
LLM-Inference-Bench: Inference Benchmarking of
Large Language Models on AI Accelerators

Krishna Teja Chitty-Venkata∗†

schittyvenkata@anl.gov
Siddhisanket Raskar∗†

sraskar@anl.gov
Bharat Kale∗
kale@anl.gov

Farah Ferdaus∗
fferdaus@anl.gov

Aditya Tanikanti∗
atanikanti@anl.gov

Ken Raffenetti∗
raffenet@anl.gov

Valerie Taylor∗
vtaylor@anl.gov

Murali Emani∗
memani@anl.gov

Venkatram Vishwanath∗
venkat@anl.gov

∗Argonne National Laboratory, Lemont, IL 60439, USA

Abstract—Large Language Models (LLMs) have propelled
groundbreaking advancements across several domains and are
commonly used for text generation applications. However, the
computational demands of these complex models pose significant
challenges, requiring efficient hardware acceleration. Bench-
marking the performance of LLMs across diverse hardware
platforms is crucial to understanding their scalability and
throughput characteristics. We introduce LLM-Inference-Bench,
a comprehensive benchmarking suite to evaluate the hardware
inference performance of LLMs. We thoroughly analyze diverse
hardware platforms, including GPUs from Nvidia and AMD
and specialized AI accelerators, Intel Habana and SambaNova.
Our evaluation includes several LLM inference frameworks and
models from LLaMA, Mistral, and Qwen families with 7B and
70B parameters. Our benchmarking results reveal the strengths
and limitations of various models, hardware platforms, and
inference frameworks. We provide an interactive dashboard to
help identify configurations for optimal performance for a given
hardware platform.

Index Terms—Large Language Models, AI Accelerators, In-
ference Performance Evaluation, Benchmarking

I. INTRODUCTION

Large Language Models (LLMs) have emerged as a trans-
formative force in Artificial Intelligence (AI), revolutioniz-
ing Natural Language Processing (NLP) and text generation.
These models, such as GPT [1], LLaMA [2], and LaMDA
[3], have risen to prominence due to their ability to un-
derstand and generate human-like text across various tasks.
LLMs are now being utilized in various applications, including
content generation, question-answering, and language transla-
tion in several domains including scientific machine learning.
However, the deployment and usage of LLMs come with
significant computational challenges. Training these massive
models requires substantial computational resources, leading
to increased energy consumption and environmental concerns.
As the model complexity grows by leaps and bounds, several
innovative solutions have been developed to address these
challenges, including improved AI hardware infrastructure,
cost-efficient training techniques, memory-efficient fine-tuning
methods, and optimized inference solutions.

LLM Inference [4]–[6] is a critical aspect of various modern
applications, which refers to using a trained LLM to generate

† Equal contribution.

responses or make predictions. Today, efficient inference is
essential for generation capabilities across various applica-
tions, such as chatbots, language translation, and information
retrieval systems. As LLMs continue to grow in size and
complexity, optimizing inference becomes increasingly crucial
to balance performance with computational resources, energy
consumption, and response times.

In recent years, the development of hardware accelerators
for Deep Learning (DL) applications, such as GPUs and TPUs,
has been driven to meet the computational demands of large
models. These accelerators are designed to enhance perfor-
mance and energy efficiency, which is particularly crucial for
LLMs that consist of billions of parameters. These hardware
solutions significantly improve performance, including faster
training times, reduced inference latency, and enhanced scala-
bility. This is essential for developing and deploying sophisti-
cated models capable of handling state-of-the-art (SOTA) tasks
in NLP, content generation, and decision support systems. The
advancements in AI hardware platforms directly impact the
ability to develop more complex models, especially for LLMs.

The landscape of LLMs has evolved significantly in recent
years, marked by three parallel trends: the proliferation of
open-source LLMs, development of specialized AI acceler-
ators and efficient inference frameworks. These models, along
with efficient accelerators and optimized software, aim to en-
hance LLM performance, making hardware inference bench-
marking crucial for identifying bottlenecks and maximizing ef-
ficiency. Benchmarks provide a standardized methodology for
comparing various hardware platforms, model architectures,
and inference optimizations, revealing trade-offs between fac-
tors such as latency, throughput, and energy consumption. This
allows users to optimize based on their priorities and gain a
comprehensive understanding of the capabilities and limita-
tions of different AI accelerators. In this paper, we introduce
LLM-Inference-Bench, a comprehensive benchmarking suite
designed to provide detailed performance evaluations of LLMs
across multiple AI accelerators, contributing to the broader
understanding of LLM performance optimization and hard-
ware selection in the rapidly evolving field of AI acceleration.
This comparative study can serve as a resource for researchers
seeking to optimize LLMs based on their specific hardware,

1355979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00178

framework and model requirements.
The main contributions of our paper are as follows:
1) We introduce LLM-Inference-Bench, a comprehensive

benchmarking study that evaluates the inference perfor-
mance of the LLaMA model family, including LLaMA-
2-7B, LLaMA-2-70B, LLaMA-3-8B, LLaMA-3-70B, as
well as other prominent LLaMA derivatives such as
Mistral-7B, Mixtral-8x7B, Qwen-2-7B, and Qwen-2-
72B across a variety of AI accelerators, including Nvidia
A100, Nvidia H100, Nvidia GH200, AMD MI300X and
AMD MI250 GPU, as well as specialized AI accelera-
tors SambaNova SN40L and Habana Gaudi2.

2) We provide comprehensive data on hardware perfor-
mance metrics such as throughput and power con-
sumption for different inference frameworks like vLLM,
TensorRT-LLM, llama.cpp, and Deepspeed-MII across
systems, where supported. In addition, we report val-
idation metrics such as perplexity on selected bench-
marks. For a broader community reach, we also
open source interactive LLM-Inference-Bench Dash-
board along with artifacts to reproduce all results. The
code and dashboard for this paper can be accessed here:
https://github.com/argonne-lcf/LLM-Inference-Bench

3) Our study examines multiple factors that significantly
influence the inference performance of an LLM, which
include the model parameter size, input sequence length,
number of output tokens generated and batch size.
Based on our results, we provide key insights and
takeaways from three different perspectives: framework-
wise, accelerator-wise and model-wise.

II. BACKGROUND AND RELATED WORK

This section presents a concise overview of the fundamental
concepts of LLMs. This background information is essential
to understand key performance differences among models and
will be helpful for the subsequent discussions on hardware and
framework comparison.

A. LLM Architecture

LLMs are primarily based on the traditional transformer
architecture [7], consisting of multiple encoder layers that
can analyze input text data and decoder layers for generating
output. Their core components include input embeddings, po-
sitional encoding, self-attention, and feed-forward layers. This
paper considers only decoder-based LLMs, which generate
new tokens as output based on the input prompt.

Dense LLMs represent the conventional approach, utilizing
a single, extensive neural network architecture. In these mod-
els, all parameters are actively engaged during each inference
or training pass, with network operations occurring sequen-
tially and interconnectedly. This architecture allows for com-
prehensive information processing but can be computationally
intensive. Notable examples include LLaMA-2-7B [8].

Mixture of Experts (MoE) LLMs [9], [10] employ multiple
specialized sub-networks with a routing mechanism, activating
only relevant experts for each input. This approach offers

improved parameter efficiency and potentially faster inference
than dense models. MoE architectures enable larger, more
scalable models with specialized knowledge but introduce
additional complexity in training and deployment. In MoE
models, such as Mixtral-8x7B [11], the usage of different
experts is within the MLP block, as depicted in Figure 26.

MHSA vs GQA There exists different types of attention
operations and the most prominent of them are Multi-Head
Self-Attention (MHSA) and Group Query Attention (GQA).
In an MHSA module, each attention head consists of unique
query, key, and value vectors, as depicted in Figure 27a. This
allows the model to attend to different subspaces of the input
representation in parallel. MHSA offers the best performance
but is computationally expensive and memory-intensive for
large models. GQA divides query heads into multiple groups
where each group shares a single key head and value head,
as depicted in Figure 27b. GQA has #groups times fewer
parameters than MHSA due to KV head sharing.

B. Benchmarking

Evaluation of LLMs on diverse hardware platforms is of
crucial importance to understand the capabilities and limita-
tions of both traditional and non-traditional architectures. Prior
work has studied LLMs on leadership class supercomputers
[12], [13] and with traditional deep learning benchmarks [14],
[15] providing detailed insights into their capabilities. To the
best of our knowledge, our work is the first paper to provide
dedicated inference benchmarking results and analysis target-
ing a wide range of SOTA hardware, models and frameworks.

III. EXPERIMENTAL SETUP

Our study aims to benchmark LLMs across various AI
accelerators and inference frameworks comprehensively. This
section details the LLM architectures, hardware configurations,
and inference frameworks used in our experiments.

1) LLM Architectures: We choose a diverse set of SOTA
LLMs for benchmarking, ranging from 7 to 70 billion pa-
rameters. The models included in the paper include LLaMA-
2-7B [8], LLaMA-2-70B [8], LLaMA-3-8B [2], LLaMA-
3-70B [2], Mistral-7B [16], Mixtral-8x7B [17], Qwen-2-7B
[18] and Qwen-2-72B [18]. These models represent a mix
of architectures, including traditional decoder-only and MoE
models. We aim to provide insights into how different model
architectures affect inference performance across hardware
platforms using these diverse models. Please refer to Table
I (Appendix C), where we summarize the neural architecture
configurations of different LLMs.

2) LLM Token Generation Parameters: Input Length is the
number of tokens given to an LLM as input prompt for a single
query. Output Size, also referred to as max_new_tokens
(maximum new tokens) or output generated tokens, is the
number of tokens produced by the model as a response to
the input prompt. The output generation is an iterative process
where the model predicts and appends the token one at a time
until it reaches a stopping condition or a specified token limit.
Batch Size refers to the number of input sequences processed

1356

and new output sequences produced simultaneously. In this
work, we consider input and output lengths of 128, 256, 512,
1024, and 2048 and batch sizes of 1, 16, 32, and 64.

3) Hardware Configurations: We deploy LLMs on vari-
ous hardware to benchmark their inference performance. We
choose various SOTA GPUs from vendors like Nvidia (A100
SXM-40GB [19], H100 SXM5 80GB [20], GH200 [21]) and
AMD MI250 [22], MI300X [23]. We extend our study on
specialized AI accelerators like Intel Habana Gaudi2 [24] and
Sambanova SN40L [25]. Please refer to Table II (Appendix B),
where we summarize the hardware features of these evaluated
systems.

4) Inference Frameworks: We evaluate the inference per-
formance of LLMs on the aforementioned hardware on the fol-
lowing SOTA inference frameworks: TensorRT-LLM (TRT-
LLM) [26] is Nvidia’s inference library optimized for LLMs
which provides high throughput and low latency. It is designed
and optimized for NVIDIA GPUs by leveraging TensorRT,
CUDA and cuDNN libraries to accelerate LLM inference.
Therefore, TensorRT-LLM can be used only to accelerate
LLMs on NVIDIA GPUs. We used the TensorRT-LLM pip
version of 0.11.0 in our experiments. vLLM [27] is an
open-source and community-maintained library known for its
efficient memory management and support across a wide range
of accelerators. Deepspeed-MII (DS-MII) [28] is Microsoft’s
model implementation for LLM Inference, built on the Deep-
Speed library [29] known for large-scale inference. llama.cpp
[30] is a lightweight framework for running LLMs, written in
C/C++, and is known for its efficiency and portability across
various hardware/software configurations, including CUDA,
OpenCL, and Metal. Please refer to Appendix C for a detailed
description of each inference framework.

5) Performance Metrics: We consider the following vali-
dation and performance metrics in our paper:

(a) Perplexity quantifies the model’s level of surprise when
encountering new data to generate a new token. A lower
perplexity indicates better performance and is calculated as
an exponent of the model’s loss, measuring how well an LLM
has learned to generate new text.

(b) Time to First Token (TTFT) is the amount of time
required to produce the first output token after receiving an
input prompt. It represents how quickly the users can see the
LLM’s output after submitting their query. We measure TTFT
by setting the maximum output to one token and recording the
time to generate this output.

(c) Inter Token Latency (ITL) refers to the average time
interval between generating consecutive tokens. It measures
how quickly the model can produce each subsequent token
after the previous one.

ITL =
(End-to-End Latency−TTFT)

Batch Size x (Output Tokens-1)
(1)

(d) Throughput is a key indicator of a hardware’s process-
ing efficiency. It provides insight into the model’s capacity
to handle sequences and batches. In this paper, we define

throughput as the total number of tokens (both input and out-
put) processed by the hardware per second. We first calculate
the end-to-end latency, the time elapsed between the input
prompt provided to LLM, and the generation of the final output
token. We convert latency to throughput using Equation 2.

throughput =
Batch Size× (Input+Output Tokens)

End-to-End Latency
(2)

(e) Power: LLM inference requires substantial computa-
tional resources, leading to increased energy consumption,
making power benchmarking quintessential. We report the
power consumed only by the accelerators, not host and other
peripherals. We use Average Power as a performance metric,
which is calculated as the ratio of total work done to the
total time taken and is measured in watts. Also, we compare
the performance per watt (measured in tokens/sec/watt) across
GPUs, which is the number of tokens processed per second
for unit consumption of power. This paper reports power
metrics of only Nvidia GPUs using pynvml [31] and these
measurements on other hardware are planned for future work.

IV. LLM INFERENCE - PRELIMINARY STUDY

The deployment of LLMs into production environments de-
mands efficient inference capabilities. This section first exam-
ines the role of input/output sequence lengths and batch sizes,
followed by delving into different algorithm and hardware
optimization strategies to understand different approaches.

A. Varying Input, Output, and Batch Sizes

1) Dynamic Batch Sizes: In general, LLMs demonstrate
increasing throughput with an increase in batch sizes for the
same input and output length until the compute and memory
resources of the parallel hardware are fully saturated. This
is due to the simultaneous execution of all input sequences
and parallel output token generation of batches. Frameworks
like vLLM, TensorRT-LLM and accelerators such as H100,
SN40L use continuous batching [32], a dynamic batching
strategy to process multiple requests concurrently, even if the
requests arrive at different times or have different input context
lengths. This method keeps the device busy, and new requests
of variable length can be processed without waiting for the
previous batch to be finished.

1 16 32 64
Batch Size

0k
1k
2k
3k
4k
5k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) vLLM: Batch Size vs Input/Output Length
 of LLaMA-3-8B on a One A100 (fp16)

Input/Output Length
128 256 512 1024 2048

(a) vLLM: Batch Size vs Input
Output Length

128 256 512 1024 2048
Input Length

2048

1024

512

256

128

O
ut

pu
t L

en
gt

h

74 78 86 102 132

80 88 105 138 200

89 107 141 207 333

108 143 212 344 593

144 214 350 610 1084

Input vs Output Comparison of
 LLaMA-3-8B for Batch Size = 1 on

 One A100 using TensorRT-LLM (fp16)

200

400

600

800

1000

Th
ro

ug
hp

ut
 (T

ok
en

s/
se

c)

(b) TRT-LLM: Input vs Output
Length

Fig. 1: LLaMA-3-8B on single A100

1357

Figure 1a shows that the throughput increases with an
increase in batch size for the input/outut length. For a batch
size of 64, the throughput is 26.6x greater than that of a batch
size of 1 for a token length of 2048 on A100. We see increasing
throughput with increasing batch sizes due to GPU processing
more input sequences simultaneously and fixed costs such as
kernel launch times occurring only once for the entire batch.

2) Input/Output Sizes: Blended tokens are defined as a
situation where the input size differs from the output tokens,
such as summarization and text classification, which require
outputs significantly smaller than the input token length and
text completion and code generation, which require outputs
longer than the input prompt. For a given batch size, through-
put increases as the output length decreases for the same input
size. In contrast, it decreases as the input length decreases for
the same output length due to the sequential nature of output
token generation compared to the parallel processing of input
tokens. The heatmap in Figure 1b shows that the throughput
for an {input, output} size of {1024, 128} is 14.6 times greater
than for an {input, output} size of {128, 1024}.

B. Algorithm Optimizations

1) KV Cache: LLMs generate text autoregressively, i.e.,
they produce only one token as output based on all the previous
tokens. The new token generated is appended to the input to
produce future tokens. KV Caching [33], [34] improves the
efficiency of LLM inference by reusing the past Key-Value
pairs, thereby eliminating the need for recalculation for every
new token. Without using this KV cache, the model must
recompute attention heads for all previous tokens for new
token generation. Figure 2a depicts the performance of 70B
models with and without KV caching on Gaudi2 (8 HPUs).
The results indicate a substantial improvement (∼2x for 128
and ∼7x for 1024 length) in throughput with KV caching.

128 256 512 1024
Input/Output Length

20

40

60

80

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) Effect of KV Cache Performance on 4 HPUs for
 LLaMA-3-70B Model using Batch Size 1 (fp16)

Models & KV Cache
w KV Cache w/o KV Cache

(a) with & without KV Cache
on Gaudi2 with Batch Size 1

1 16 32 64
Batch Size

0k

1k

2k

3k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

KV Cache Block Size vs Batch Size for
 Input/Output Length = 1024

 on LLaMA-3-8B on a One A100 (fp16)

Input/Output Length
8 16 32 64 128

(b) KV Cache Block Size vs
Batch Size

Fig. 2: KV Cache Performance Benchmarking

2) Blocked KV Caching: vLLM [27] addresses the chal-
lenge of memory fragmentation in LLM serving to facilitate
non-contiguous caching. Traditional KV caches in LLMs are
monolithic and variable-sized, leading to memory fragmenta-
tion and reduced concurrency. Inspired by OS virtual memory,
vLLM uses fixed-sized blocks or pages instead of variable-
sized contiguous chunks. This blocking increases throughput
by eliminating memory fragmentation. Figure 2b depicts that
on an A100 GPU, any KV cache block size greater than or

equal to 16 produces optimal throughput, while low block sizes
hurt the performance. For a batch size of 64, the throughput
for block size 16 is 1.27x greater than block size 8.

3) Quantization: Quantization [35] is a popular method for
model size reduction by lowering the precision of weight and
activations. LLM Quantization is extremely critical, given the
sheer size and complexity. LLMs can be operated in lower
precisions such as FP8 [36], using GPTQ [37] and AWQ [38]
without compromising the output quality. Figure 3 compares
FP16, FP8 and Int8 precision using vLLM and TRT-LLM on
A100 and H100. We observe that FP8 on H100 and Int8 on
A100 can provide performance benefit compared to FP16 and
the absence of FP8 support on A100 limits the framework’s
ability to leverage low precision for weights and KV cache.

1 16 32 64
Batch Size

100
200
300
500

1000
2000
3000
5000

10000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e

LLaMA-3-8B: Quantization Benchmarking on One H100
 and A100 GPU for Input/Output Length = 1024

Hardware, Framework, {Weight Precision, KV Cache Precision}
H100, vLLM, {fp8, fp8}
H100, vLLM, {fp16, fp16}
A100, TRT-LLM, {int8, int8}

H100, vLLM, {fp16, fp8}
A100, TRT-LLM, {fp16, int8}
A100, vLLM, {fp16, fp16}

A100, TRT-LLM, {int8, fp8}
A100, TRT-LLM, {fp16, fp8}
A100, vLLM, {fp16, fp8}

Fig. 3: LLaMA-3-8B Quantization Benchmarking

4) Neural Architecture Search (NAS): NAS [39], [40] is
an automated process for discovering optimal neural architec-
tures tailored to specific datasets and hardware constraints. It
can be applied extended to LLMs to optimize the architectural
elements. DeciLM-7B [41] utilizes NAS to determine the
optimal KV head sizes in each layer from the pool of the
following options: {1,2,4}. The searched Deci model has
67 KV heads across all 32 layers, while LLaMA-3-8B and
Mistral-7B have 256 (8*32) KV heads throughout the model.
Figure 4a shows the performance benefit of DeciLM-7B over
LLaMA-3-8B and Mistral-7B on A100 and H100 GPUs.

1 16 32 64
Batch Size

0k

2k

4k

6k

8k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) DeciLM-7B vs Mistral-7B vs LLaMA-3-8B
 for Input & Output Lnegth 1024 (fp16)

Hardware & Model
H100 DeciLM-7B
H100 Mistral-7B
H100 LLaMA-3-8B

A100 DeciLM-7B
A100 Mistral-7B
A100 LLaMA-3-8B

(a) NAS vs non-NAS Models

128 256 512 1024
Input/Output Length

75
100
125
150
175
200

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) Speculative Decoding (SD) on One A100 GPU
 using vLLM for Batch Size 1 (fp16)

Models & SD
LLaMA-2-7B w SD
LLaMA-2-7B w/o SD

Mixtral-8x7B w SD
Mixtral-8x7B w/o SD

(b) SD using vLLM

Fig. 4: NAS and SD on A100 GPU

5) Speculative Decoding (SD): SD [42] is a technique
which involves a dual-model system comprising a target
model, a larger LLM intended for the main task, and a
small draft model, a lightweight LLM. The small draft model
generates initial token guesses, verified and corrected by the

1358

main model. However, with an increase in sequence length
and model size, the benefit of SD vanishes, as depicted in
Figure 4b. We used the LLaMA-68M model [43] as a draft
network for LLaMA-2-7B and Mixtral-8x7B and observed that
SD improves the performance of only the 7B model.

C. Parallelism Techniques

1) Tensor Parallelism (TP): TP [44] is a technique to
distribute the weight tensor of a layer across multiple devices,
either row-wise or column-wise. The devices communicate
with each other to share the input and output activations.
Tensor parallel is very effective within a single node as inter-
node data transfer is quicker than intra-node communication.
This allows distributing the memory and computation for large
tensors that wouldn’t fit on a single device.

2) Pipeline Parallelism (PP): In PP [45], the model is
divided into different layers, and each device computes its
assigned layers and passes the output to the next device in the
pipeline. The layer’s output must be transferred across GPUs,
whereas weights and KV cache can be local to the device.

3) Expert Parallelism (EP): EP [46] distributes MoE
models across multiple devices. This method leverages the
independent nature of experts in the MoE layers and assigns
a group of expert blocks on a single device. A load balancing
issue may exist when experts assigned to a GPU are not active.

4) Hybrid Parallelism (HP): HP [47] combines multiple
parallelisms, such as TP, PP and EP, to allow efficient scaling
and better hardware utilization. This method offers greater
flexibility as different parallelism techniques can be applied
to the layer. However, managing multiple parallelisms simul-
taneously can be complex as the distribution of work across
all devices becomes more challenging.

421
Degree of Parallelism

4k

6k

8k

10k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) LLaMA-3-8B: Parallelism Comparison on A100 for
 Batch Size 64 and Input/Output Length 1024 (fp16)

Input/Output Length
TP PP TP = 2, PP = 2

(a) TP and PP on LLaMA-3-8B

128 256 512 1024
Input/Output Length

100
125
150
175
200
225

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) Mixtral-8x7B: Parallelism Comparison on
4 A100 GPUs for Batch Size 64 (fp16)

Input/Output Length
TP PP EP TP = 2, EP = 2

(b) TP, PP, EP on Mixtral-7x8B

Fig. 5: Parallelism Comparison within a node

Figure 5a depicts the performance of LLaMA-3-8B on
1,2 and 4 GPUs, and Figure 5b illustrates the comparison
of Mixtral-8x7B using different parallelism within a single
node. While the hybrid parallelism approach offers great
flexibility, TP is effective due to more device utilization and
less communication overhead. Our observations indicate that.
TP is 1.30x faster than the hybrid approach (TP=2,PP=2) and
1.94x faster than PP on 4 A100 GPUs using LLaMA-3-8B.

V. FRAMEWORK-WISE BENCHMARKING

In this section, we perform framework-wise benchmarking,
which helps to compare different models and accelerators.

We focus on unique features, capabilities, and performance
characteristics. In all the results below, we used 16 bits, and
the number of GPUs is equal to the TP size.

1) TensorRT-LLM: TRT-LLM execution involves three
steps: 1) Converting pretrained HuggingFace model to
TensorRT-LLM checkpoints, considering tensor parallelism
and batch size, 2) Building an optimized binary, and 3)
Executing the binary on NVIDIA GPUs. In Figure 6, we
compare the performance of 7B models on one GH200, H100
and A100 GPU. The results show that the newer generation
of Nvidia GPU outperforms the previous generation. The
performance improvement of LLaMA-2-7B plateaus compared
to Mistral-7B and LLaMA-3-8B for large batch sizes. This
is mainly due to the GQA implementation in the latter
two architectures. GQA requires less computation and KV
cache memory, and this operation is optimized well in this
framework. GQA models (Mistral-7B and LLaMA-3-8B) are
approximately 1.9x and 2.79x faster than LLaMA-2-7B on
H100 and A100, respectively, for batch size 64. The minimal
performance difference between Mistral-7B and LLaMA-3-8B
is due a larger vocab size in the latter model.

1 16 32 64
Batch Size

100

300
500

1000
2000
5000

10000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e
TensorRT-LLM: 7B Models on One GH200, H100

and A100 GPU for Input/Output Length 1024 (fp16)

Hardware & Model
GH200, Mistral-7B
GH200, LLaMA-3-8B
GH200, LLaMA-2-7B

H100, Mistral-7B
H100, LLaMA-3-8B
H100, LLaMA-2-7B

A100, Mistral-7B
A100, LLaMA-3-8B
A100, LLaMA-2-7B

Fig. 6: Throughput of 7B Models using TRT-LLM

1 16 32 64
Batch Size

50
100
300
500

1000
3000
5000

10000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e

TensorRT-LLM: MoE and 70B Models on Four A100
 and H100 GPUs for Input/Output Size 1024 (fp16)

Hardware & Model
H100 Mixtral-8x7B
A100 Mixtral-8x7B

H100 LLaMA-3-70B
A100 LLaMA-3-70B

H100 LLaMA-2-70B
A100 LLaMA-2-70B

Fig. 7: Throughput of 70B/MoE Models using TRT-LLM

Figure 7 compares the performance of Mixtral-7x8B and
70B models on H100 and A100 GPUs. The Mixtral model
outperforms 70B models, whereas LLaMA-2-70B outperforms
LLaMA-3-70B due to less vocabulary size. The Mixtral model
is equivalent to a 14B model, as only two of eight experts are
active per layer during inference. The H100 GPU demonstrates
a more significant performance boost over the A100, especially
at larger batch sizes, due to the improved transformer engine

1359

1 16 32 64
Batch Size

100

300
500

1000

3000
5000
8000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e

vLLM: 7B Models on One GPU
 for Input/Output Length 1024 (fp16)

Hardware & Model
H100 LLaMA-3-8B
A100 LLaMA-3-8B
GH200 LLaMA-3-8B
MI250 LLaMA-3-8B

MI300X LLaMA-3-8B
H100 LLaMA-2-7B
A100 LLaMA-2-7B

GH200 LLaMA-2-7B
MI250 LLaMA-2-7B
MI300X LLaMA-2-7B

Fig. 8: Throughput of 7B Models using vLLM

[48], tensor core architecture, and higher memory bandwidth.
For a batch size of 64, LLaMA-3-70B on H100 is 7.8x faster
than A100. Also, H100 GPU scales efficiently with an increase
in batch size due to large DRAM and tensor core utilization
compared to A100. The throughput of LLaMA-3-70B on H100
improves by a factor of 39x when increasing the batch size
from 1 to 64 as opposed to 3x on A100.

2) vLLM: vLLM is highly flexible and can be accelerated
over various hardware platforms compared to TensorRT-LLM.
vLLM better utilizes CUDA kernels for efficient memory man-
agement to manage KV memory (PagedAttention). Figure 8
shows that vLLM on GH200 consistently achieves the highest
throughput across all batch sizes, and H100 is the second-
best closest performer. This is due to 3.5x more memory and
tight coupling of Grace CPU and Hopper GPU on a single
package on GH200 GPU, providing more bandwidth than
H100 GPU. A100 and MI250 show similar performance across
models, with A100 marginally ahead. Qwen2-7B on GH200
has the highest throughput compared to other 7B models on
other hardware. This is due to a smaller hidden size, attention
heads and #layers in Qwen-2-7B than in other 7B models.
LLaMA-3-8B exhibits higher throughput than LLaMA-2-7B
on the same GPU for large batch sizes despite one billion
more parameters due to GQA in the former model. Figure 9
compares the performance difference between 70B models.
The trend follows similar to TRT-LLM, where LLaMA-2-
70B is faster than LLaMA-3-70B and Qwen-2-72B. Also, the
Mixtral-8x7B model performs better than the 70B models.

Figure 10 compares the perplexity and throughput of ∼7B
models, such as DeciLM [41], GPT-J-6B [1], OPT-6.7B
[49], Gemma-7B [50], Qwen1.5-7B [51], Aquila-7B [52]
and Bloom-7.1B [53], on A100 and H100 respectively on
LongBench dataset [54]. LLaMA-2-7B has better perplex-
ity than LLaMA-3-8B and Mistral-7B due to MHSA in
LLaMA-2-7B over GQA in the latter two models. While
GQA balances speed and performance, MHSA improves the
model’s validation performance. DeciLM-7B has the highest
throughput, while Mistral-7B provides a good tradeoff with
only 0.09 higher perplexity than LLaMA-2-7B and 0.8 times
less throughput than DeciLM-7B. Gemma-7B has the lowest
throughput, attributed to its larger head and intermediate size.

1 16 32 64
Batch Size

50
100

300
500

1000

3000
6000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e

vLLM: MoE/70B Models on Four GPUs
 for Input/Output Length 1024 (fp16)

Hardware & Model
H100 LLaMA-2-70B
H100 LLaMA-3-70B
H100 Qwen2-72B
A100 LLaMA-2-70B
A100 Mixtral-8x7B

MI250 LLaMA-2-70B
MI250 LLaMA-3-70B
MI250 Mixtral-8x7B
MI250 Qwen2-72B

Fig. 9: Throughput of 70B Models using vLLM

3.0 3.5 4.0 4.5 5.0
Perplexity

1250
1500
1750
2000
2250
2500
2750
3000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

Perplexity vs Throughput Comparison of ~7B Models
 using vLLM on One A100 GPU for Batch Size 32

 and Input/Output Length 1024 (fp16)

Hardware & Model
LLaMA-2-7B
LLaMA-3-8B
Mistral-7B
Aquila-7B

Qwen1.5-7B
OPT-6.7B
LLaMA-7B
GPT-J-6B

Bloom-7.1B
DeciLM-7B
Gemma-7B

Fig. 10: Perplexity vs A100 Throughput

3) DeepSpeed-MII: DS-MII is an easy-to-use framework
that supports dynamic split fusion to combine multiple op-
erations and CUDA compiler optimizations. Despite its ad-
vantages, the framework is limited to specific Nvidia GPUs
and does not have an optimized implementation of efficient
neural operators. It applies system optimizations based on
the model type, batch size, and available hardware resources.
While 7B models exhibit good scalability across 1, 2, and 4
devices with increasing batch size, performance discrepancies
are observed compared to TRT-LLM and vLLM with respect
to neural architecture. Figure 11 illustrates that LLaMA-2-
7B (MHSA) using DS-MII outperforms LLaMA-3-8B (GQA),
and LLaMA-3-8B surpasses Mistral-7B, contrary to the expec-
tation that GQA runs faster than MHSA. On a single A100
GPU, LLaMA-2-7B is 1.18 times faster than LLaMA-3-8B for
a batch size of 64 and input/output length of 128. However,
DS-MII is particularly useful for big models and large batch
sizes which is illustrated in Figure 12. For the Mixtral-8x7b
model, DS-MII outperforms vLLM for relatively large batch
sizes and sequence lengths. DS-MII is 1.04x faster than vLLM
for batch size 64 and Input/output length 2048.

1360

1 2 4
Number of GPUs

2000

3000

4000

5000

6000
Th

ro
ug

hp
ut

 (T
ok

en
s/s

ec
)

DS-MII: Scaling of 7B Models on A100 GPUs
 for Input & Output Size 128 (fp16)

Batch Size & Model
16 LLaMA-2-7B
16 Mistral-7B
16 LLaMA-3-8B

32 LLaMA-2-7B
32 Mistral-7B
32 LLaMA-3-8B

64 LLaMA-2-7B
64 Mistral-7B
64 LLaMA-3-8B

Fig. 11: 7B Models using DS-MII on A100 GPUs

1 16 32 64
Batch Size

0

2000

4000

6000

8000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) Mixtral-8x7B: TRT-LLM vs DS-MII vs
 vLLM on Four A100 GPUs (fp16)

Input/Output Length & Framework
128 TRT-LLM
2048 TRT-LLM

128 vLLM
2048 vLLM

128 DS-MII
2048 DS-MII

Fig. 12: Mixtral-8x7B Comparison on A100 GPU

4) llama.cpp: llama.cpp is designed to perform LLM infer-
ence with minimal setup and accelerate on a wide variety of
hardware. Although llama.cpp can be integrated seamlessly
across devices, it suffers from device scaling across AMD
and Nvidia platforms batch sizes due to the inability to fully
utilize parallelism and LLM optimizations. Figure 13 show
llama.cpp’s marginal performance benefits with an increase in
GPU count across diverse platforms.

1 16 32 64
Batch Size

50

100

150

200

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

llama.cpp: Performance of 7B Models on One GPU
 for Input & Output Length 1024 (fp16)

Hardware & Model
GH200 LLaMA-2-7B
GH200 Mistral-7B
GH200 LLaMA-3-8B
H100 LLaMA-2-7B
H100 Mistral-7B

H100 LLaMA-3-8B
A100 LLaMA-2-7B
A100 Mistral-7B
A100 LLaMA-3-8B
MI250 LLaMA-2-7B

MI250 Mistral-7B
MI250 LLaMA-3-8B
MI300X LLaMA-2-7B
MI300X Mistral-7B
MI300X LLaMA-3-8B

Fig. 13: Throughput of 7B Models using llama.cpp

Figure 14 demonstrated weak scaling of llama.cpp. Also,
LLaMA-2-7B outperforms both Mistral-7B and LLaMA-3-
8B, while Mistral-7B surpasses LLaMA-3-8B across different
batch sizes and number of GPUs. This is counterintuitive
compared to TRT-LLM and vLLM, where models with GQA
perform better than MHSA. This shows that llama.cpp is
unable to fully take the advantage of Group Query Attention.

1 2 4
Number of GPUs

50
75

100
125
150
175
200
225

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

llama.cpp Performance of 7B Models on GPUs for
 Input/Output Length 1024 and Batch Size 64 (fp16)

Hardware & Model
GH200 LLaMA-2-7B
GH200 Mistral-7B
GH200 LLaMA-3-8B
H100 LLaMA-2-7B
H100 Mistral-7B

H100 LLaMA-3-8B
A100 LLaMA-2-7B
A100 Mistral-7B
A100 LLaMA-3-8B
MI300X LLaMA-2-7B

MI300X Mistral-7B
MI300X LLaMA-3-8B
MI250 LLaMA-2-7B
MI250 Mistral-7B
MI250 LLaMA-3-8B

Fig. 14: llama.cpp: 7B Model Scaling

VI. HARDWARE-WISE BENCHMARKING

This section presents a comprehensive analysis of the per-
formance characteristics of LLMs across a wide range of AI
accelerators. We aim to offer insights into the strengths and
limitations of each hardware platform for LLMs.

1) Nvidia GPUs: Figure 15 compares 7B models on A100
using different frameworks. TRT-LLM outperforms vLLM and
DS-MII on Nvidia hardware by leveraging TensorRT, CUDA,
and cuDNN to optimize matrix computations. It employs
advanced techniques like layer fusion, kernel auto-tuning, and
dynamic tensor memory management to reduce latency and
memory footprint. These optimizations improve scalability,
making TensorRT-LLM well-suited for high-performance in-
ference on Nvidia GPUs. Also, we observe that llama.cpp is
the slowest of the frameworks due to suboptimal usage of
device optimizations. Llama.cpp lacks full implementation of
tensor parallelism and does not leverage the full potential
of Tensor Cores, leading to the underutilization of GPU.
From a model perspective, Mistral-7B performs better than
LLaMA-3-8B. Both the models share the same architecture
and configuration, including hidden size, number of layers, and
FFN size, with the primary difference being that LLaMA-3-
8B has a vocab size four times larger than Mistral-7B, causing
the later model to achieve more throughput.

Figure 16(left) illustrates the power consumption, and Fig-
ure 16(right) illustrates throughput per watt of the LLaMA-
2-7B and LLaMA-3-8B models on A100, H100 and GH200
using vLLM and TRT-LLM frameworks. LLaMA-2-7B on
GH200 using TRT-LLM consumes more power than A100
and H100, while LLaMA-3-8B on A100 consumes the lowest.
The performance per watt ratio for LLaMA-3-8B across all
frameworks and hardware is higher than LLaMA-2-7B for
the same hardware and software setting. TRT-LLM consumes
more power than vLLM due to more utilization of the hard-
ware and delivers more performance per watt.

2) AMD MI250 GPU: AMD GPUs leveraging ROCm
support frameworks like vLLM and llama.cpp and can offer
performance comparable to A100 for specific scenarios. Figure
17 highlights a notable trend in the MI250 GPU’s perfor-
mance. Compared to the A100, the MI250’s compute and
memory units reach saturation more rapidly. This is because
we used Non-uniform memory access balancing, which forces

1361

1 16 32 64
Batch Size

50
100

300

1000

3000
4000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e
Comparison of Frameworks using ~7B Models for

 Input & Output Length 1024 on One A100 GPU (fp16)

Framework & Model
TRT-LLM Mistral-7B
TRT-LLM LLaMA-3-8B
TRT-LLM LLaMA-2-7B
vLLM Mistral-7B
vLLM LLaMA-3-8B
vLLM LLaMA-2-7B

DS-MII Mistral-7B
DS-MII LLaMA-3-8B
DS-MII LLaMA-2-7B
llama.cpp Mistral-7B
llama.cpp LLaMA-3-8B
llama.cpp LLaMA-2-7B

Fig. 15: Throughput of 7B Models on A100

1 16 32 64
Batch Size

200

300
400
500
600
800

Po
w

er
 (W

at
ts

)
 in

 lo
g

sc
al

e

Power Consumption on Nvidia GPUs and
 for Input/Output Length 1024 (fp16)

1 16 32 64
Batch Size

1

5
10

25

Th
ro

ug
hp

ut
/P

ow
er

(T

ok
en

s/s
ec

/W
at

t)
 in

 lo
g

sc
al

e

Throughput per Power on Nvidia GPUs and
 for Input/Output Length = 1024 (fp16)

Hardware Framework & Model
GH200 vLLM LLaMA-2-7B
GH200 TRT-LLM LLaMA-2-7B
GH200 vLLM LLaMA-3-8B
GH200 TRT-LLM LLaMA-3-8B

H100 vLLM LLaMA-2-7B
H100 TRT-LLM LLaMA-2-7B
H100 TRT-LLM LLaMA-3-8B
H100 vLLM LLaMA-3-8B

A100 vLLM LLaMA-2-7B
A100 TRT-LLM LLaMA-2-7B
A100 vLLM LLaMA-3-8B
A100 TRT-LLM LLaMA-3-8B

Fig. 16: Power Consumption and Throughput per Watt

the GPU to wait for the preemptive memory management unit
notifier to derive page faults. The throughput of LLaMA-3-8B
drops beyond batch size 32 with an increase in input/output
length for the same batch size. The throughput trend will likely
increase with increasing number of GPUs.

1 16 32 64
Batch Size

0k
1k
2k
3k
4k
5k
6k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) vLLM Performance on MI250 of LLaMA-3-8B (fp16)

#GPUs & Input/Output Size
1 128
4 128

1 256
4 256

1 512
4 512

1 1024
4 1024

1 2048
4 2048

Fig. 17: LLaMA-3-8B using vLLM on single MI250 GPU

3) SambaNova SN40L: Figures 18 and 19 illustrate the
performance comparison of 8 SN40L RDUs (TP = 8) with
A100 for 7B and 70B Models, which better performance
than H100 and A100. Throughput increases with increasing
input/output length (till 512) as SN40L handles short and long
sequences differently. This contradicts the earlier observation
that throughput decreases with an increase in input/output

128256 512 1024 2048
Input/Output Length

400
600
800

1000
1200
1400

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

8 SN40L RDUs (bf16) vs 4 H100 GPUs (fp16) vs 4 A100 GPUs (fp16):
 7B Models for Varying Input/Output Length and Batch Size 1

Hardware & Model
SN40L Mistral-7B
SN40L LLaMA-3-8B
SN40L LLaMA-2-7B

H100 Mistral-7B
H100 LLaMA-3-8B
H100 LLaMA-2-7B

A100 Mistral-7B
A100 LLaMA-3-8B
A100 LLaMA-2-7B

Fig. 18: Throughput Comparison of 7B Models on 8 SN40L
RDUs with 4 H100s and 4 A100s GPU

128256 512 1024 2048
Input/Output Length

60
80

100
120
140
160

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

8 SN40L RDUs (bf16) vs 4 H100 GPUs (fp16) vs 4 A100 GPUs (fp16):
 70B Models for Varying Input/Output Length and Batch Size 1

Hardware & Model
SN40L LLaMA-3-70B H100 LLaMA-3-70B A100 LLaMA-3-70B

Fig. 19: Throughput Comparison of 70B Model on 8 SN40L
RDUs with 4 A100 and 4 H100 GPUs

length. LLaMA-3-8B and Mistral-7B outperform LLaMA-2-
7B on SN40L as the compiler improvements for small-sized
models were not applied to the LLaMA-2-7B model compared
to other LLMs. The accelerator has a 3-tier memory system
unlike the traditional 2-tier memory system in GPUs.

4) Habana Gaudi2: Figure 20 and 38 compare the 7B
models performance on Gaudi2, H100 and A100. The through-
put of Gaudi2 is better than A100 due to parallel operations
and efficient matrix multiplication. Gaudi2’s heterogeneous
architecture allows for overlapping compute time between
its matrix multiplication engine and tensor processing core
(TPC), while A100 lack this parallel execution capability.
Also, Gaudi2 uses multiple smaller matrix accelerators instead
of a single large one, which requires less bandwidth to fully
utilize its compute power. However, our experiments showed
that Habana Gaudi2 attains memory issues quicker than other
accelerators for the same model configuration.

VII. INSIGHTS AND DISCUSSION

In this section, we summarize the key findings of the
analysis from three perspectives: framework-wise, accelerator-
wise, and LLM architecture-wise. The core insights focus
on GQA support, efficient KV cache management, enhanced
utilization of computing kernels, and improved accessibility of
both hardware and software.

1) Framework-wise Takeaways: Several factors must be
considered when choosing an LLM inference framework for
large-scale deployment. An ideal framework should deliver

1362

16 32
Batch Size

1000

2000

3000
4000
5000
6000
7000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e

Gaudi2 vs H100 & A100 GPU: Comparison of 7B Models
 with Input and Output Length 1024 (fp16)

Hardware Framework and Model
H100 TRT-LLM Qwen2-7B
H100 TRT-LLM Mistral-7B
H100 TRT-LLM LLaMA-3-8B
H100 TRT-LLM LLaMA-2-7B

Gaudi2 DS Qwen2-7B
Gaudi2 DS Mistral-7B
Gaudi2 DS LLaMA-3-8B
Gaudi2 DS LLaMA-2-7B

A100 TRT-LLM Mistral-7B
A100 TRT-LLM LLaMA-3-8B
A100 TRT-LLM LLaMA-2-7B

Fig. 20: H100 vs A100 vs Gaudi2: 7B Models

high throughput and low latency. It should scale well with an
increase in batch sizes as memory requirements grow linearly,
necessitating efficient management, especially concerning the
KV Cache. For instance, Llama.cpp is highly portable and can
be accelerated across various software stacks and hardware
platforms with minimal code changes. However, it experiences
weak scaling and does not significantly improve for large batch
sizes as the framework does not utilize compute resources
well. DS-MII scales very well with an increase in GPUs,
batch sizes and sequence lengths and integrates seamlessly
with PyTorch, but it is limited to Nvidia GPUs. The framework
should support diverse hardware accelerators to democratize
LLMs and scale with an increasing number of computing
chips. For instance, TensorRT-LLM on Nvidia GPUs offers
the highest performance but is limited to specific platforms.
In contrast, vLLM supports a broader range of hardware but
consumes more power and is slower than TensorRT-LLM on
Nvidia GPUs. A framework should be flexible and adaptable
to new model architectures, enabling quick deployment of
new models. For instance, DS-MII and vLLM are relatively
easy to use and can directly use Huggingface (HF) model
weights. However, TRT-LLM and llama.cpp requires users to
convert to HF weights to Tensor-RT engine and GGUF format
which requires customizing to individual models and opera-
tions. Frameworks should leverage optimizations like efficient
attention mechanisms such as GQA. For example, LLaMA-3-
8B and Mistral-7B outperform LLaMA-2-7B with TensorRT-
LLM and vLLM, whereas LLaMA-3-8B cannot perform better
than LLaMA-2-7B with llama.cpp and Deepspeed-MII as they
do not support model-wise optimizations well. GQA models
are technically superior to MHSA in terms of performance.
Overall, the choice of framework should be tailored to specific
user scenarios and infrastructure constraints.

2) Accelerator-wise Takeaways: The choice of AI accel-
erators for LLM inference depends on several factors, such
as availability, large-scale acceleration, power consumption,
and scaling of inference frameworks. Nvidia GPUs are widely
available with optimizations from the hardware and software
end. However, the power consumption of hardware such as
H100 and return for power investment is better for lower
versions of Nvidia GPU such as A100. An accelerator should
support a wide range of inference frameworks and be capable
of taking advantage of SOTA optimizations. For instance,

LLaMA-2-7B LLaMA-3-8B Mistral-7B
Models

0.0
0.5
1.0
1.5
2.0
2.5

La
te

nc
y

(s
ec

)

0.33 0.35 0.350.36 0.38 0.370.39 0.41 0.400.42 0.43 0.43

2.85

0.42 0.50

0.97 1.05 1.041.03 1.04 1.03

1.63

2.41

1.69

2.16 2.17
1.96

2.28
2.49 2.43

TTFT for Batch Size 16 & Input Size 1024 (bf16 for SN40L and fp16 for rest)

#Devices Hardware & Framework
1 GH200 TRT-LLM
1 GH200 vLLM
1 H100 TRT-LLM
1 H100 vLLM

8 SN40L Sambaflow
1 A100 TRT-LLM
1 A100 vLLM

1 A100 DS-MII
1 MI250 vLLM
1 MI300X vLLM

Fig. 21: Time to First Token (TTFT)

LLaMA-2-7B LLaMA-3-8B Mistral-7B
Models

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

La
te

nc
y

(m
ill

is
ec

)

0.58 0.52 0.49

0.72
0.63 0.650.69

0.60 0.57

0.78
0.65 0.66

0.31
0.19 0.20

1.34

1.17 1.11

1.47

1.15 1.17

1.49 1.44 1.41
1.26 1.21 1.17

0.75 0.76 0.73

ITL for Batch Size 16 & Input/Output Size 1024 (bf16 for SN40L and fp16 for rest)

#Devices Hardware & Framework
1 GH200 TRT-LLM
1 GH200 vLLM
1 H100 TRT-LLM
1 H100 vLLM

8 SN40L Sambaflow
1 A100 TRT-LLM
1 A100 vLLM

1 A100 DS-MII
1 MI250 vLLM
1 MI300X vLLM

Fig. 22: Inter Token Latency (ITL)

MI250 GPUs are comparable to A100 in running vLLM for
certain scenarios. However, it suffers from early saturation
where the performance drops beyond a batch size and token
length faster than A100 GPU. On the other hand, Gaudi2
outperforms A100 but faces Out-of-memory issues for large
batch sizes and does not support a wide range of frameworks.
The current SN40L setup is limited to serving only a few
batch sizes and a fixed number of RDUs (8 in our case).
It is available as an online inference service Sambastudio
[55], and support for wider LLMs is not yet supported, unlike
GPUs. Figures 23 and 24 compare LLaMA-3-8B model across
different hardware for varying batch sizes and input/output
lengths. We observe that SN40L has the best performance up
to batch size 32. The chat-based applications prioritize the
rapid display of output tokens to enable immediate reading,
making Time to First Token (TTFT) crucial. As new tokens
are generated and read by users, Inter Token Latency (ITL)
becomes increasingly significant to maintain a smooth con-
versational flow. Figures 21 and 22 depict the Time to First
Token (TTFT) and Inter-Token Latency (ITL) for LLaMA-2-
7B, LLaMA-3-8B, and Mistral-7B models. The results reveal
that while SN40L exhibits higher TTFT compared to other
hardware, it demonstrates lower ITL, indicating faster token
generation after the initial output. Figure 25 illustrates the peak
performance of 7B models on different hardware platforms.
Overall, each accelerator presents unique trade-offs in terms
of performance, accessibility, and compatibility with various
frameworks, which must be considered for LLM deployment.

1363

1 16 32 64
Batch Size

100

300
500

1000
2000
5000

10000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
 in

 lo
g

sc
al

e
LLaMA-3-8B: Comparison Across Accelerators

 for Input & Output Length 1024 (fp16)

#Devices Hardware Framework
8 SN40L Sambaflow
1 GH200 TRT-LLM
1 H100 TRT-LLM

1 Gaudi2 DS
1 A100 TRT-LLM

1 MI250 vLLM
1 MI300X vLLM

Fig. 23: Throughput vs Batch Size

128256 512 1024 2048
Input & Output Length

2k

4k

6k

8k

10k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

LLaMA-3-8B: Comparison Across Accelerators
 for Batch Size 16 (fp16)

#Devices Hardware Framework
8 SN40L Sambaflow
1 GH200 TRT-LLM
1 H100 TRT-LLM

1 Gaudi2 DS
1 MI300X vLLM

1 A100 TRT-LLM
1 MI250 vLLM

Fig. 24: Throughput vs Input/Output Length

3) LLM Architecture-wise Takeaways: Model perfor-
mance varies significantly with size and architecture. Smaller
models, like a 7B model, typically offer better throughput than
larger ones, such as a 70B model. However, within similar size
ranges, performance differences can be attributed to operation
types, hyperparameters, and batch sizes. For instance, LLaMA-
2-7B, with a smaller FFN size and larger attention size
(MHSA) compared to LLaMA-3-8B and Mistral-7B (GQA),
performs well at lower batch sizes but declines as batch size
increases due to attention and KV cache demands. Conversely,
the Qwen2-7B model, with a larger vocabulary and fewer
hyperparameters, outperforms others because the vocabulary
size primarily affects inputs and outputs, leaving the core
model with fewer parameters. Among 70B models, LLaMA-
2-70B is slightly more efficient across accelerators due to its
smaller vocabulary compared to LLaMA-3-70B and Qwen2-
72B. The Mixtral-7x8B MoE model surpasses 70B models
by activating only two experts per layer during inference,
effectively functioning as a 14B model. Our findings consis-
tently demonstrate that platforms, frameworks, and acceler-
ators lacking advanced optimization techniques exhibit infe-
rior performance. Specifically, Deepspeed-MII and llama.cpp,
which underutilize GQA optimization, are outperformed by
TensorRT-LLM and vLLM. Figures 21 and 22 show that
LLaMA-2-7B relatively requires less time to generate the first
token (could be attributed to small FNN dimension compared

to Mistral-7B and LLaMA-3-8B as the first token does not
significantly high KV cache memory). However, ITL is high
compared to Mistral-7B and LLaMA-3-8B, resulting in less
throughput on different systems.

Mistral-7B LLaMA-3-8B LLaMA-2-7B
Model

2000

4000

6000

8000

10000

Th
ro

ug
hp

ut
 (T

ok
en

s/
se

c)

BS 32 BS 32 BS 32BS 64 BS 64
BS 64

BS 64 BS 64

BS 64

BS 32 BS 32

BS 32

BS 16

BS 32

BS 16

BS 64
BS 64

BS 64

BS 64 BS 64

BS 64

Peak Throughput for Input/Output Size 1024 (fp16)

#Devices Hardware (Framework)
1 MI250 (vLLM)
1 MI300X (vLLM)
1 A100 (TRT-LLM)

1 Gaudi2 (Deepspeed)
8 SN40L (Sambaflow)

1 GH200 (TRT-LLM)
1 H100 (TRT-LLM)

Fig. 25: Peak Performance1

VIII. CONCLUSION

We introduce LLM-Inference-Bench, a comprehensive
benchmarking suite that evaluates the inference performance
of the variety of llama-style LLMs across SOTA AI accel-
erators using widely available LLM inference frameworks.
We provide insights about different models and their behavior
across different frameworks and accelerators. TensorRT-LLM
provides the highest performance and lowest power consump-
tion on Nvidia platforms, while vLLM can be accelerated on a
variety of devices. While dealing with AI accelerators, vendor-
specific frameworks result in the best throughput. Nvidia H100
GPU offers the best throughput and performance per watt
across all GPUs. Mistral-7B offers the best throughput and
perplexity tradeoff compared to several SOTA 7B models.
In addition to the outcomes discussed in this paper, we also
created a web-based interactive dashboard that can be used
by AI researchers to determine the optimal configuration of
framework, accelerator and model suited for their workload.

ACKNOWLEDGEMENTS

This research used resources of the Argonne Leadership
Computing Facility, a U.S. Department of Energy (DOE)
Office of Science user facility at Argonne National Laboratory
and is based on research supported by the U.S. DOE Office
of Science-Advanced Scientific Computing Research Program,
under Contract No. DE-AC02-06CH11357. We gratefully ac-
knowledge the computing resources provided and operated by
the Joint Laboratory for System Evaluation (JLSE) at Argonne
National Laboratory. We would like to thank Ashutosh Dhar
and Geetika Gupta from Nvidia; Darshan Gandhi, Dawei
Huang, Jennifer Glore, Sankar Rachuru and Connor Mc-
Cormick from SambaNova and Chenna Bayapureddy and
Yuting Yang from Intel Habana for their valuable feedback.

1The peak performance mentioned here is throughput in our benchmark
study. NVIDIA GPUs and SN40L can handle batch sizes beyond 32 and
64, respectively, and therefore, peak throughput might be higher. Conversely,
the performance of AMD GPUs declines beyond a certain batch size. We
encountered out-of-memory issues on Gaudi2 at batch sizes of 32 and 64 in
several test scenarios. The paper’s MI250, MI300X and Gaudi2 numbers are
out-of-the-box without special optimization flags.

1364

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[2] A. Dubey et al., “The llama 3 herd of models,” 2024. [Online].
Available: https://arxiv.org/abs/2407.21783

[3] R. Thoppilan, D. De Freitas, J. Hall, N. Shazeer, A. Kulshreshtha, H.-T.
Cheng, A. Jin, T. Bos, L. Baker, Y. Du et al., “Lamda: Language models
for dialog applications,” arXiv preprint arXiv:2201.08239, 2022.

[4] K. T. Chitty-Venkata, S. Mittal, M. Emani, V. Vishwanath, and A. K.
Somani, “A survey of techniques for optimizing transformer inference,”
Journal of Systems Architecture, p. 102990, 2023.

[5] Z. Zhou, X. Ning, K. Hong, T. Fu, J. Xu, S. Li, Y. Lou, L. Wang,
Z. Yuan, X. Li et al., “A survey on efficient inference for large language
models,” arXiv preprint arXiv:2404.14294, 2024.

[6] Y. Park, K. Budhathoki, L. Chen, J. M. Kübler, J. Huang, M. Klein-
dessner, J. Huan, V. Cevher, Y. Wang, and G. Karypis, “Inference
optimization of foundation models on ai accelerators,” in Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2024, pp. 6605–6615.

[7] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[8] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[9] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[10] W. Cai, J. Jiang, F. Wang, J. Tang, S. Kim, and J. Huang, “A survey on
mixture of experts,” arXiv preprint arXiv:2407.06204, 2024.

[11] mistralai, “Mistral-7b-v0.1,” 2023. [Online]. Available: https:
//huggingface.co/mistralai/Mistral-7B-v0.1

[12] M. Emani, S. Foreman, V. Sastry, Z. Xie, S. Raskar, W. Arnold,
R. Thakur, V. Vishwanath, M. E. Papka, S. Shanmugavelu, D. Gandhi,
H. Zhao, D. Ma, K. Ranganath, R. Weisner, J. Chen, Y. Yang,
N. Vassilieva, B. C. Zhang, S. Howland, and A. Tsyplikhin, “Toward a
holistic performance evaluation of large language models across diverse
ai accelerators,” in 2024 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW). Los Alamitos, CA,
USA: IEEE Computer Society, may 2024, pp. 1–10. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/IPDPSW63119.2024.00016

[13] J. Yin, S. Dash, J. Gounley, F. Wang, and G. Tourassi, “Evaluation of
pre-training large language models on leadership-class supercomputers,”
The Journal of Supercomputing, pp. 1–22, 06 2023.

[14] M. Emani, Z. Xie, S. Raskar, V. Sastry, W. Arnold, B. Wilson,
R. Thakur, V. Vishwanath, Z. Liu, M. E. Papka, C. O. Bohorquez,
R. Weisner, K. Li, Y. Sheng, Y. Du, J. Zhang, A. Tsyplikhin, G. Khaira,
J. Fowers, R. Sivakumar, V. Godsoe, A. Macias, C. Tekur, and
M. Boyd, “A comprehensive evaluation of novel ai accelerators for
deep learning workloads,” in 2022 IEEE/ACM International Workshop
on Performance Modeling, Benchmarking and Simulation of High
Performance Computer Systems (PMBS), 2022, pp. 13–25.

[15] J. Yin, A. Tsaris, S. Dash, R. Miller, F. Wang, and M. A. Shankar,
“Comparative evaluation of deep learning workloads for leadership-
class systems,” BenchCouncil Transactions on Benchmarks, Standards
and Evaluations, vol. 1, no. 1, p. 100005, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S2772485921000053

[16] A. Q. Jiang, A. Sablayrolles, A. Mensch, C. Bamford, D. S. Chaplot,
D. d. l. Casas, F. Bressand, G. Lengyel, G. Lample, L. Saulnier et al.,
“Mistral 7b,” arXiv preprint arXiv:2310.06825, 2023.

[17] A. Q. Jiang, A. Sablayrolles, A. Roux, A. Mensch, B. Savary, C. Bam-
ford, D. S. Chaplot, D. d. l. Casas, E. B. Hanna, F. Bressand et al.,
“Mixtral of experts,” arXiv preprint arXiv:2401.04088, 2024.

[18] A. Yang, B. Yang, B. Hui, B. Zheng, B. Yu, C. Zhou, C. Li, C. Li,
D. Liu, F. Huang et al., “Qwen2 technical report,” arXiv preprint
arXiv:2407.10671, 2024.

[19] N. Corporation, “Nvidia a100 tensor core gpu architecture,”
Nvidia, White Paper, 2023, accessed: 2024-07-21. [Online]. Avail-
able: https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf

[20] J. Choquette, “Nvidia hopper h100 gpu: Scaling performance,” IEEE
Micro, vol. 43, no. 3, pp. 9–17, 2023.

[21] N. Corporation, “Nvidia gh200 grace hopper superchip architecture,”
Nvidia, White Paper, 2023, accessed: 2024-07-21. [Online].
Available: https://resources.nvidia.com/en-us-grace-cpu/nvidia-grace-
hopper?ncid=no-ncid

[22] I. Advanced Micro Devices, “Amd cdna 2 architecture,”
AMD, White Paper, 2023, accessed: 2024-07-21. [On-
line]. Available: https://www.amd.com/content/dam/amd/en/documents/
instinct-business-docs/white-papers/amd-cdna2-white-paper.pdf

[23] ——, “Amd cdna 3 architecture,” AMD, White Paper, 2024.
[24] I. Corporation, “Habana gaudi 2 white paper,” Intel, White Paper,

2023, accessed: 2024-07-21. [Online]. Available: https://www.intel.com/
content/www/us/en/content-details/784827/gaudi-2-white-paper.html

[25] R. Prabhakar, R. Sivaramakrishnan, D. Gandhi, Y. Du, M. Wang,
X. Song, K. Zhang, T. Gao, A. Wang, K. Li et al., “Sambanova sn40l:
Scaling the ai memory wall with dataflow and composition of experts,”
arXiv preprint arXiv:2405.07518, 2024.

[26] Nvidia, “Tensor-rt llm,” 2023. [Online]. Available: https://github.com/
NVIDIA/TensorRT-LLM

[27] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez,
H. Zhang, and I. Stoica, “Efficient memory management for large
language model serving with pagedattention,” in Proceedings of the 29th
Symposium on Operating Systems Principles, 2023, pp. 611–626.

[28] Microsoft, “Deepspeed mii,” 2023. [Online]. Available: https://
github.com/microsoft/DeepSpeed-MII

[29] R. Y. Aminabadi, S. Rajbhandari, A. A. Awan, C. Li, D. Li, E. Zheng,
O. Ruwase, S. Smith, M. Zhang, J. Rasley et al., “Deepspeed-
inference: enabling efficient inference of transformer models at unprece-
dented scale,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2022, pp. 1–15.

[30] G. Gerganov, “llama.cpp,” 2023. [Online]. Available: https://github.com/
ggerganov/llama.cpp

[31] Nvidia, “Pynvml,” 2022. [Online]. Available: https://pypi.org/project/
pynvml

[32] G.-I. Yu, J. S. Jeong, G.-W. Kim, S. Kim, and B.-G. Chun, “Orca:
A distributed serving system for {Transformer-Based} generative mod-
els,” in 16th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), 2022, pp. 521–538.

[33] R. Pope, S. Douglas, A. Chowdhery, J. Devlin, J. Bradbury, J. Heek,
K. Xiao, S. Agrawal, and J. Dean, “Efficiently scaling transformer
inference,” Proceedings of Machine Learning and Systems, vol. 5, pp.
606–624, 2023.

[34] S. Luohe, Z. Hongyi, Y. Yao, L. Zuchao, and Z. Hai, “Keep the cost
down: A review on methods to optimize llm’s kv-cache consumption,”
arXiv preprint arXiv:2407.18003, 2024.

[35] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network infer-
ence,” in Low-Power Computer Vision. Chapman and Hall/CRC, 2022,
pp. 291–326.

[36] A. Kuzmin, M. Van Baalen, Y. Ren, M. Nagel, J. Peters, and
T. Blankevoort, “Fp8 quantization: The power of the exponent,”
Advances in Neural Information Processing Systems, vol. 35, pp.
14 651–14 662, 2022.

[37] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “Gptq: Accurate
post-training quantization for generative pre-trained transformers,” arXiv
preprint arXiv:2210.17323, 2022.

[38] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang,
G. Xiao, X. Dang, C. Gan, and S. Han, “Awq: Activation-aware weight
quantization for llm compression and acceleration,” 2024. [Online].
Available: https://arxiv.org/abs/2306.00978

[39] K. T. Chitty-Venkata and A. K. Somani, “Neural architecture search
survey: A hardware perspective,” ACM Computing Surveys, vol. 55,
no. 4, pp. 1–36, 2022.

[40] K. T. Chitty-Venkata, M. Emani, V. Vishwanath, and A. K. Somani,
“Neural architecture search for transformers: A survey,” IEEE Access,
vol. 10, pp. 108 374–108 412, 2022.

[41] Deci, “Deci/decilm-7b,” 2023. [Online]. Available: https:
//huggingface.co/Deci/DeciLM-7B

[42] H. Xia, Z. Yang, Q. Dong, P. Wang, Y. Li, T. Ge, T. Liu, W. Li,
and Z. Sui, “Unlocking efficiency in large language model infer-
ence: A comprehensive survey of speculative decoding,” arXiv preprint
arXiv:2401.07851, 2024.

1365

[43] JackFram, “llama-68m,” 2023. [Online]. Available: https:
//huggingface.co/JackFram/llama-68m

[44] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[45] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of giant neural
networks using pipeline parallelism,” Advances in neural information
processing systems, vol. 32, 2019.

[46] S. Rajbhandari, C. Li, Z. Yao, M. Zhang, R. Y. Aminabadi, A. A. Awan,
J. Rasley, and Y. He, “Deepspeed-moe: Advancing mixture-of-experts
inference and training to power next-generation ai scale,” in International
conference on machine learning. PMLR, 2022, pp. 18 332–18 346.

[47] S. Singh, O. Ruwase, A. A. Awan, S. Rajbhandari, Y. He, and A. Bhatele,
“A hybrid tensor-expert-data parallelism approach to optimize mixture-
of-experts training,” in Proceedings of the 37th International Conference
on Supercomputing, 2023, pp. 203–214.

[48] N. Corporation, “Nvidia h100 tensor core gpu architecture,” Nvidia,
White Paper, 2023, accessed: 2024-07-21. [Online]. Available:
https://resources.nvidia.com/en-us-tensor-core?ncid=no-ncid

[49] S. Zhang, S. Roller, N. Goyal, M. Artetxe, M. Chen, S. Chen, C. Dewan,
M. Diab, X. Li, X. V. Lin et al., “Opt: Open pre-trained transformer
language models,” arXiv preprint arXiv:2205.01068, 2022.

[50] G. Team, T. Mesnard, C. Hardin, R. Dadashi, S. Bhupatiraju, S. Pathak,
L. Sifre, M. Rivière, M. S. Kale, J. Love et al., “Gemma: Open
models based on gemini research and technology,” arXiv preprint
arXiv:2403.08295, 2024.

[51] Qwen, “Qwen2-1.5b,” 2024. [Online]. Available: https://huggingface.co/
Qwen/Qwen2-1.5B

[52] BAAI, “Aquilachat-7b,” 2023. [Online]. Available: https:
//huggingface.co/BAAI/AquilaChat-7B

[53] bigscience, “bloom-7b1,” 2023. [Online]. Available: https:
//huggingface.co/bigscience/bloom-7b1

[54] Y. Bai, X. Lv, J. Zhang, H. Lyu, J. Tang, Z. Huang, Z. Du, X. Liu,
A. Zeng, L. Hou, Y. Dong, J. Tang, and J. Li, “Longbench: A bilingual,
multitask benchmark for long context understanding,” arXiv preprint
arXiv:2308.14508, 2023.

[55] SambaNova, “Sambastudio,” 2024. [Online]. Available: https:
//docs.sambanova.ai/sambastudio/latest/sambastudio-intro.html

[56] meta llama, “Meta-llama-3-8b,” 2024. [Online]. Available: https:
//huggingface.co/meta-llama/Meta-Llama-3-8B

[57] Qwen, “Qwen2-57b-a14b,” 2024. [Online]. Available: https:
//huggingface.co/Qwen/Qwen2-57B-A14B

[58] S. A. Research, “Snowflake arctic: The best llm for enterprise
ai — efficiently intelligent, truly open,” 2024. [Online]. Avail-
able: https://www.snowflake.com/blog/arctic-open-efficient-foundation-
language-models-snowflake/

[59] O. Lieber, B. Lenz, H. Bata, G. Cohen, J. Osin, I. Dalmedigos, E. Safahi,
S. Meirom, Y. Belinkov, S. Shalev-Shwartz et al., “Jamba: A hybrid
transformer-mamba language model,” arXiv preprint arXiv:2403.19887,
2024.

[60] A. Gu and T. Dao, “Mamba: Linear-time sequence modeling with
selective state spaces,” arXiv preprint arXiv:2312.00752, 2023.

[61] meta llama, “Llama-2-7b-hf,” 2023. [Online]. Available: https:
//huggingface.co/meta-llama/Llama-2-7b-hf

[62] mistralai, “Mistral-7b-v0.1,” 2023. [Online]. Available: https:
//huggingface.co/mistralai/Mistral-7B-v0.1

[63] Qwen, “Qwen2-7b,” 2024. [Online]. Available: https://huggingface.co/
Qwen/Qwen2-7B

[64] meta llama, “Llama-2-70b-hf,” 2023. [Online]. Available: https:
//huggingface.co/meta-llama/Llama-2-70b-hf

[65] ——, “Meta-llama-3-70b,” 2024. [Online]. Available: https:
//huggingface.co/meta-llama/Meta-Llama-3-70B

[66] Qwen, “Qwen2-72b,” 2024. [Online]. Available: https://huggingface.co/
Qwen/Qwen2-72B

[67] Meta, “Building meta’s genai infrastructure,” 2024. [On-
line]. Available: https://engineering.fb.com/2024/03/12/data-center-
engineering/building-metas-genai-infrastructure/

[68] M. Emani, V. Vishwanath, C. Adams, M. E. Papka, R. Stevens, L. Flo-
rescu, S. Jairath, W. Liu, T. Nama, and A. Sujeeth, “Accelerating scien-
tific applications with sambanova reconfigurable dataflow architecture,”
Computing in Science & Engineering, vol. 23, no. 2, pp. 114–119, 2021.

[69] S. Kim, C. Hooper, A. Gholami, Z. Dong, X. Li, S. Shen, M. W.
Mahoney, and K. Keutzer, “Squeezellm: Dense-and-sparse quantization,”
arXiv preprint arXiv:2306.07629, 2023.

[70] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and
C. D. Manning, “Hotpotqa: A dataset for diverse, explainable multi-
hop question answering,” in Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing, 2018, pp. 2369–
2380.

[71] X. Ho, A.-K. D. Nguyen, S. Sugawara, and A. Aizawa, “Constructing a
multi-hop qa dataset for comprehensive evaluation of reasoning steps,”
in Proceedings of the 28th International Conference on Computational
Linguistics, 2020, pp. 6609–6625.

[72] H. Trivedi, N. Balasubramanian, T. Khot, and A. Sabharwal, “Musique:
Multihop questions via single-hop question composition,” Transactions
of the Association for Computational Linguistics, vol. 10, pp. 539–554,
2022.

[73] W. He, K. Liu, J. Liu, Y. Lyu, S. Zhao, X. Xiao, Y. Liu, Y. Wang, H. Wu,
Q. She et al., “Dureader: a chinese machine reading comprehension
dataset from real-world applications,” ACL 2018, p. 37, 2018.

[74] T. Kočiskỳ, J. Schwarz, P. Blunsom, C. Dyer, K. M. Hermann, G. Melis,
and E. Grefenstette, “The narrativeqa reading comprehension challenge,”
Transactions of the Association for Computational Linguistics, vol. 6,
pp. 317–328, 2018.

[75] P. Dasigi, K. Lo, I. Beltagy, A. Cohan, N. A. Smith, and M. Gardner,
“A dataset of information-seeking questions and answers anchored in
research papers,” in Proceedings of the 2021 Conference of the North
American Chapter of the Association for Computational Linguistics:
Human Language Technologies, 2021, pp. 4599–4610.

[76] L. Huang, S. Cao, N. Parulian, H. Ji, and L. Wang, “Efficient atten-
tions for long document summarization,” in Proceedings of the 2021
Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2021, pp.
1419–1436.

[77] M. Zhong, D. Yin, T. Yu, A. Zaidi, M. Mutuma, R. Jha, A. Hassan,
A. Celikyilmaz, Y. Liu, X. Qiu et al., “Qmsum: A new benchmark for
query-based multi-domain meeting summarization,” in Proceedings of
the 2021 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, 2021,
pp. 5905–5921.

[78] H. Wu, M. Zhan, H. Tan, Z. Hou, D. Liang, and L. Song, “Vcsum:
A versatile chinese meeting summarization dataset,” arXiv preprint
arXiv:2305.05280, 2023.

[79] M. Joshi, E. Choi, D. S. Weld, and L. Zettlemoyer, “Triviaqa: A large
scale distantly supervised challenge dataset for reading comprehension,”
in Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 2017, pp. 1601–
1611.

[80] B. Gliwa, I. Mochol, M. Biesek, and A. Wawer, “Samsum corpus:
A human-annotated dialogue dataset for abstractive summarization,”
EMNLP-IJCNLP 2019, p. 70, 2019.

[81] A. R. Fabbri, I. Li, T. She, S. Li, and D. Radev, “Multi-news: A large-
scale multi-document summarization dataset and abstractive hierarchical
model,” in Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, 2019, pp. 1074–1084.

[82] X. Li and D. Roth, “Learning question classifiers,” in COLING 2002:
The 19th International Conference on Computational Linguistics, 2002.

[83] D. Guo, C. Xu, N. Duan, J. Yin, and J. McAuley, “Longcoder: A long-
range pre-trained language model for code completion,” arXiv preprint
arXiv:2306.14893, 2023.

[84] T. Liu, C. Xu, and J. McAuley, “Repobench: Benchmarking repository-
level code auto-completion systems,” arXiv preprint arXiv:2306.03091,
2023.

APPENDIX

APPENDIX A
LLM PRIMITIVES

A. LLM Architectures

1) Dense vs MoE model: Dense and Mixture-of-Experts
(MoE) models represent two distinct approaches, each with its
own advantages and trade-offs. Dense models, characterized
by FC layers where all parameters are used for every input,

1366

Output

Input

Expert-1 Expert-2 Expert-3

Gating Network

Expert-n….

MoE Layer

Fig. 26: Mixture of Experts in Mixtral [17]

offer simplicity and ease of training but can become compu-
tationally prohibitive at extremely large scales. Notable exam-
ples of dense LLMs include LLaMA-2-7B [8] and LLaMA-3-
8B [56]. MoE models [9] employ a combination of specialized
sub-networks or experts and a gating mechanism to selectively
activate only a subset of parameters for each input, allowing
for greater computational efficiency. While MoE models can
achieve comparable or superior performance to dense models
with similar computational costs, they typically require 2-4
times more total parameters. This increased parameter count
results in higher memory requirements, making MoE models
less efficient in I/O-bounded scenarios like autoregressive
generation. MoE models, such as Mixtral-8x7B [11] and
Qwen2-57B-A14B [57], implement multiple experts within the
MLP block and the attention can be either MHSA or GQA.
The attention module maintains a more conventional MHSA
or GQA structure. The variants of MoE architecture include
Hybrid MoE [58] Hybrid Transformer-Mamba MoE [59], and
Composition of Experts (CoE) [25]. Hybrid MoE combines
elements of both MoE and dense models by integrating a
residual MoE with a dense transformer. Jamba [59] presents
a hybrid Transformer-Mamba MoE, which interleaves blocks
of Transformer and Mamba layers [60], incorporating MoE
in some layers. CoE represents a novel approach to MoE
architectures by combining expert LLM networks to achieve
improved performance or efficiency over individual models.

B. Transformer Modules

1) Multi-Head Self-Attention (MHSA): In a Multi-Head
Self-Attention module, each attention head computes its own
unique set of query, key, and value vectors. This allows the
model to attend to different subspaces of the input represen-
tation in parallel. MHSA offers the best performance but is
computationally expensive and memory-intensive, especially
for large models.

2) Group Query Attention (GQA): Grouped Query Atten-
tion (GQA) divides query heads into multiple groups where
each group shares a single key head and value head, as

V

K

Q

Multi-head Attention

 * * * * * * * *

8 Q K V Heads

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

(a) MHSA

Grouped-Query Attention

V

K

Q

 * * * *

8 Q and 4 K V Heads

0 1 2 3 4 5 6 7

0 1 2 3

0 1 2 3

(b) GQA

Fig. 27: Types of Self Attention Methods

depicted in Figure 27b. It has reduced number of parameters
compared to MHSA by sharing the key and value heads.

C. LLM Series

1) LLaMA Series: LLaMA-2 and LLaMA-3 are LLMs
developed by Meta. LLaMA-3 represents a significant ad-
vancement over its predecessor, with improvements in several
key areas. LLaMA-3 was pre-trained on over 15 trillion
tokens, a dataset seven times larger than LLaMA-2’s, includ-
ing four times more code and broader language coverage.
LLaMA-3 utilizes OpenAI’s Tiktoken for tokenization, replac-
ing LLaMA-2’s SentencePiece tokenizer. LLaMA-3, trained
on a 24,000 GPU cluster, is available in 8B and 70B parameter
sizes, while LLaMA-2 comes in 7B, 13B and 70B sizes.
Notable improvements include stronger reasoning abilities,
better code generation, and improved instruction following.
Additionally, LLaMA-3 doubles the context window from
LLaMA-2’s 4K tokens to 8K tokens, allowing for more
comprehensive information processing.

2) Mistral and Mixtral: Mistral and Mixtral are LLMs
developed by Mistral AI for complex NLP tasks. Mistral-7B
features sliding window attention, GQA, and a byte-fallback
byte pair encoding tokenizer, enabling efficient handling of
long sequences while maintaining high performance. Its ar-
chitecture includes an 8k context length with a theoretical
attention span of 128K tokens and improved robustness via
its tokenizer. Mixtral, an evolution of Mistral, introduces a
sparse mixture of experts (SMoE) model. The Mixtral-8x7B
model contains 45 billion parameters and outperforms its
predecessors on various benchmarks while offering 6x faster
inference. It employs eight experts per MLP and utilizes Flash
Attention 2 for optimized attention mechanisms.

3) Qwen 2 Series: Alibaba Cloud’s Qwen 2 series rep-
resents a significant advancement, with the Qwen2-7B and
Qwen2-72B models showcasing exceptional capabilities. The
Qwen2-7B model, with 7.07 billion parameters (5.98 bil-
lion non-embedding), is designed for robust language tasks,
while the larger Qwen2-72B model, boasting 72.71 billion
parameters (70.21 billion non-embedding), is tailored for
highly complex tasks and extensive datasets. Both models
utilize GQA and support an impressive context length of
128K tokens, excelling in handling long texts. These models

1367

Tensor - 1

Tensor - 2

Tensor - 3

Tensor - 4

Tensor - 5

Tensor - 6

Tensor - 7

Tensor - 8

GPU-0 GPU-1

Expert - 1

Expert - 2

Expert - 3

Expert - 4

Expert - 5

Expert - 6

Expert - 7

Expert - 8

GPU-0

GPU-1

Layer - 1

Layer - 2

Layer - 3

Layer - 4

Layer - 5

Layer - 6

Layer - 7

Layer - 8

GPU-0

GPU-1

Fig. 28: LLM Parallelism Methods

demonstrate superior performance in coding, mathematics,
and multilingual proficiency, surpassing existing open-source
models. The Qwen2 series’ ability to handle extended context
lengths, with all Instruct models trained on 32K-token contexts
and capable of even longer extensions.

Table I summarizes the neural architecture configurations,
which include the number of layers, hidden size, attention
type, number of attention and KV heads, FFN type, number of
FFN experts, FFN intermediate size and maximum sequence
length and vocabulary size.

APPENDIX B
HARDWARE PLATFORMS

The importance of AI hardware for LLMs cannot be over-
stated as these models continue to advance. The demand
for efficient hardware to support their training and inference
phases grows significantly. High-performance hardware, such
as GPUs and specialized AI accelerators, enables LLMs to
process vast datasets quickly and accurately, which is essential
for training and deployment. The hardware platformed evalu-
ated in this work are summarised in Table II

1) Nvidia H100 GPU: NVIDIA H100 GPU, which powers
Meta’s Datacenter for GenAI [67], introduces significant AI
and HPC workload advancements. It is built on TSMC’s 4N
process with 80 billion transistors and features a dedicated
Transformer Engine optimized for trillion-parameter LLMs.
H100 utilizes a mix of FP8 and 16-bit calculations to achieve
up to 9x faster AI training and 30x faster inference than its
predecessors. The H100 also boasts fourth-generation Tensor
Cores that are up to 6x faster, a 3x increase in FP64 and FP32
processing rates, and new DPX instructions that accelerate dy-
namic programming algorithms by up to 7x. It includes 188GB
of HBM3 memory, offering nearly twice the bandwidth of the

previous generation, and a 50MB L2 cache to enhance data
access efficiency. The PCIe-based H100 NVL with NVLink
bridge enables seamless scaling across datacenters, while the
InfiniBand interconnect further boosts performance. The GPU
also includes second-generation Multi-Instance GPU (MIG)
technology for better resource utilization.

2) Nvidia GH100 GPU: The NVIDIA GH200 GPU, part
of the Grace Hopper Superchip architecture, combines the
Hopper H100 Tensor Core GPU with the Grace CPU to
deliver exceptional performance for AI and HPC. This design
leverages Nvidia’s ultra-fast chip-to-chip interconnect with
900GB/s bandwidth, 7x faster than PCIe Gen5. The GH200
architecture supports up to 30x higher aggregate bandwidth
than today’s fastest servers. The Grace CPU, featuring 72 Arm
Neoverse V2 cores, provides leading per-thread performance
and energy efficiency, with up to 480GB of LPDDR5X mem-
ory delivering 500GB/s of bandwidth per CPU. The GH200
NVL32 enables all GPU threads in the NVLink-connected
domain to address up to 19.5TB of memory with 900GB/s
bandwidth per superchip and up to 14.4TB/s bisection band-
width in a 32 GPU system, making it ideal for large-scale
AI training and HPC workloads. This platform, supported by
NVIDIA MGX with GH200 and InfiniBand or Ethernet, is
optimized for scale-out machine learning and HPC tasks.

3) Nvidia A100 GPU: The NVIDIA A100 GPU is designed
for HPC AI workloads. Each A100 GPU features 6912 CUDA
cores and 432 Tensor cores, supporting FP32, FP16, BF16,
and Int8 precisions. It has a maximum thermal design power
of 600 watts. The GPUs have 40 GiB of HBM2, offering a
memory bandwidth of 6.4 TB/s. In our A100 setup, we have
four A100 GPUs on each conbcedt connected via NVLink,
which facilitates high-bandwidth and low-latency communi-
cation between GPUs. The host consists of a 2.8 GHz AMD
EPYC Milan 7543P 32-core CPU and 512 GB of DDR4 RAM.

4) AMD MI250 GPU: The AMD Instinct MI250 is a GPU
accelerator based on the CDNA2 architecture, manufactured
using TSMC’s 6nm FinFET process. It features 13,312 stream
processors across 208 compute units, with a peak engine clock
of 1700 MHz. The MI250 delivers impressive performance
across various precision levels, including 362.1 TFLOPs for
FP16, INT4, INT8, and bfloat16 operations and 90.5 TFLOPs
for FP32 and FP64 matrix operations. It consists of 128 GB
of HBM2e memory with an 8192-bit interface, a 1.6 GHz
memory clock, and a peak memory bandwidth of 3.2 TB/s.
The GPU supports PCIe 4.0 x16 and includes 8 Infinity Fabric
links with 100 GB/s peak bandwidth per link with a thermal
design power of 500W (560W peak).

5) AMD MI300X GPU: The AMD Instinct MI300X is a
GPU accelerator based on the CDNA 3 architecture, manufac-
tured using TSMC’s 5nm process. It features 19,456 shading
units and 304 compute units, with a base clock of 1000 MHz
that can boost up to 2100 MHz. The MI300X delivers excep-
tional performance across various precision levels, including
20.9 PFLOPs for FP8 operations and 5.2 PFLOPs for TF32
operations with structured sparsity. It consists of 192 GB of
HBM3 memory with an 8192-bit interface, a memory clock of

1368

Models #Hidden
Layers

Hidden
Size

Attention
Type

#Attention
Heads

#KV
Heads

FFN
Type

#FFN
Experts

FFN
Intermediate

Size

Max
Sequence
Length

Vocab
Size

HF
Repo

LLaMA-2-7B 32 4096 MHSA 32 32 Dense 1 11008 4096 32000 [61]
LLaMA-3-8B 32 4096 GQA 32 8 Dense 1 14336 8192 128256 [56]

Mistral-7B 32 4096 GQA 32 8 Dense 1 14336 32768 32000 [62]
Qwen-2-7B 28 3584 GQA 28 4 Dense 1 18944 131072 152064 [63]

LLaMA-2-70B 80 8192 GQA 64 8 Dense 1 28672 4096 32000 [64]
LLaMA-3-70B 80 8192 GQA 64 8 Dense 1 28672 8192 128256 [65]
Qwen-2-72B 80 8192 GQA 64 8 Dense 1 29568 131072 152064 [66]
Mixtral-8x7B 32 4096 GQA 32 8 MoE 8 14336 32768 32000 [11]

TABLE I: LLaMA Model Family Summary

2525 MHz, and a peak memory bandwidth of 5.3 TB/s. The
GPU supports PCIe Gen 5 x16 and includes multiple Infinity
Fabric links with a peak bandwidth of 128 GB/s per link, with
a thermal design power of 750W.

6) SambaNova SN40L: The SambaNova SN40L [25], [68]
Reconfigurable Dataflow Unit (RDU) is a commercial dataflow
accelerator designed for enterprise inference and training ap-
plications. It features a novel three-tier memory system with
520 MiB of on-chip SRAM, 64 GiB of on-package HBM, and
up to 1.5 TiB of off-package DDR DRAM, interconnected via
a dedicated inter-RDU network for scalability. Each SN40L
socket boasts 638 BF16 TFLOPS of peak performance, uti-
lizing 1040 distributed Pattern Compute Units (PCUs) and
Pattern Memory Units (PMUs) that deliver hundreds of TBps
of on-chip memory bandwidth. This architecture enables the
fusion of complex operations into single kernel calls, achieving
speedups of 2× to 13× on various benchmarks compared to a
baseline without the need for manual kernel programming.

7) Habana Gaudi2: Habana Gaudi2 [24] is an AI processor
that has a heterogeneous compute architecture on the chip -
two Matrix Multiplication Engines (MMEs) and a fully pro-
grammable 24 Tensor Processor Cores (TPCs). Each Habana’s
Gaudi processor (HPU) device consists of 48 MB SRAM, 96
GB of HBM2E memory divided into six segments, and 24 100
Gigabit per second RDMA NIC Ethernet. The MME computes
all operations which can be converted to matrix multiplication
(fully connected layers, convolutions, batched-GEMM). In
contrast, the TPC is a VLIW SIMD processor tailor-made
for other DL operations. Habana Gaudi2 can support vLLM,
Deepspeed and customized library Optimum Habana.

APPENDIX C
LLM INFERENCE FRAMEWORKS

1) TensorRT-LLM: TensorRT-LLM is a powerful toolkit
that provides an intuitive Python API for defining LLMs and
building optimized TensorRT engines for efficient inference on
NVIDIA GPUs. It incorporates SOTA optimizations, including
kernel fusion, padded and packed tensors, quantization, and
runtime optimizations like C++ implementations, KV caching,
continuous in-flight batching, and paged attention. The library
offers components to create both Python and C++ runtimes
for executing the optimized TensorRT engines, enabling users
to harness the full potential of LLMs across various config-
urations, from single GPUs to multi-node setups with mul-

tiple GPUs using Tensor, Pipeline and Expert Parallelisms.
TensorRT-LLM supports a wide range of popular LLM archi-
tectures and includes features such as beam search, extensive
sampling functionalities, and integration with the NVIDIA
Triton Inference server for production-quality deployment for
applications from real-time chatbots to complex text analysis.

2) vLLM: The vLLM framework [27] is an open-source,
high-performance solution developed initially at UC Berkeley.
Now, it is a community project designed to serve and optimize
the deployment of LLMs. At its core, it utilizes an optimized
attention algorithm called PagedAttention, which dynamically
allocates GPU memory for actual decoding lengths, signifi-
cantly reducing memory consumption and increasing through-
put. vLLM supports many popular and SOTA LLMs and incor-
porates various modern LLM acceleration techniques such as
speculative decoding, chunked prefill, flash attention, HIP and
CUDA graphs, tensor parallel multi-GPU, and quantization
methods such as GPTQ [37], AWQ [38], SqueezeLLM [69],
FP8 KV Cache. vLLM’s continuous batching feature allows
it to process multiple requests simultaneously to tackle heavy
query loads effectively. The framework offers a simple Python
API for offline inference and an OpenAI API-compatible
server for online serving.

3) Deepspeed: DeepSpeed is an open-source deep learn-
ing optimization library developed by Microsoft, primarily
designed to enhance the efficiency and effectiveness of dis-
tributed training and inference for large-scale models. It in-
corporates several optimizations, such as Zero Redundancy
Optimizer (ZeRO), to distribute model states across GPUs
to reduce communication and 3D Parallelism to combine
multiple parallelisms. It can accelerate LLMs on different
hardware platforms, such as Nvidia GPUs.

4) Deepspeed-MII: DeepSpeed-MII is an open-source li-
brary from DeepSpeed that develops low-latency, low-cost so-
lutions for LLM inference. This framework leverages extensive
optimizations from DeepSpeed-Inference, such as deepfusion
for transformers, automated tensor-slicing for multi-GPU in-
ference, compiler optimizations via TorchScript and nvFuser,
and on-the-fly quantization with ZeroQuant. MII also features
blocked KV-caching, continuous batching, Dynamic SplitFuse,
tensor parallelism, and high-performance CUDA kernels to
support fast, high-throughput text generation.

5) llama.cpp: llama.cpp is an open-source, high-
performance portable inference framework for LLMs

1369

TABLE II: Features of evaluated AI accelerators

Feature Nvidia A100 Nvidia H100 Nvidia GH200 AMD MI250 AMD MI300X Habana
Gaudi2

SambaNova
SN40L

Devices 4 4 1 4 8 8 8
Memory
(/node)

160 GB 320 GB 96 GB 512 GB 1536GB 768 GB 512 GB

Memory
(/device)

40 GB 80 GB 96 GB 128 GB 192GB 96 GB 64 GB

Interconnect NVLink NVLink N/A Infinity Fabric Infinity Fabric RoCE V2 PCIe Inter-
RDU network

Inference
Framework

TensorRT-
LLM, vLLM,
llama.cpp,
Deepspeed-
MII

TensorRT-
LLM, vLLM,
llama.cpp,
Deepspeed-
MII

TensorRT-
LLM, vLLM,
llama.cpp,
Deepspeed-
MII

vLLM,
llama.cpp,
Deepspeed-
MII

vLLM,
llama.cpp,
Deepspeed-
MII

vLLM, Deep-
speed

SambaFlowTM

Precision
Support

FP32, FP16,
BF16, INT8,
INT4, INT1

TF32, FP32,
FP16, BF16,
FP8, INT8,
INT4, INT1

TF32, FP32,
FP16, BF16,
FP8, INT8,
INT4, INT1

FP32, FP16,
BF16, INT8

FP32, FP16,
BF16, FP8,
INT8

BF16, FP16,
FP8

FP32, BF16,
INT32, INT16,
INT8

Compute
Units
(/device)

6912 Cuda
Cores, 432
Tensor Cores

16896 Cuda
Cores, 456
Tensor Cores

16896 Cuda
Cores, 456
Tensor Cores

208 Compute
Units

304 Compute
Units, 1216
Matrix Cores

24 TPC + 2
MME

1040 PCU and
PMU

written in C/C++, a viable alternative to heavyweight
frameworks. It stands out for its ability to run models
efficiently on consumer-grade hardware, making LLM
inference accessible to users without specialized equipment.
The framework employs advanced optimization techniques,
including quantization and efficient memory mapping, to
significantly reduce the memory footprint of LLMs without
substantial performance degradation. llama.cpp’s lightweight
design ensures fast responses and broad compatibility
across various platforms, from CPUs to GPUs. It supports
multiple hardware acceleration options, including CUDA
for NVIDIA GPUs, METAL for Apple M1/M2 chips, and
CLBLAST for AMD/Intel GPUs. The project’s focus on
efficiency, portability, and customization has made it a
valuable tool for researchers and developers working with
LLMs in resource-constrained environments or exploring AI
capabilities on common hardware. It has bindings across
several programming languages. Notable ones include
llama-cpp-python, a Python interface on top of C++.

Table III summarizes the different hardware platforms and
inference frameworks we utilized in our study.

Framework NVIDIA
A100

NVIDIA
H100

NVIDIA
GH200

AMD
MI250

Habana
Gaudi2

vLLM Yes Yes Yes Yes Yes
llama.cpp Yes Yes Yes Yes N/A

TensorRT-LLM Yes Yes Yes N/A N/A
Deepspeed-MII Yes No No No Yes

TABLE III: Summary of Inference Frameworks Evaluated

APPENDIX D
MISCELLANEOUS

A. Perpleixty

We evaluate the LLMs on LongBench [54], an open-source
benchmark consisting of the following datasets: HotpotQA
[70], 2wikimqa [71], musique [72], DuReader [73], narrativeqa
[74], qasper [75], GovReport [76], QMSum [77], VCSUM

3.0 3.5 4.0 4.5 5.0
Perplexity

3500

4000

4500

5000
Th

ro
ug

hp
ut

 (T
ok

en
s/s

ec
)

Perplexity vs Throughput Comparison of ~7B Models
 using vLLM on One H100 GPU for Batch Size = 32

 and Input/Output Length = 1024

Hardware & Model
LLaMA-2-7B
LLaMA-3-8B
Aquila-7B

Qwen1.5-7B
OPT-6.7B
LLaMA-7B

GPT-J-6B
Bloom-7.1B
DeciLM-7B

Fig. 29: H100: Perplexity vs Throughput

[78], TriviaQA [79], SAMSum [80], multi-news [81], trec
[82], lcc [83], repobench [84]. We combine all these datasets
and evaluate models on the large unified dataset. Figure
29 compares the perplexity vs throughput of several ∼7B
models on H100 GPU, evaluated on LongBench dataset [54].
The models include LLaMA-2-7B, LLaMA-3-8B, Aquila-
7B, Qwen1.5-7B, OPT-6.7B, LLaMA-7B, GPT-J-6B, Bloom-
7.1B, and DeciLM-7B. The LLaMA-2-7B model shows best
perplexity but low throughput compared to LLaMA-3-8B. In
contrast, DeciLM-7B has the highest throughput with 5.5k
tokens per second.

APPENDIX E
ADDITIONAL RESULTS

In this section, we provide additional benchmarking results
to better understand accelerators, frameworks and models.

A. TensorRT-LLM
Figure 30 illustrates the performance of 7B models across

different batch sizes and the number of GPUs using TensorRT-
LLM. Throughput increases as batch size increases for all

1370

1 16 32 64
Batch Size

0k
2k
4k
6k
8k

10k
Th

ro
ug

hp
ut

 (T
ok

en
s/s

ec
) TensorRT-LLM: 7B Models on varying A100 GPUs

 for Input/Output Length = 1024

#GPUs & Model
1 Mistral-7B
1 LLaMA-3-8B
1 LLaMA-2-7B

2 Mistral-7B
2 LLaMA-3-8B
2 LLaMA-2-7B

4 Mistral-7B
4 LLaMA-3-8B
4 LLaMA-2-7B

Fig. 30: TRT-LLM: 7B Models on 1,2 and 4 A100 GPUs

1 2 4
Number of GPUs

1k

2k

3k

4k

5k

6k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

vLLM: 7B Models on GPUs with Batch Size = 32
 and Input/Output Length = 2048

Hardware & Model
H100 Mistral-7B
A100 Mistral-7B
MI250 Mistral-7B

H100 LLaMA-3-8B
A100 LLaMA-3-8B
MI250 LLaMA-3-8B

H100 LLaMA-2-7B
A100 LLaMA-2-7B
MI250 LLaMA-2-7B

Fig. 31: vLLM: 7B Models on 1,2 and 4 GPUs

models and the number of GPU computing devices. LLaMA-
2-7B model performance saturates with a decrease in the
number of GPUs, and Mistral-7B outperforms LLaMA-3-8B
across different batch sizes and number of GPUs.

B. vLLM

Figure 31 illustrates the performance of 7B models across
different batch sizes and the number of H100, A100 and
MI250 GPUs using vLLM. The H100 systems consistently
achieve higher throughput across all models and number of
computing devices. Despite having 1 billion more parameters,
LLaMA-3-8B outperforms Mistral-7B on H100 GPU. This
shows that H100 can handle large models using vLLM than
TensorRT-LLM.

C. llama.cpp

Figure 31 depicts the performance of 70B models across
different batch sizes on four GPUs using llama.cpp. We
exclude A100 numbers from the figures as the 70B models
could not fit on one A100 node which consists of 40GB on
each chip. H100 GPUs perform better than MI250 GPUs, and
Mixtral-8x7B outperforms LLaMA-2-70b and LLaMa-3-70b
due to a sparse mixture of expert modules.

D. Nvidia GPUs

Figure 33 compares different frameworks and 7B models
on H100 GPU for input and output length 1024, where Qwen2-
7B with TRT-LLM attains the highest throughput and the

1 16 32 64
Batch Size

0
20
40
60
80

100

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) llama.cpp: 70B Models on Four GPUs
 with Input/Output Length = 1024

Hardware & Model
H100 Mixtral-8x7B
H100 LLaMA-3-70B

MI250 Mixtral-8x7B
MI250 LLaMA-2-70B

Fig. 32: llama.cpp: 70B Models on H100 and MI250

1 16 32 64
Batch Size

0k

2k

4k

6k

8k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

H100:Framework Comparison of 7B Models on One GPU
 with Input & Output Length = 1024

Framework & Model
TRT-LLM Qwen2-7B
TRT-LLM Mistral-7B
TRT-LLM LLaMA-3-8B
TRT-LLM LLaMA-2-7B

vLLM Qwen2-7B
vLLM Mistral-7B
vLLM LLaMA-3-8B
vLLM LLaMA-2-7B

llama.cpp Mistral-7B
llama.cpp LLaMA-3-8B
llama.cpp LLaMA-2-7B

Fig. 33: 7B Model Framework Comparison on H100

next closet performer being Qwen2-7B with vLLM. This is
due to less number of neural architecture hyperparameters for
Qwen2-7B, such as numbers of layers, hidden size, and FFN
dimension, compared to other models (See Table I).

In Figure 34, we compare the execution performance of
TRT-LLM and vLLM on A100 and H100 GPUs for ∼70B
models. MoE model Mixtral outperforms 70B models by a
considerable margin, whereas LLaMA-2-70B using vLLM and
TRT-LLM performs slightly better than LLaMA-3-70B on
A100 and H100.

1 16 32 64
Batch Size

0k

2k

4k

6k

8k

10k

12k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

70B Models on four A100 and H100 GPUs
 with Input & Output Length = 1024

Hardware, Framework & Model
H100 TRT-LLM Mixtral-8x7B
H100 TRT-LLM LLaMA-2-70B
H100 vLLM LLaMA-2-70B
H100 TRT-LLM LLaMA-3-70B
H100 vLLM LLaMA-3-70B

A100 TRT-LLM Mixtral-8x7B
A100 vLLM Mixtral-8x7B
A100 TRT-LLM LLaMA-2-70B
A100 vLLM LLaMA-2-70B
A100 TRT-LLM LLaMA-3-70B

Fig. 34: 70B models on A100 and H100

1371

1 16 32 64
Batch Size

0
500

1000
1500
2000
2500

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)
7B Models on One MI250 GPU using vLLM

 with Input & Output Length = 1024

Model
Qwen2-7B
Mistral-7B

LLaMA-3-8B
LLaMA-2-7B

Fig. 35: MI250: vLLM on 7B Models

E. AMD MI250

Figure 35 illustrates the performance of Qwen2-7B, Mistral-
7B, LLaMA-3-8B, LLaMA-2-7B models on MI250 GPU
using vLLM across different batch sizes. We observe that
Qwen2-7B, Mistral-7B and LLaMA-38B models attain their
peak performance at batch size 32 and decline for batch size
64. However, LLaMA-2-7B achieves the highest throughput
than other models at batch size 64. This is contrary to other
hardware, as LLaMA-2-7B with MHSA should saturate faster
than models with GQA. Within batch size 32, Qwen2-7B
outperforms Mistral-7B and Mistral-7B slightly better than
LLaMA-3-8B due to its relatively smaller vocab size.

Figure 36 illustrates the performance of Qwen2-7B, Mistral-
7B, LLaMA-3-8B, LLaMA-2-7B models on MI250 GPU
using llama.cpp across different batch sizes. LLaMA-2-7B
using llama.cpp on MI250 attains the best performance across
all batch sizes compared to other models. This concludes that
llama.cpp cannot better utilize GQA as models with GQA lag
behind MHSA. Qwen2-7B, the model with the best perfor-
mance using vLLM has the least performance using llama.cpp
on MI250 GPU. Figure 37 compares several large (MoE and
70B) models on 4 MI250 GPUs using vLLM. Similar to TRT-
LLM, Mixtral-8x7B attains higher performance than other
models. We also observe that all models scale well with an
increase in the number of GPUs.

F. Habana Gaudi2

Figure 38 compares the performance of several 70B models
on Gaudi2, H100 and A100. We observe that the performance
of Gaudi2 lies between H100 and A100 across all the models,
while Gaudi2 outperforms A100, lagging behind H100.

1 16 32 64
Batch Size

40

45

50

55

60

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

7B Models on One MI250 GPU using llama.cpp
 with Input & Output Length = 1024

Model
LLaMA-2-7B
Mistral-7B

LLaMA-3-8B
Qwen2-7B

Fig. 36: MI250: llama.cpp on 7B Models

1 16 32 64
Batch Size

0
500

1000
1500
2000
2500
3000

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

) 70B Models on Four MI250 GPUs using vLLM
 with Input & Output Length = 1024

Model
Qwen2-72B
Mixtral-8x7B

LLaMA-3-70B
LLaMA-2-70B

Fig. 37: MI250: vLLM on 70B Models

1 16 32
Batch Size

0k

0k

1k

1k

2k

2k

Th
ro

ug
hp

ut
 (T

ok
en

s/s
ec

)

4 Gaudi2 vs 4 H100 & 4 A100 GPU: Comparison of 70B Models
 with Input and Output Length = 512

Hardware Framework and Model
H100 TRT-LLM LLaMA-2-70B
H100 TRT-LLM LLaMA-3-70B
H100 TRT-LLM Qwen2-72B

Gaudi2 DS LLaMA-2-70B
Gaudi2 DS LLaMA-3-70B
Gaudi2 DS Qwen2-72B

A100 TRT-LLM LLaMA-2-70B
A100 TRT-LLM LLaMA-3-70B

Fig. 38: H100 vs A100 vs Gaudi2: 70B Models

APPENDIX F
ARTIFACT DESCRIPTION

All the instructions to download weights, set up frame-
works, run benchmarks and plot results are present in
the Github repository https://github.com/argonne-lcf/LLM-
Inference-Bench.

1372

