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Abstract—On High Performance Computing (HPC) systems,
where multiple concurrent workloads may read and write vast
amounts of data stored through a shared network on storage
servers, competition for I/O resources between workloads is
inevitable. Previous work has thoroughly recognized the impact
of such competition-introduced resource contention, highlighting
its potential to impact the performance of individual applications
significantly. However, no prior work on such an issue has
investigated the quantitative impact of inter-application I/O
contention on individual applications, impeding a more efficient
resource provision strategy. In this work, we first exemplify the
dynamics of I/O interference towards I/O patterns and system
status. We then propose a framework for collecting fine-grained
I/O traces from applications and concurrent server-side metrics
and train a machine learning model to accurately predict the
existence of I/O interference and its quantitative impacts. Our
results show that it is feasible to learn the complex factors and
relationships which cause applications to underperform in the
presence of I/O interference. Additionally, we show that a trained
model can accurately predict the impact of I/O interference
on HPC applications with F1 scores exceeding 90% for both
synthetic benchmarks and real-world applications.

I. INTRODUCTION

In high-performance computing (HPC) systems, data ac-
cesses are typically facilitated by globally shared Parallel File
Systems [1]. Hence, multiple applications may conduct I/O
operations simultaneously on the same storage or network
resources, creating I/O interference: a type of I/O performance
degradation that occurs due to the contention from concurrent
I/O requests by applications to shared storage resources.

Given the importance of delivering high I/O performance,
researchers have studied I/O interference extensively. These
studies have primarily answered two questions: 1) what are
the root causes of I/O interference and 2) how can I/O
interference be avoided or minimized at runtime. For the
former, researchers have found that various factors, such as
frequent disk head seeks [2], network contention [3–5], file
access patterns [6], or even application behaviors [7], can
lead to I/O interference. For the latter, various methods have
been proposed to alleviate I/O interference, including new
I/O scheduling policies [8, 9], adaptive I/O middleware [10],
using storage resources such as burst buffers to serve the I/O
requests [11, 12] temporarily, and applying token bucket filters
to limit the I/O rate to avoid congestion [13].

Despite this large body of existing work, there remains
a limited quantitative understanding of I/O interference. The

qualitative studies which show that multiple factors contribute
to I/O interference can only help explain why certain slow-
downs occurred, not predict when or how much an application
may be impacted by the I/O interference, reducing their
applicability to avoiding interference. For instance, previous
work has shown that network contention could lead to I/O
interference [3]. However, under the same level of network
contention, some applications may be disproportionately af-
fected compared to others. If the application issues intensive
write requests, the effect may be significant; if the application
only issues light write requests, the interference may be
negligible. Hence, it is critical to quantitatively understand the
impact of I/O interference, so that adaptive strategies can be
leveraged to address the mitigation of its worst effects.

To fulfill this need, this study explores the feasibility of
a machine learning-assisted framework to gain a quantitative
understanding of I/O interference at runtime using collected
system metrics. To each interested application, the framework
aims to offer a key functionality: a prediction of the relative
performance degradation that the application will experience
in the near future given its current I/O request pattern and the
system runtime.

However, there are many challenges to implementing such
a framework. The first is deciding which system metrics
should be leveraged to accurately indicate the presence of
I/O interference. A further challenge is deciding what is
an effective method for capturing the complex relationships
between these metrics and a given application’s I/O behaviour
at runtime to predict the impact of interference. Finally, it is
challenging to maintain real-time monitoring and modelling
capabilities at the scale of HPC systems.

In this preliminary study, we provide a detailed analysis of
the dynamics of I/O interference in the real-world and motivate
the necessity of obtaining a quantitative understanding of
I/O interference at runtime. We also introduce our machine
learning system designed to address these challenges, and
show the accuracy of our model.

The remainder of this work is structured as follows. In
section II, we provide a detailed analysis of I/O interference.
Section III outlines the design of our scalable monitoring in-
frastructure and machine learning model. Section IV evaluates
the accuracy of our trained model on a set of benchmarks as
well as real applications. In section V, we discuss related work.
Finally, we conclude this work in section VI.
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IO500 Section ior-easy-read ior-hard-read mdt-hard-read ior-easy-write ior-hard-write mdt-easy-write mdt-hard-write
ior-easy-read 29.304 10.722 10.895 1.004 1.285 1.002 1.003
ior-hard-read 5.747 15.156 5.789 3.593 1 3.394 0.998
mdt-hard-read 1.058 1.394 1.199 1.009 1.01 2.106 3.961
ior-easy-write 4.384 1.047 0.976 2.72 5.012 1.802 3.032
ior-hard-write 3.383 0.956 1.291 2.946 4.252 1.273 1.586
mdt-easy-write 1.441 1.018 1.022 1.044 1.032 1.465 1.539
mdt-hard-write 11.145 4.211 1.19 26.219 40.923 1.48 1.496

TABLE I: IO500 task slowdown when different types of interfering I/O patterns are present. Cells highlighted in red show the
most impacted cases for each selected IO500 benchmark.

II. I/O INTERFERENCE CASES AND ANALYSIS

In this section, we present a series of analyses investigating
the observed variance in I/O performance of both I/O bench-
marks and real-world HPC workloads in different scenarios.
We demonstrate that interference widely exist across multiple
scenarios and the strong need for interference prediction based
on quantitative methods.

A. IO500 Benchmark Analysis

In the first set of experiments, we leveraged the IO500
benchmark suite [14], which consists of a set of configured
benchmark tasks using IOR and MDTest [15]. These tasks
cover a diverse set of data and metadata access patterns,
and allow for simple control over which patterns are run at
a given time. To observe how different I/O access patterns
interfere with each other, we selected 7 representative tasks
and compared the performance of running them alone vs.
mixing them with another IO500 task as background noise.

The results are shown in Table I. Each row in the table cor-
responds to one of the 7 standalone IO500 tasks. Each column
indicates a mixing case, where another IO500 benchmark task
is running concurrently on other computing nodes to create
unique cross-application I/O interference patterns. The value
of each cell corresponds to the slowdown experienced by the
standalone benchmark task (row label) when the corresponding
I/O interference (column label) was used to create background
noise. Also note, each value is based on the average of 3
consecutive runs and each node running interference tasks was
configured to ensure 3 concurrent runs remain active for the
entirety of the consecutive runs.

From these results we gather two key insights. First, the
results show that the same I/O workload may experience
significant variance in its observed performance degradation
depending on the type of I/O patterns causing interference.
For example, the first row of data shows that reads to a
single file may be significantly affected by other contending
read patterns but hardly affected by data writes or metadata
access patterns. Additionally, the results show that applications
undergoing multiple phases with different I/O behavior (in
this case iterating through the IO500 tasks) may experience
disproportionate performance degradation on a subset of its
phases under the same type of I/O interference. For instance,
an application that chronologically runs the 7 benchmarks one
by one will experience slowdown ranging from 1.0x to 40.9x
under the same ior-hard-write workload.

B. Real Application Results

In the second set of experiments, we leveraged a real-world
application, Enzo [16], to conduct non-cosmological collapse
tests and monitored the I/O performance. While running Enzo,
we concurrently ran a set of IO500 benchmark instances
from different computing nodes, inducing cross-application
I/O interference in the system. To analyze the effect of
I/O interference, we compared the performance of each I/O
operation between 1) the standalone execution without any
cross-application interference and 2) the concurrent execution
with IO500 instances varying in type or level of intensity.

We report two major results in Figure 1. These plots consist
of the same sequence of I/O requests extracted from the first 50
seconds of the baseline execution of Enzo. The x-axis shows
the indices of I/O operations, and the y-axis shows the time
spent by each I/O operation. The exact time of each I/O request
is collected from Darshan DXT logs [17].

Figure 1(a) shows the I/O performance of Enzo with various
amounts of concurrent data write workloads running in the
background. In particular, we used a varying amount of IO500
ior-easy-write instances to simulate increasing data write
contention on all object storage servers (OSTs). Here, we can
observe that Enzo’s I/O performance is indeed impacted by the
external concurrent data access operations. More importantly,
we can observe the impacts are not uniformly applied as
some I/O requests experience nearly no impact while others
experience significant slowdown under the same interference
context. Further, most operations impacted by I/O performance
are impacted more by more intense interference as shown
by the rightmost arrow in Figure 1(a), but there are also
cases where interference caused performance degradation but
the amount of interference had no effect on the amount of
performance degradation as shown by the leftmost arrow in
Figure 1(a). This fact again suggests that a uniform treatment
for mitigating the I/O interference may be inefficient, which
unfortunately is the current practice.

Figure 1(b) further shows how different types of background
contention may have varying effects on real applications. Here,
we ran two types of applications to induce contention: the
data-intensive IO500 ior-easy-write workload and a metadata-
intensive IO500 mdt-easy workload to create contention on the
metadata target (MDT). The result clearly shows that these two
workloads impact the performance of I/O requests differently.
For instance, the several arrows in Figure 1(b) point to cases
where operations were affected far more negatively by the
metadata-intensive workload while most other cases where
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Fig. 1: I/O performance of Enzo with different levels and types of I/O interference from IO500. Enzo issues read, write,
open, close and stats within the first 50 seconds of execution. All results are smoothed using a moving window.

performance degradation occurred show a larger negative
impact from the data-intensive workload.

In light of these results, the goal of this study is to learn the
combinations of features from both applications (ie. Enzo) as
well as the contending I/O behaviors on the system which lead
to the observed fine-grained performance impacts. To this end,
we aim to accurately identify and predict the occurrence of I/O
interference for an application and estimate the significance of
its impacts on that application. With such a capability, users
can develop more effective methods to mitigate such impacts
in real-world systems.

III. DESIGN AND IMPLEMENTATION

Figure 2 shows the prototype design of our framework. As
discussed earlier, to accurately understand I/O interference, we
need to: 1) characterize the pattern of I/O requests from the
application, 2) record the real-time utilization of shared storage
resources such as MDTs or OSTs, and 3) learn the interactions
among collected features and apply them at runtime. These
tasks correspond to the three main components as shown in
Fig 2: 1) Client-Side Monitor, 2) Server-Side Monitor, and the
3) Training Server.

A. Client-Side Monitor

The Client-Side Monitor runs on the computing nodes
to collect real-time per-application I/O request information.
We implemented this module by modifying the Darshan I/O
profiling framework [18]. The collected I/O information is
buffered in a shared memory (SHM) space and then aggregated
by independent processes (part of MPI aggregator) running
in the background across all computing nodes where the
application is running. The aggregation is done periodically
based on a user-defined time window size. The results are
then sent to the training server for offline training and real-
time prediction. The following list summarizes the metrics we
collect in the client-side monitor:

• # of I/O requests. The individual and combined counts
of different types of I/O requests conducted in the time
window. Three types of I/O requests are collected: read,
write, and metadata operations.

• I/O sizes. The individual and combined sum of bytes
conducted by read and write requests in the time window.

• Actual I/O time. Total time doing I/O within the time
window as well as calculated throughput and IOPS. This
contextualizes the intensity and span of I/O requests
within the time window.

B. Server-Side Monitor
The Server-Side Monitor runs on the storage servers to

collect real-time, per-server status information. It runs as an
independent process on each parallel file system (PFS) server
and periodically pulls key statistical information to denote the
usage of each storage server. Like the client-side monitor, the
server-side monitor buffers the collected metrics and sends
them to the training server periodically using the same time
window size. All metrics in this section are recorded once
every second and a sum, mean, and standard deviation over all
seconds in a given time window are calculated. As summarized
in Table II, the first set of metrics (delivered read/write
performance) shows how the server performed in delivering
read/write operations in the last time interval. The second set
of metrics covers disk sector operations, which indicate the
I/O request patterns the server is experiencing as different
I/O patterns may cause the server to be sensitive to specific
upcoming workloads. The third set of metrics focuses on the
read/write queues. Specifically, we collect the total number of
all I/O requests in the local queue. Additionally, we collect the
total waiting time aggregated over all I/O requests in the queue
to estimate if the current server is in a backlogged status.

C. Training Server
The Training Server component takes the periodically col-

lected metrics from applications and storage servers and fills
them into a set of per-server vectors. There will be one vector
for each storage server and each vector consists of one time
window worth of client-side metrics targeting the given server
and server-side metrics collected from the server. The per-
server vectors are then used as input to a kernel-based neural
network model for training.

The kernel-based network design was chosen for this task in
order to account for the fact that some applications may only
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Fig. 2: The overall design and workflow of the proposed framework. It includes three runtime components: client-side monitor,
server-side monitor, and the training servers.

TABLE II: List of server-side metrics.

I/O Speed 1) The number of completed I/O requests in the
time window.

Device Metrics 1) The number of disk sectors read and written in
the time window.
1) The amount of I/O requests queued within the
time window.

Read/Write
Queue

2) The number of read and write requests merged
with others in the queue within the time window.
3) The sum of the amount of time in which
I/O requests have been queued (irrespective of
the amount of requests queued within the time
window)
4) A sum of the amount of time which all requests
in the queue have been in the queue for within the
time window

utilize a subset of OSTs or target different ones in multiple
runs. Specifically, the kernel-based model applies the same
dense network to each of the server’s vectors, and learns
to generally interpret the data from any server. Once the
kernel-based network has processed each of the per-server
vectors, resulting in a single value for each server, all output
values are concatenated and further fed through a simple
MLP classification network for multi-bin classification. After
training, the model is deployed in the same training server and
receives time window metrics from both the server-side and
client-side monitors in the same per-server vector format at
runtime.

D. Training Data Collection

We collect high-quality labelled data by executing an appli-
cation in the presence and absence of additional I/O workloads
running on other computing nodes. For clarity, we refer to the
application which serves as the baseline as the target workload
and all other workloads as interference workloads. The relative
difference for the same operations between these two cases
determines the ground truth label as indicated by the following
equation where degradation level corresponds to the relative
impact of I/O interference on the given I/O requests:

Leveldegrade = Avgi∈IORequests

iotimeiinterference
iotimeibase

We created varying levels of background I/O requests (using
IO500) to cover different types and levels of I/O interference
and system statuses for training. The interference workloads
always run on separate nodes from the original application
to avoid complexity introduced by local resource contention.
Also note, the labelling process is performed offline due to the
time consuming nature of matching sets of operations between
large trace logs. During the labelling process we randomly
select time windows accounting for 20% of the total amount
of windows and reserve these for a test set, resulting in a 80-
20 split of training to testing data. The performance of the
models trained using this approach is evaluated in section IV.

IV. PRELIMINARY EVALUATION

1) Cluster Configuration: The cluster used for evaluation
was set up using 11 Linux machines and version 2.12.8 of the
Lustre [1] parallel file system. Each machine is equipped with
an Intel Xeon CPU (4-10 physical cores), DDR4 main memory
ranging from 32GB to 140GB, a 7200 RPM SATA3 disk (1
TB), and a 1 GB/s network interface. Four of the 11 machines
were configured as Lustre servers, with one serving dual roles
as both the management and metadata server (MGS and MDS,
repsectively), and the other three functioning as object storage
servers (OSS). The remaining machines serve as Lustre clients.
Each OSS is equipped with two object storage targets (OSTs)
for data storage.

2) Training Data: We leveraged three training data sets:
• The first dataset was generated from the IO500 bench-

mark, which includes typical workloads such as ior-easy
focusing on sequential data reads/writes and mdtest-easy
focusing on metadata operations.

• The second dataset was generated from the DLIO bench-
mark [19]. DLIO simulates deep learning applications’
I/O behaviour by executing their data loaders with differ-
ent types of training data. We include two configurations
of DLIO covering I/O behaviors of widely used models,
including Unet3d[20] and BERT [21].

• In addition to the benchmarks, we also tested our frame-
work using three HPC applications. 1) AMReX [22]
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Fig. 3: The model evaluation results for models trained and tested on each respective benchmark dataset represented as confusion
matrices. For each matrix, true positives correspond to the bottom right, false positive correspond to the top right, true negatives
correspond to the top left, and false negative correspond to the bottom left.

is a framework for highly concurrent, block-structured
adaptive mesh refinement. 2) Enzo [16] is a cosmo-
logical structure formation simulation framework. 3)
OpenPMD [23] is a framework that assists scientists
in adding context to their datasets, thereby streamlin-
ing development processes and simplifying workflow
adjustments. AMReX and Enzo are I/O intensive and
OpenPMD represents metadata-intensive applications.

A. Benchmark Results
The first evaluation measures the performance of our

framework on benchmark workloads. Specifically, we trained
the machine learning model on the data generated by each
benchmark workload and evaluated the performance of the
trained model on the corresponding test set sampled from the
same benchmark executions. We used both IO500 and DLIO
benchmarks to conduct these evaluations.

In this preliminary study, we start from training the binary
classification model, predicting if the application would expe-
rience at least 2x slower I/O performance (>= 2) or not (< 2).
Note that, we do not try to predict the exact slowdown ratio as
the exact ratio (e.g., 2.5x v.s 2.7x) is often less important than
knowing the I/O slowdown is in certain category (e.g., >= 2
or >= 5) in quantitatively understanding I/O interference.

For IO500, we collected 11,638 total I/O request windows
(samples) for training. Among them, 8,647 samples are in
the I/O interference category (>= 2) and 2,991 samples
were not affected by interference (< 2). The testing data
consisted of 2,902 samples, of which 2,194 exhibit slowdown
due to interference and 708 do not exhibit slowdown. The
results of training and testing on this split are shown in
Figure 3(a). We conducted similar experiments on the DLIO
dataset, which contains 18,426 training samples, among them
3,702 are positive and 14,724 were negative. Its testing dataset
has 4,546 samples with 928 positive and 3,618 negative. The
results are shown in Figure 3(b).

From both figures, we can observe that the model trained on
each benchmark training set exhibits a high degree of accuracy
on its respective test set. This is evident by the small amount
of both false positives (top-right portion of each figure) and
false negatives (bottom-left portion of each figure).

Fig. 4: Evaluation of model accuracy on IO500 data in a
multi-class classification setting. Note the large amount of true
positive in the top-left, central, and bottom-right bins.

B. Multi-class Prediction Results

In our design, the amount of classification bins is config-
urable. This allows for the key capability of the proposed
model and data collection process to predict more than two
levels of interference severity. To evaluate the performance of
this, we minimally adjusted the output layer of our proposed
model architecture to three output nodes. The ground truth
classification labels in the training and testing data were
also adjusted to reflect the 3-class classification. Specifically,
the bin threshold values were set to 2 and 5, meaning the
first bin contains time windows which experienced less than
2x slowdown, the middle bin contains time windows which
experienced 2x − 5x slowdown, and the last bin contains
time windows which experienced 5x or more slowdown. The
configuration of bins are inspired by Lu et al. [24], which
described them as mild, moderate, and severe slowdown. With
these adjustments, the model was trained and tested on the
training and testing sets of IO500. The results are shown in
4. The results show that in the vast majority of samples, the
trained model predicts the correct ground-truth labels. Notably,
the middle bin shows slightly better precision and recall due
to its larger representation in the dataset.
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Fig. 5: Results for training and testing on AMReX, Enzo and OpenPMD (in order from left to right). Models trained and
evaluated on AMReX and Enzo show good performance while the model trained and evaluated on OpenPMD is worse.

C. Real Application Results

To verify the proposed framework still works for real-
world application, we evaluated the prediction accuracy of our
model on several real applications using the same general data
collection setup as for the previously mentioned benchmarks
(IO500 and DLIO), where each application was run once
without interference to generate a baseline and then repeated
three times with increasing amounts of concurrent instances
of IO500 launched on each of the other nodes in the cluster.
As discussed earlier, we use three workloads: AMReX and
Enzo for data-intensive workloads and OpenPMD for metadata
intensive workloads. The results are shown in Figure 5.

As shown by Figure 5, the machine learning model can still
quickly learn to perform well on the real applications’ data.
Notably the results for AMReX (left-most matrix in the figure)
and especially Enzo (central matrix in the figure) represent the
high-performance nature of the respective trained models as
evidenced by their large amount of both true positives (bottom-
right) and true negatives (top-left) when compared to their
false positives (top-right) and false negatives (bottom-left).
We do notice the lower performance in OpenPMD (right-most
plot). We believe the small amount of data samples collected
from this application is a major reason and we plan to further
investigate it in future work.

V. RELATED WORK

While approaching the exascale era, a large amount of
studies have been conducted to understand cross-application
I/O interference. We summarize these into two primary sets.

The first set of research focuses on understanding, defining,
and characterizing I/O interference. For instance, Kuo et
al. [6], Tseng et al. [25], Yildiz et al. [4], and Xu et al. [26]
characterize the locations, including applications’ I/O patterns,
network, and storage servers, where interference can occur
and their respective impacts . Alternatively, Zhang et. al. [2]
show that frequent disk head seeks can hurt the performance
of a system and Bhatele et al. [3] found the primary factor of
performance variability in Cray machines to be interference
of multiple jobs that share the same network links. However,
these works only provide a qualitative understanding and thus
cannot predict the impact of I/O interference.

The second set of works focuses on mitigating I/O in-
ference via reactive or conservative strategies. For example,
DFRA [7] reduce I/O interference by avoiding execution of

historically interfering applications on the same forwarding
nodes. Zhou et al. [27] presented an I/O-aware batch scheduler
which coordinates I/O requests on the fly by considering the
system state and I/O activities. Gainaru et al. [8] proposed
a scheduler which coordinates I/O requests based on past
historical behaviors to reduce congestion. AIOC2 [28] learns
a model to control Lustre RPC parameters to reduce conges-
tion at runtime. Lastly, IO-Sets [29], provides a fine-grained
I/O scheduling strategy to avoid I/O interference based on
heuristically defined groups. While all of these works generally
provide interfaces for direct actions intended to limit resource
contention, they do not differentiate between different types of
interference patterns, marking notable difference in purpose
from our proposed work. More precisely, our work aims to
predict the quantitative performance impact of any observed
I/O interference pattern on real-time application I/O behavior,
which is not considered by existing I/O interference mitigation
strategies. Thus, we consider our work to be complementary
to these strategies and helpful motivate more effective I/O
interference mitigation strategies.

VI. CONCLUSION AND FUTURE PLAN

In this study, we propose a new framework to predict I/O
interference in HPC system on the fly. We introduce scalable
time window-based metrics monitors, kernel-based neural net-
work, and benchmark-based training data generation strategies.
Together, we show the trained model can accurately predict
I/O interference for both synthetic benchmarks and real-world
applications. We also show the framework can be easily
adapted to different clusters. We believe such a framework can
fill the gap and be widely adapted in current HPC systems.
In the future, we plan to further investigate other possible
network architectures, such as transformers [30]. We also plan
to evaluate our framework in the leading infrastructure.
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Appendix: Artifact Description
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 Motivated the need for quantifying the impact of
interference on HPC applications.

C2 Designed file system metrics that enable a machine
learning model to identify and quantify interference.

C3 Developed a framework for runtime monitoring of
metrics and inference using a machine learning (ML)
model.

C4 Demonstrated the framework’s efficacy in quantify-
ing interference for both I/O benchmarks and real
HPC applications.

B. Computational Artifact

The artifact for the evaluation is available in a single GitHub
repository containing all necessary computational components
and data to simulate different execution scenarios.

A1 https://zenodo.org/doi/10.5281/zenodo.13759882

The following table shows how each contribution maps to
the reported evaluation on the main paper.

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Figure 1
Table I

C2 Table II
C3 Figure 2
C4 Figure 3-5

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

In support of C1, the artifact includes the data collected
for both Figure 1 and Table I as well as the computation
components necessary for data collection. The artifact also
includes the necessary code to recreate Figure 1 using the
provided data. In support of C2 and C3, the artifact contains
computational components necessary to collect the server-side
and client-side metrics, as well as run the machine learning
model. In support of C4, the artifact contains all of the com-
putational components and data necessary to conduct offline
training of the binary prediction model (Figure 3 and Figure 5)
and the multi-class prediction model (Figure 4). Additionally,
the artifact contains the computational components necessary
to visualize model test results, recreating Figures 3-5.

Expected Results

The experiments will demonstrate the necessity and ef-
fectiveness of deriving interference quantification. For con-
tribution C1, the results will illustrate how different I/O
patterns are impacted by various types of I/O interference.
For contributions C2 and C3, the results will include trained
ML models based on designed metrics derived from collected
PFS data.

For contribution C4, the results will showcase the frame-
work’s ability to quantify interference across diverse evalua-
tion scenarios: I/O benchmarks, multiple quantification cate-
gories, and real HPC applications.

Expected Reproduction Time (in Minutes)

Since the data used for evaluation in all cases is provided,
the artifact evaluations primarily focus on verifying contribu-
tions C1 and C4. The evaluation consists of recreating the
visualization of Figure 1 using the provided data and train-
ing/evaluation a model for each presented modelling scenario
(6 total among Figures 3-5). The entire process is expected to
take approximately 5 minutes on an Apple MacBook pro with
an M2 Pro Max chip.

Artifact Setup (incl. Inputs)

Hardware: There is no specific hardware requirement to
setup the cluster used to generate training/evaluation data for
the proposed model. In our evaluation, the cluster was set up
using 11 Linux machines. Each machine is equipped with an
Intel Xeon CPU (4-10 physical cores), DDR4 main memory
ranging from 32GB to 140GB, a 7200 RPM SATA3 disk (1
TB), and a 1 GB/s network interface.

Software: The artifact requires a Lustre PFS, and we
implemented and evaluated our artifact using Lustre version
2.12.8. The Python version needs to be at least 3.10.

Datasets / Inputs: No dataset needs to be generated to
evaluate the scenarios as the collected data and model training
code are included in the artifact. However, for collecting
data on a different platform, the artifact contains the scripts
necessary run the data generation process.

Installation and Deployment: To deploy the artifact, ensure
that Lustre is properly configured across all servers and clients.
The I/O profiling tool, Darshan, must be installed on the
executing clients. For evaluating different scenarios involving
I/O benchmarks and HPC applications (e.g., IO-500, Enzo,
etc.), the necessary benchmarks and applications must be
installed and available in the environment.

Artifact Execution

If new data is intended to be collected and used, the
complete workflow may consist of two tasks. The first task,
T1 includes choosing an application to collect data for and
running it multiple times in a prescribed set of scenarios where
various types and levels of interference are introduced. The
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second task, T2 includes training a new model based on the
data generated by T1.

Since the collected data from executing T1 for various
applications are provided in the artifact, execution of the
artifact only requires the execution of T2, where a new model
is trained and evaluated for each application dataset provided.

Artifact Analysis (incl. Outputs)

To observe the outcomes of each evaluation scenario, the
generate eval results.py script automatically trains a new
model and generates visualizations of the model’s performance
for each I/O benchmark or HPC application. These visualiza-
tions illustrate the model’s accuracy in correctly quantifying
interference for the specific evaluation scenario.

Artifact Evaluation (AE)
A. Computational Artifact A1

Artifact Setup (incl. Inputs)

To execute the scripts, the Python version needs to be
at least 3.10 along with the following libraries present in
the environment. Python, along with libraries can be set up
using either the pip install command or the following conda
command:

conda create -n test_env python=3.10
numpy pandas seaborn matplotlib
scikit-learn torch

To activate the conda environment:

conda activate test_env

To get the code from the GitHub repository to the local
system, one needs to clone the GitHub repo in the system:

git clone

https://github.com/mrashid2/Quanterference.git

Artifact Execution

After cloning the GitHub repository, change directory to
inside of the repository:

cd Quanterference

To execute the artifact, following python script needs to be
executed:

python generate_eval_results.py

Running the generate eval results.py script will load the
data and train/evaluate a new model for each of the
application datasets represented in the NN Model/data
directory by running the model training and evaluation script
in NN Model/scripts. Afterward, it will load the data and
run the scripts in the enzo prelim directory.

Artifact Analysis (incl. Outputs)

Running the generate eval results.py script will create the
figures in the eval results directory in .png format. All
figures referenced in the paper will be found in this folder,
with filenames indicating the type and corresponding figure
number.
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