUMMA-Actors
with no batching at 20.70 hours. These results tell largely the
same story in terms of job duration as Experiment 1. The
gap between SUMMA-OpenMP and SUMMA-Actors with
batching was closed slightly, with their difference being 6.7%,
compared to 9.6% in Experiment 1. Both SUMMA-OpenMP
and SUMMA-Actors had a larger gap between them and
SUMMA-MPI than in Experiment 1, with the difference being

1281

Fig. 6. Comparison of the job durations for a one-week simulation (168
hourly data windows) as measured by Slurm (top chart) and the sum of the
GRU physics durations as measured by SUMMA (bottom chart). Dots within
the bottom bars represent the samples of the GRU physics durations taken
using the bootstrapping method.

12.3% and 5.6%, respectively. This again is because of the
straggler effect encountered by SUMMA-MPI.

In the bottom chart of figure 6, we again see the same order
of performance as in Experiment 1. SUMMA-MPI required
the least amount of time to compute the GRU physics at
114.33 hours, followed by SUMMA-OpenMP at 119.62 hours,
SUMMA-Actors in data-assimilation mode with batching at
137.51 hours, and SUMMA-Actors in data-assimilation mode
with no batching at 172.75 hours. Similarly, the samples of the
GRU physics durations are tightly clustered around their orig-
inal measurements, indicating that the original measurements
are reliable.

The same factors as outlined in Experiment 1 likely con-
tributed to the results of this experiment. However, SUMMA-
Actors without batching performed considerably worse than
SUMMA-Actors with batching in terms of GRU physics
duration in this experiment than in the previous one. The
longer simulation duration likely exacerbated the contention
on the job_actor, leading to increased overhead and even
worse cache utilization.

C. Experiment 3: one-month simulation, single node

In Experiment 3, we further extended the duration of the
simulation to one month (744 hourly data windows). This
experiment should again benefit the SUMMA implementations
with load balancing. As in the previous two experiments,
the results of this experiment are shown in the same format
in figure 7. For this experiment, the order of job durations
remains the same, with SUMMA-OpenMP requiring the least
amount of time at 18.21 hours, followed by SUMMA-Actors
with batching at 20.81 hours, SUMMA-MPI at 22.25 hours,
and SUMMA-Actors with no batching taking 92.05 hours.

Fig. 7. Comparison of the job durations for a one-month simulation (744
hourly data windows) as measured by Slurm (top chart) and the sum of the
GRU physics durations as measured by SUMMA (bottom chart). Dots within
the bottom bars represent the samples of the GRU physics durations taken
using the bootstrapping method.

Looking at the bottom chart, the story is the same as
the previous two experiments, with SUMMA-MPI spending
the least amount of time computing the GRU physics at
495.94 hours, followed by SUMMA-OpenMP at 518.08 hours,
SUMMA-Actors with batching at 622.23 hours, and SUMMA-
Actors with no batching at 787.08 hours.

Analyzing the results of Experiment 3 further, we see that
SUMMA-OpenMP outperforms SUMMA-Actors with batch-
ing in terms of job duration by 13.3%. This speedup comes
from SUMMA-OpenMP’s increased efficiency in computing
the GRU physics, where it outperforms SUMMA-Actors with
batching by 18.2%. Again, the overhead of using two program-
ming languages hinders the performance of SUMMA-Actors.
Nonetheless, SUMMA-Actors with batching still demonstrates
effective load balancing, outperforming SUMMA-MPI by
6.1% in job duration. SUMMA-MPI once again performs the
best in computing the GRU physics, but it is hindered in
overall job duration by the straggler effect.

We can see that SUMMA-Actors with batching performs
well overall and is still significantly better than using no batch-
ing with a 126.2% difference in job duration. As pointed out
in Experiment 1, the job_actor faces excessive contention
when managing individual gru_actors, but this contention
is alleviated by the batch_actors, as clearly demonstrated
in our results.

The first three experiments show that SUMMA-Actors suf-
fers from overhead when computing the GRU physics. This
affects the overall performance and allows SUMMA-OpenMP
to outperform SUMMA-Actors consistently. We believe that
the results would be much closer if SUMMA was written in
C++ or if a robust actors library existed for Fortran.

1282

D. Experiment 4: one-month simulation, multi-node scaling
For Experiment 4, we expanded the one-month simulation

across 10, 20, and 40 nodes to perform a scaling analysis of
SUMMA-Actors with batching, SUMMA-MPI, and SUMMA-
MPI+OpenMP. SUMMA-Actors without batching was not
included because of its poor performance. The results of this
experiment are shown in figure 8.

In each of the three cases, SUMMA-Actors and SUMMA-
MPI+OpenMP outperformed SUMMA-MPI. For the 10-, 20-,
and 40-node cases, SUMMA-MPI+OpenMP had total job
durations of 2.9, 2.14, and 1.64 hours, respectively. SUMMA-
Actors with batching had total job durations of 2.97, 2.16,
and 1.61 hours, while SUMMA-MPI had total job durations of
4.33, 3.31, and 2.73 hours. An ideal scaling line is included in
figure 8 to show the scaling efficiency of each implementation.

Fig. 8. Scaling analysis of SUMMA-Actors with batching and SUMMA-
MPI over 10, 20, and 40 nodes. Each data point was run for a one-month
simulation (744 hourly data windows).

It is expected that SUMMA-MPI would perform the worst
because it does not balance the workload of GRUs across the
CPUs within a node. SUMMA-MPI+OpenMP and SUMMA-
Actors have a significant advantage in this regard because they
both balance the workload of GRUs across the CPUs within
a node. However, the results show that all implementations
suffer from the straggler effect between nodes. Linear scaling
is not achieved, and this happens because GRU computations
are not uniform across data windows, leading to some nodes
finishing their data window early and having to wait for all
other nodes to finish before moving onto the next data window.
This straggler effect is exacerbated when the number of nodes
increases, as shown in figure 8.

Comparing SUMMA-MPI+OpenMP and SUMMA-Actors
with batching, we see that SUMMA-MPI+OpenMP outper-
forms SUMMA-Actors with batching in the 10- and 20-
node cases. However, in the 40-node case, SUMMA-Actors
with batching outperforms SUMMA-MPI+OpenMP. As stated
in the previous experiments, SUMMA-Actors is likely hin-
dered by the overhead of using two programming languages.
Nonetheless, the disparity in performance between SUMMA-
MPI+OpenMP and SUMMA-Actors with batching is not as
large as was SUMMA-OpenMP and SUMMA-Actors with

batching in the single-node experiments with SUMMA-Actors
outperforming SUMMA-MPI+OpenMP in the 40-node case.

The differences in performance between SUMMA-
MPI+OpenMP and SUMMA-Actors in the 10- and 20-
node cases are 2.3% and 0.9%, respectively. In the 40-node
case, SUMMA-Actors outperforms SUMMA-MPI+OpenMP
by 7.1%. These results suggest that SUMMA-Actors per-
forms better with smaller numbers of GRUs per node. The
highly comparable results show the potential of the actor
model in managing the synchronization requirements of highly
parallel applications. Even with the overhead of using two
programming languages, SUMMA-Actors with batching is
able to compete with — and even outperform — SUMMA-
MPI+OpenMP in some cases.

V. CONCLUSIONS AND FUTURE WORK

Data synchronization is a common requirement for many
problems in scientific and high-performance computing. Two
of the most well-known examples where data synchronization
is a fundamental feature of the parallelization strategy are the
BSP pattern in distributed-memory environments and the fork-
join pattern in shared-memory environments. When synchro-
nization is frequent, however, communication overhead can be
so high as to cause code performance to suffer.

Using a hydrologic simulation to mimic data assimilation
with over 500,000 computational elements, we have described
an actor-based batching strategy that buffers communication to
mitigate bottlenecks caused by communication overhead. This
strategy outperformed the MPI implementation of the same
simulation in all single-node and multi-node experiments.
However, at the cost of increased overhead due to using two
programming languages, SUMMA-Actors was outperformed
by SUMMA-OpenMP in all single-node experiments, and in
two out of three multi-node experiments for which SUMMA-
MPI+OpenMP was used.

Nonetheless, our results demonstrate the effectiveness our
actor-based batching strategy in managing the synchronization
requirements of highly parallel applications. These results also
do not include some powerful features of the actor model that
are difficult to measure empirically, such as increased fault
tolerance and the decrease in cognitive load associated with
the increased ability to reason about the program at a higher
level of abstraction.

A powerful feature of the actor model is the implied work-
stealing algorithms, which we have demonstrated are highly
effective within a node. As part of future work, we plan to
investigate dynamic load-balancing strategies that can be ap-
plied to reduce the straggler effect in multi-node simulations.
We also plan to continue optimizing our actor-based batching
strategy, as well as apply it to other algorithms that have high
synchronization requirements.

REFERENCES

[1] A. Pöppl, M. Bader, T. Schwarzer, and M. Glaß, “SWE-X10: Simulating
shallow water waves with lazy activation of patches using Actorx10,”
in 2016 Second International Workshop on Extreme Scale Programming
Models and Middlewar (ESPM2), 2016, pp. 32–39.

1283

[2] N. Perera, K. Shan, S. Kamburugamuwe, T. A. Kanewela, C. Widanage,
A. Sarker, M. Staylor, T. Zhong, V. Abeykoon, and G. Fox, “Super-
charging distributed computing environments for high performance data
engineering,” arXiv preprint arXiv:2301.07896, 2023.

[3] R. Hiesgen, M. Nawrocki, A. King, A. Dainotti, T. C. Schmidt, and
M. Wählisch, “Spoki: Unveiling a new wave of scanners through
a reactive network telescope,” in 31st USENIX Security Symposium
(USENIX Security 22), 2022, pp. 431–448.

[4] L. Nigro, “Parallel theatre: An actor framework in java for high
performance computing,” Simulation Modelling Practice and Theory,
vol. 106, p. 102189, 2021.

[5] D. Charousset, R. Hiesgen, and T. C. Schmidt, “Revisiting actor pro-
gramming in C++,” Computer Languages, Systems & Structures, vol. 45,
pp. 105–131, 2016.

[6] G. Anumba, M. Kiviniemi, M. Chong, and A. Huang, “Digital twins:
The convergence of data assimilation and machine learning for predictive
energy management in buildings,” Automation in Construction, vol. 118,
p. 103396, December 2020.

[7] J.-C. Loiseau, F. Oquendo, and S. Ducasse, “Data assimilation and
digital twins: State of the art and perspectives,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 14–21, March 2020.

[8] S. Jayasuriya, S. Samie, and Y. Zhang, “Data assimilation techniques
for digital twin development in predictive maintenance applications,”
Procedia CIRP, vol. 98, pp. 575–580, 2021.

[9] K. Klenk and R. J. Spiteri, “Improving resource utilization and fault
tolerance in large simulations via actors,” Cluster Computing, pp. 1–18,
2024.

[10] M. P. Clark, B. Nijssen, J. D. Lundquist, D. Kavetski, D. E. Rupp, R. A.
Woods, J. E. Freer, E. D. Gutmann, A. W. Wood, D. J. Gochis et al.,
“A unified approach for process-based hydrologic modeling: 2. Model
implementation and case studies,” Water resources research, vol. 51,
no. 4, pp. 2515–2542, 2015.

[11] P. Haller and M. Odersky, “Scala actors: Unifying thread-based and
event-based programming,” Theoretical computer science, vol. 410, no.
2-3, pp. 202–220, 2009.

[12] S. Shiina and K. Taura, “Itoyori: Reconciling global address space and
global fork-join task parallelism,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2023, pp. 1–15.

[13] T. Yu and M. Pradel, “SyncProf: Detecting, localizing, and optimizing
synchronization bottlenecks,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis, ser. ISSTA 2016. Asso-
ciation for Computing Machinery, 2016, pp. 389–400.

[14] J. Jahić, K. Ali, M. Chatrangoon, and N. Jahani, “(Dis)advantages
of lock-free synchronization mechanisms for multicore embedded sys-
tems,” in Workshop Proceedings of the 48th International Conference
on Parallel Processing, ser. ICPP Workshops ’19. Association for
Computing Machinery, 2019, pp. 1–8.

[15] A. Kanade, “Chapter seven - event-based concurrency: Applications,
abstractions, and analyses,” in Advances in Computers, A. M. Memon,
Ed. Elsevier, 2019, vol. 112, pp. 379–412.

[16] K. Yelick, D. Bonachea, W.-Y. Chen, P. Colella, K. Datta, J. Duell, S. L.
Graham, P. Hargrove, P. Hilfinger, P. Husbands, C. Iancu, A. Kamil,
R. Nishtala, J. Su, M. Welcome, and T. Wen, “Productivity and perfor-
mance using partitioned global address space languages,” in Proceedings
of the 2007 International Workshop on Parallel Symbolic Computation,
ser. PASCO ’07. Association for Computing Machinery, 2007, pp.
24–32.

[17] S. R. Paul, A. Hayashi, K. Chen, Y. Elmougy, and V. Sarkar, “A fine-
grained asynchronous bulk synchronous parallelism model for PGAS
applications,” Journal of Computational Science, vol. 69, p. 102014,
2023.

[18] F. M. Maley and J. G. DeVinney, “Conveyors for streaming many-to-
many communication,” in 2019 IEEE/ACM 9th Workshop on Irregular
Applications: Architectures and Algorithms (IA3), Denver, CO, USA,
2019, pp. 1–8.

[19] A. Pöppl, S. Baden, and M. Bader, “A UPC++ actor library and its evalu-
ation on a shallow water proxy application,” in 2019 IEEE/ACM Parallel
Applications Workshop, Alternatives To MPI (PAW-ATM), Denver, CO,
USA, 2019, pp. 11–24.

[20] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: Expressing
locality and independence with logical regions,” in SC ’12: Proceedings
of the International Conference on High Performance Computing, Net-
working, Storage and Analysis, 2012, pp. 1–11.

[21] G. Bosilca, A. Bouteiller, A. Danalis, M. Faverge, T. Herault, and J. J.
Dongarra, “PaRSEC: Exploiting heterogeneity to enhance scalability,”
Computing in Science & Engineering, vol. 15, no. 6, pp. 36–45, 2013.

[22] Y. Budanaz, M. Wille, and M. Bader, “Asynchronous workload balanc-
ing through persistent work-stealing and offloading for a distributed actor
model library,” in 2022 IEEE/ACM Parallel Applications Workshop:
Alternatives To MPI+X (PAW-ATM), 2022, pp. 39–51.

[23] G. Cybenko, “Dynamic load balancing for distributed memory multipro-
cessors,” Journal of Parallel and Distributed Computing, vol. 7, no. 2,
pp. 279–301, 1989.

[24] L. V. Kalé and A. Bhatele, Eds., Parallel Science and Engineering
Applications - The Charm++ Approach, ser. Series in Computational
Physics. CRC Press, 2013.

[25] V. Freitas, L. L. Pilla, A. de L. Santana, M. Castro, and J. Cohen, “Pack-
StealLB: A scalable distributed load balancer based on work stealing and
workload discretization,” Journal of Parallel and Distributed Computing,
vol. 150, pp. 34–45, 2021.

[26] H. Parikh, V. Deodhar, A. Gavrilovska, and S. Pande, “Distributed
work stealing at scale via matchmaking,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER), 2021, pp. 250–260.

[27] C. Hewitt, “Actor model of computation: Scalable robust information
systems,” arXiv:1008.1459, 2010. [Online]. Available: https://arxiv.org/
abs/1008.1459

[28] J. De Koster, T. Van Cutsem, and T. D’Hondt, “Domains: Safe sharing
among actors,” in Proceedings of the 2nd edition on Programming
systems, languages and applications based on actors, agents, and
decentralized control abstractions, 2012, pp. 11–22.

[29] J. De Koster, T. Van Cutsem, and W. De Meuter, “43 years of actors:
a taxonomy of actor models and their key properties,” in Proceedings
of the 6th International Workshop on Programming Based on Actors,
Agents, and Decentralized Control, 2016, pp. 31–40.

[30] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded compu-
tations by work stealing,” Journal of the ACM (JACM), vol. 46, no. 5,
pp. 720–748, 1999.

[31] S. Clebsch, J. Franco, S. Drossopoulou, A. M. Yang, T. Wrigstad, and
J. Vitek, “Orca: GC and type system co-design for actor languages,”
Proceedings of the ACM on Programming Languages, vol. 1, no.
OOPSLA, pp. 1–28, 2017.

[32] M. N. A. Khan, “React++: A lightweight actor framework in C++,”
Master’s thesis, University of Waterloo, 2020.

[33] J. Yang and Q. He, “Scheduling parallel computations by work stealing:
A survey,” International Journal of Parallel Programming, vol. 46, pp.
173–197, 2018.

[34] M. P. Clark, B. Nijssen, J. D. Lundquist, D. Kavetski, D. E. Rupp, R. A.
Woods, J. E. Freer, E. D. Gutmann, A. W. Wood, L. D. Brekke et al., “A
unified approach for process-based hydrologic modeling: 1. Modeling
concept,” Water Resources Research, vol. 51, no. 4, pp. 2498–2514,
2015.

[35] K. Klenk, M. M. Moayeri, and R. J. Spiteri, “High-throughput scientific
computation with heterogeneous clusters: A kitchen-sink approach using
the actor model,” in Proceedings of the 2024 SIAM Conference on
Parallel Processing for Scientific Computing (PP). SIAM, 2024, pp.
78–89.

[36] W. J. M. Knoben, M. P. Clark, J. Bales, A. Bennett, S. Gharari, C. B.
Marsh, B. Nijssen, A. Pietroniro, R. J. Spiteri, G. Tang, D. G. Tarboton,
and A. W. Wood, “Community workflows to advance reproducibility
in hydrologic modeling: Separating model-agnostic and model-specific
configuration steps in applications of large-domain hydrologic models,”
Water Resources Research, vol. 58, no. 11, p. e2021WR031753, 2022.

1284

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 Demonstrates a new application of the actor model
to solve synchronization bottlenecks in software.

C2 Demonstrates performance improvements from ap-
plying an actor-based batching strategy to problems
that rely on bulk-synchronous processing or the
fork-join pattern in the context of data assimilation
applied to a large hydrologic model.

C3 Offers a detailed analysis of the performance
of the actor model against MPI, OpenMP, and
MPI+OpenMP implementations of the same appli-
cation.

B. Computational Artifacts

All artifacts and their git repositories are listed below. The
first five artifacts have specific release versions for this paper
at: https://doi.org/10.5281/zenodo.13137302. The last artifact
is the forcing data used in the simulations.
A1 SUMMA-Actors: https://github.com/uofs-simlab/

Summa-Actors
A2 SUMMA-MPI: https://github.com/junwei-guo/

summa-mpi
A3 SUMMA-OpenMP: https://github.com/KyleKlenk/

summa/tree/OpenMP
A4 SUMMA-MPI+OpenMP: https://github.com/

KyleKlenk/summa/tree/MPI-OpenMP
A5 Slurm submission scripts and SUMMA settings

files: https://git.cs.usask.ca/numerical simulations
lab/actors/paper data/data-assimilation-paper

A6 Forcing data: https://zenodo.org/doi/10.5281/zenodo.
13687421

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Figures 1–4

A1, A2, A3, A5, A6 C2, C3 Figures 5–7

A1, A2, A4, A5, A6 C2, C3 Figure 8

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The primary computational artifact supporting all the con-
tributions of this paper is the source code for the version of
SUMMA-Actors used in the simulations. This code specif-
ically contains the actor implementations discussed in the
paper.

Expected Results
When using SUMMA-Actors in data-assimilation mode, we

expect to see the batch_actor implementation significantly
outperform the same mode that does not use it (C1, C2).
Additionally, we anticipate that SUMMA-Actors in data-
assimilation mode with batching will outperform the same
mode implemented with MPI on single and multiple nodes.
We expect SUMMA-Actors with batching to be competitive
against OpenMP and MPI+OpenMP implementations, how-
ever, it may not outperform them (C3).

Expected Reproduction Time (in Minutes)
The time required to set up this artifact includes installing

the necessary dependencies and compiling the code, which we
estimate to take approximately 15-30 minutes. The execution
time to produce similar results will vary depending on the
hardware used, the domain of the simulation, and the length
of the simulation.

Artifact Setup (incl. Inputs)
Hardware: This artifact can be run on any modern CPU

capable of compiling and running C++ and Fortran code. To
reproduce our results for large continental domains, the CPU
should be paired with at least 225 GB of RAM and requires
a network connection to run in distributed mode. Smaller
domains require significantly less RAM.

Software: The software dependencies for this artifact are as
follows:

• CMake (3.27.7) – https://cmake.org/
• g++ (12.3.1) – https://gcc.gnu.org/
• Intel(R) Threading Building Blocks (2021.10.0) – https:

//github.com/oneapi-src/oneTBB
• CAF (1.0.0) – https://www.actor-framework.org/
• Sundials (7.0.0) – https://computing.llnl.gov/projects/

sundials
• Netcdf (4.9.2) – https://www.unidata.ucar.edu/software/

netcdf/
• SUMMA (PAW-ATM2024 Release) – https://github.com/

ashleymedin/summa
• SUMMA-Actors (PAW-ATM2024 Release) – https://

github.com/uofs-simlab/Summa-Actors
Datasets / Inputs: The datasets required as initial conditions

for SUMMA-Actors are introduced as part of A5. The forc-
ing data were produced for the continent of North America
using the CWARHM workflow https://github.com/CH-Earth/
CWARHM. The forcing data is made available as part of A6.

Installation and Deployment: The steps for compiling
and running SUMMA-Actors are included in its repository.
The basic steps involve cloning the repository, installing the
dependencies, and running the provided CMake script. For
installation on a cluster that is part of the Digital Research
Alliance of Canada (https://alliancecan.ca/en), like the one
used to generate the results in this paper, the specific module

1285

load commands are included in the corresponding compilation
script.

Artifact Execution

SUMMA-Actors is run like many other C++ binaries, with
various options specified through a combination of command-
line arguments and a configuration JSON file. The main tasks
include configuring the simulation and executing the simula-
tion. Specific instructions for running the code are included in
the README file in the SUMMA-Actors repository. For the
files that make up the configuration of the simulation, please
refer A5.

Artifact Analysis (incl. Outputs)

B. Computational Artifact A2

Relation To Contributions

This artifact was used for comparison against A1, A3 and
A4.

Expected Results

The expected results from this artifact are similar to those
explained in A1.

Expected Reproduction Time (in Minutes)

The expected time to reproduce the results from this artifact
is similar to the explanation provided for A1.

Artifact Setup (incl. Inputs)

Hardware: This artifact can be run on any modern CPU
capable of compiling and running MPI fortran code. To
reproduce our results for large continental domains, the CPU
should be paired with at least 100 GB of RAM and requires
a network connection to run in distributed mode.

Software:
• CMake (3.27.7) – https://cmake.org/
• gfortran (12.3.1) – https://gcc.gnu.org/
• Sundials (7.0.0) – https://computing.llnl.gov/projects/

sundials
• Netcdf-Fortran (4.6.1) – https://www.unidata.ucar.edu/

software/netcdf/
• Open MPI (4.1.5) – https://www.open-mpi.org/
Datasets / Inputs: The datasets and inputs for this artifact

are the same as those explained for A1.
Installation and Deployment: The steps for installation are

included in the repository for SUMMA-MPI.

Artifact Execution

SUMMA-MPI is run like many other MPI programs. The
specific configuration files are explained as part of A5.

Artifact Analysis (incl. Outputs)

C. Computational Artifact A3

Relation To Contributions

This artifact was used for comparison against A1 and A2.

Expected Results

The expected results from this artifact are similar to those
explained in A1.

Expected Reproduction Time (in Minutes)

The expected time to reproduce the results from this artifact
is similar to the explanation provided for A1.

Artifact Setup (incl. Inputs)

Hardware: This artifact can be run on any modern CPU
capable of compiling and running OpenMP fortran code. To
reproduce our results for large continental domains, the CPU
should be paired with at least 100 GB of RAM.

Software:
• CMake (3.27.7) – https://cmake.org/
• gfortran (12.3.1) – https://gcc.gnu.org/
• Sundials (7.0.0) – https://computing.llnl.gov/projects/

sundials
• Netcdf-Fortran (4.6.1) – https://www.unidata.ucar.edu/

software/netcdf/
• OpenMP (4.1.5) – https://www.openmp.org/
Datasets / Inputs: The datasets and inputs for this artifact

are the same as those explained for A1.
Installation and Deployment: The steps for installation are

included in the SUMMA-OpenMP repository. To explicitly
enable OpenMP, ensure that it is linked during the compilation
process.

Artifact Execution

SUMMA-OpenMP is run exactly as SUMMA is normally.
The specific configuration files are explained as part of A5.

Artifact Analysis (incl. Outputs)

D. Computational Artifact A4

Relation To Contributions

This artifact was used for comparison against A1 and A2

using multiple nodes.

Expected Results

The expected results from this artifact are similar to those
explained in A1.

Expected Reproduction Time (in Minutes)

The expected time to reproduce the results from this artifact
is similar to the explanation provided for A1.

Artifact Setup (incl. Inputs)

Hardware: This artifact can be run on any modern CPU
capable of compiling and running OpenMP fortran code. To
reproduce our results for large continental domains, the CPU
should be paired with at least 100 GB of RAM.

1286

Software:
• CMake (3.27.7) – https://cmake.org/
• gfortran (12.3.1) – https://gcc.gnu.org/
• Sundials (7.0.0) – https://computing.llnl.gov/projects/

sundials
• Netcdf-Fortran (4.6.1) – https://www.unidata.ucar.edu/

software/netcdf/
• OpenMP (4.1.5) – https://www.openmp.org/
• Open MPI (4.1.5) – https://www.open-mpi.org/
Datasets / Inputs: The datasets and inputs for this artifact

are the same as those explained for A1.
Installation and Deployment: The steps for installation

are included in the SUMMA-MPI+OpenMP repository. To
explicitly enable OpenMP, ensure that it is linked during the
compilation process.

Artifact Execution

SUMMA-MPI+OpenMP is run exactly as SUMMA is nor-
mally. The specific configuration files are explained as part of
A5.

Artifact Analysis (incl. Outputs)

E. Computational Artifact A5

Relation To Contributions

This artifact is a collection of Slurm submission scripts for
the three aforementioned artifacts, along with SUMMA set-
tings files used to generate the results in the paper. The scripts
are used to submit jobs to the Copernicus and Niagara
clusters and are organized into specific subdirectories for each
cluster. This artifact also contains settings files, excluding the
forcing data, in the sundials settings subdirectory. Each sub-
mission script is accompanied by a specific fileManager.txt file
that points to the settings files. The README.md file provides
instructions on how to run the scripts and specific compilation
instructions for the above artifacts for convenience.

Expected Results

The Slurm scripts and settings files included in this artifact
can be used to reproduce the results presented in the paper.
Additionally, they can be modified to test alternate configura-
tions in corresponding experiments. These files provide a basis
for running SUMMA-Actors in data-assimilation mode on a
cluster managed by Slurm.

The settings and scripts substantiate the main contributions
by providing the means to reproduce the results in the paper.
The forcing data is made available as part of A6.

Expected Reproduction Time (in Minutes)

The setup of this artifact should take 5–10 minutes to clone
the repository and make the necessary adjustments to the
Slurm scripts and settings files to accommodate the user’s
system. Execution time will vary depending on the hardware
used.

Artifact Setup (incl. Inputs)
Hardware: This artifact can be used to set up and run the

above artifacts on any CPU cluster with a Slurm scheduler that
meets the hardware requirements outlined for each artifact.

Software: The software dependencies for this artifact are as
follows:

• SLURM (22.05.11) https://slurm.schedmd.com/
• LMOD: Environmental Modules System https://tacc.

utexas.edu/research/tacc-research/lmod/
Datasets / Inputs: These scripts and settings files require

only the addition of forcing data which is made available as
part of A6.

Installation and Deployment: The scripts will require mod-
ification to run on different clusters. Most notably, the user
will need to change the paths to each executable, the settings
files, and the Slurm account to accommodate their system.

Artifact Execution
Running the scripts after the proper adjustments have been

made can simply be done with the Slurm command, sbatch
followed by the path to the script.

F. Computational Artifact A6

Relation To Contributions
This artifact is the forcing data that was used in all simula-

tions presented in the paper. The forcing data was produced for
the continent of North America using the CWARHM workflow
https://github.com/CH-Earth/CWARHM.

Expected Results
We expect our results to be reproducible using this forcing

data. The forcing data is used as input to the SUMMA-
Actors, SUMMA-MPI, SUMMA-OpenMP, and SUMMA-
MPI+OpenMP simulations.

Expected Reproduction Time (in Minutes)
To reproduce the forcing data, considerable time is required

to run the CWARHM workflow. We estimate this to take
approximately 3 to 6 hours, depending on the user’s familiarity
with the workflow. The longest portion of this process involves
downloading the necessary data and running the scripts to
process it. Most of this time is spent waiting for downloads
or for the scripts to finish running.

Artifact Setup (incl. Inputs)
Hardware: This artifact can be reproduced on any modern

laptop, workstation, or cluster with sufficient storage, and an
internet connection to download the necessary data.

Software: The software dependencies for this artifact are as
follows:

• CHWARM: https://github.com/CH-Earth/CWARHM
Datasets / Inputs: The forcing data does not depend on any

other datasets.
Installation and Deployment: The forcing data is gen-

erated by running the CWARHM workflow. We refer the
specific instructions for running the CWARHM workflow to
the CHWARM repository.

1287

