System-Wide Roofline Profiling -
a Case Study on NERSC’s Perlmutter
Supercomputer

Brian Austin, Dhruva Kulkarni, Brandon Cook, Samuel Williams, Nicholas J. Wright
Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
{baustin, dkulkarni, bgcook, swwilliams, njwright } @Ibl.gov

Abstract—HPC system architects routinely use many forms of
application profiling and performance modeling to evaluate hard-
ware and software performance trade-offs. However, the focus
on individual applications can leave gaps in the understanding of
total system utilization because it is impractical to collect profiles
and models for every combination of application and input. In
this paper, we use hardware activity metrics data gathered from
thousands of GPUs on NERSC’s Perlmutter system to perform
a roofline performance analysis of the full cross-section of a
diverse scientific workload and provide quantitative empirical
evidence for widely held beliefs that had previously been inferred
from scattered analyses of individual applications. Specifically, we
confirm the predominance of double-precision (FP64) floating
point operations in scientific computing, responsible for two
thirds of the total flop count; single-precision (FP32) accounts
for another third while half-precision (FP16) operations are rare.
Additionally, the arithmetic intensity for these operations are
below the machine balance for 46% of samples and above it
for 54%, which suggests near equal fractions of the workload
are compute-bound and bandwidth-bound on Perlmutter’s GPUs.
These results stand in contrast to hardware performance trends
where artificial intelligence applications are driving processors
to emphasize the performance of reduced-precision operations,
and gains in memory bandwidth are not keeping pace with peak
processing rates.

Index Terms—Profiling, Monitoring, Roofline

I. INTRODUCTION

Designing supercomputers requires system architects to
map the requirements of their workload to the potential per-
formance capabilities of future technologies. For reasonably
homogeneous workloads with a small number of applications,
it may be possible to evaluate the entire application space
through performance models or simulation, but the workloads
at many supercomputing centers are far too diverse to be so
thorough. Instead, a common alternative practice is to analyze
a subset of the applications and make cautious inferences
about how the remaining applications would perform on the
proposed hardware, but this approach may be skewed by the
selection of which codes to analyze or the biases that the
architects unavoidably use when making inferences. In this
paper, we use passive monitoring of GPU performance metrics
to profile the Perlmutter system at NERSC. Analyzing these
metrics through the roofline performance model, we obtain an
empirical (non-inferential) estimate of the memory bandwidth
sensitivity of the entirety of an extremely diverse workload
consisting of over 650 distinct applications.

The roofline performance model combines the properties of
a computational kernel and the performance capabilities of a

979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00180

1391

processor to determine the maximum achievable performance
of the kernel on that processor [1]. Kernels are characterized
by their arithmetic intensities (Al), defined as the ratio of the
number of operations (typically FLOPs) they execute and the
number of bytes they transfer to/from memory. Processors are
characterized by their peak operation rates and peak memory
bandwidth. The roofline function defines a performance ceiling
for the kernel according to its Al

Al x PeakBandwidth,
PeakOps

The kernel’s performance may approach the roofline if it is
well optimized for that architecture.

The roofline model also enables simple diagnosis of which
aspects of the system constrain the kernels performance. The
machine’s balance point, given by the ratio of its peak ops and
peak bandwidth, describes the Al that separates the two terms
in the roofline function. The performance of well optimized
kernels with Al below the machine balance are memory-
bandwidth bound on the system and kernels with Al above
the machine balance are compute bound.

Methods for determining the Al of arbitrary kernels are
often costly or labor intensive. Manual counting of flops
and bytes can be tedious, especially for complex ker-
nels. Compiler-instrumentation such as Byfl [2] and binary-
instrumentation tools such as Pin [3] have severe runtime
overheads. The roofline analysis tools included in several
commercially developed profiling tools are easy to use, but
can be appieled only on a per-kernel or per-job basis and are
not suitable for applying to a very large number of jobs. (Our
analysis includes over 135,000 jobs.)

Recently advances in system telemetry expose a far richer
view of system activity. These include the availability of
interfaces to make GPU performance metrics available outside
vendor-provided performance tools and the maturity of data
collection infrastructure that is capable of ingesting hundreds
of metrics from thousands of nodes at reasonably high sam-
pling rates. This enables a first ever (to our knowledge)
system-wide roofline analysis and our contribution of the
following key findings.

Roofline(AI) = min(

o Two thirds of the floating point operations on Perlmutter
use double-precision (FP64) and one third uses single-
precision (FP32). Half-precision (FP16) operations are
rare in this scientific computing workload.

e The median of FP64 Al measurements (3.2) is more
than an order of magnitude less than the median for

FP32 Al measurements (0.06). The fraction of FP64 Al
measurements that exceed the A100 machine balance and
have the potential to be compute bound is 38%; for FP32,
this fraction is only 21%.

o We define a “pseudo-64" operation that allows the com-
putation of a total Al for all floating point operations. By
this metric, 46% of the Perlmutter workload is memory-
bound and 54% is compute bound.

o« We compare the NERSC-10 benchmark suite to the
Perlmutter workload and observe that although the
benchmarks replicate the workload’s overall balance of
memory- and compute-bound samples, effects of using
a finite suite are clearly visible in the shapes of the Al
distribution.

The remainder of the paper is organized as follows. Sec-
tion II describes the Perlmutter system and its monitoring
infrastructure. Section III presents our roofline analysis of Perl-
mutter’s GPU workload. In Section IV, we compare the full
GPU workload to the NERSC-10 benchmark suite. Section V
describes related work and Section VI discusses sources of
uncertainty in our results.

II. SYSTEM DESCRIPTION

Perlmutter is a HPE-Cray Shasta supercomputer installed
at NERSC in 2019. The system is composed of two types
of compute nodes: 3072 CPU-only nodes, and 1792 GPU-
accelerated nodes, all connected by a Slingshot network [4].
Details of the Perlmutter architecture can be found online [5].

This work focuses on the GPU-accelerated nodes, each of
which has one AMD EPYC 7763 “Milan” CPU [6], 256 GB
of DDR4 memory, four NVIDIA A100 “Ampere” GPUs [7],
and four HPE Slingshot NICs [4]. In most (1536) of the GPU
nodes, the A100s have 40 GB of HBM2 memory, but a smaller
number (256) have 80 GB of HBM2. Our analysis is limited
to the 40 GB A100s; their peak performance specifications are
listed in Table I.

Perlmutter’s monitoring infrastructure collects a broad va-
riety for real-time operational needs and post hoc analysis.
The GPU performance counters used in this study were
sampled using the NVIDIA Data Center Graphics Manager
(DCGM) [8], aggregated using the Lightweight Distributed
Metric Service (LDMS) [9], and stored in NERSC’s Opera-
tions Monitoring and Notification Infrastructure (OMNI) [10].
DCGM metrics are sampled at 1 second intervals and indicate
the average resource utilization during that interval.

TABLE 1
PERFORMANCE SPECIFICATION FOR VARIOUS OPERATIONS ON NVIDIA
40 GB A100 GPUSs, DCGM METRICS FOR DETERMINING THEIR
UTILIZATION, AND THE RELATIVE FREQUENCY OF THEIR OCCURRENCE
ON PERLMUTTER.

Peak DCGM Relative
Feature Performance Metric Frequency
FP16 78 TF/s fpl6_active 0.5%
FP32 19.5 TF/s fp32_active 35.9%
FP64 9.7 TF/s fp64_active 33.4%
FP64 Tensor 19.5 TF/s tensor_active 30.2%
HBM2 1.555 TB/s dram_active N/A

III. WORKLOAD PROFILE

The GPU activity metrics listed in Table I were collected
for jobs that ran on Perlmutter’s 40 GB GPU nodes during
the month of July, 2024. These metrics report the fraction of
cycles the FP16, FP32, FP64, tensor pipelines were active,
or the fraction of cycles when data was sent to or received
from HBM. We compared the metric values to the performance
measured by mixbench [11] and mt-gemm [12] to confirm
that these metrics can also be interpreted as highly accurate
measures of the fractions of peak performance values listed in
Table 1.

These calibration experiments also revealed that for approx-
imately 15% of the samples, all of the floating-point activity
metrics (but not the DRAM activity) were exactly zero, even
when running sustained temporally uniform workloads. Thus,
we labeled any time samples for which all of the floating
point metrics are zero as invalid and excluded them from our
analysis.

We estimate the total number of floating point operations
by multiplying the activity metrics by the corresponding peak
performance, and summing over all samples. The relative
number of operations of each type are listed in the final column
of Table I. We infer that the tensor activity is predominantly
due to FP64 operations because: a) there number of FP16
vector operations is not commensurate with the level tensor
activity, b) the tensor cores do not support FP32 operations,
and c) TF32 and integer matrix operations are presumably rare
among simulation workloads. It is possible that some of the
tensor operations could have used reduced precision without
corresponding FP16 vector activity, for example by using the
mixed-precision matrix operations in cublasLt, but this seems
unlikely to be widespread given the relative novelty and lack
of standardization for such interfaces. Combining the FP64
vector and tensor activity, FP64 operations constitute roughly
two thirds of the workload. The remaining third is FP32, while
FP16 operations are rare.

A simple estimate of the Al for FP64 operations can be
made using the formula

fp64_active X Peakppga

Alppes =
dram_active X Peakypno

Similar formulas for FP32 and tensor operations are easily
constructed. This formula will underestimate the Al if multiple
types of FP operations occur during the sample window
because the denominator may include bytes for other FP types,
integers and instructions.

Figure 1 shows the distribution of DCGM samples (nom-
inally one per GPU-second, excluding invalid samples) vs
arithmetic intensity for FP32, FP64 and FP64 tensor operations
collected from Perlmutter during July, 2024. For comparison,
the performance rooflines for these operations are shown on
the secondary axis. For all three precisions, the majority
of samples have Al values substantially below the machine
balance (marked by the dashed vertical line). The AI distri-
bution for FP32 operations is almost always well below the
machine balance (marked by the vertical dashed line) which
could plausibly be explained by user preferences of FP32
for bandwidth-bound codes. The AI for FP64 operations is

FP32 &=

FP64

Fraction of Samples (%)
FP Performance Roofline (TF/s)

Tensor

E

2z 1

0.001 0.01 0.1 1 10 100 1000

Fig. 1. Algorithmic Intensity distributions for Perlmutter’s GPU workload.

qualitatively higher than FP32 operations, has a broad peak
near 2 flops/byte, and a significant tail that extends far to
the right of the machine balance. It is surprising that the Al
for tensor operations is typically below the machine balance
because matrix multiplication (the intended purpose of tensor
cores) is highly amenable to data caching.

IV. BENCHMARK PROFILES

One of the prevailing approaches to understanding the
needs of diverse workloads is to select a set of representative
benchmarks from the workload, profile the benchmarks to
understand their performance sensitivities, and assume that the
hardware requirements of the benchmarks are applicable to
the broader workload. In this section, we examine the GPU-
enabled benchmarks from the NERSC-10 workflow compo-
nent benchmark suite and compare their characteristics to the
Perlmutter workload.

The benchmark descriptions, source code and inputs were
obtained from the NERSC-10 benchmarks website [13]. These
benchmarks were selected to span the range of science do-
mains, algorithmic patterns and workflow motifs running at
NERSC. The four benchmarks with mature GPU implemen-
tations are:

e MILC is a lattice quantum chromodynamics (QCD)
framework for subatomic physics [14]. The MILC work-
flow benchmark has two component applications identi-
fied as generation and spectrum.

BerkeleyGW models the electronic structure of materi-
als [15]. The BerkeleyGW workflow benchmark has two
component applications: Epsilon and Sigma.

LAMMPS is a molecular dynamics application for mod-
eling the physical properties of materials [16].
DeepCAM trains a deep neural network to classify at-
mospheric phenomena from previously computed climate
simulations [17].

Each benchmark was run using the “small” problem size
defined in the benchmark distributions, and configured to use

1393

T

| BerkeleyGW Epsilon
FP16
FP32 =3
FPG4

Tensor

60
40

20

a0 BerkeleyGW Sigma

10
60
40 0.1

20 0.01

LAMMPS

80 10

60

40 0.1

20 0.01

MILC Generation

80|

60

L

40

20

Fraction of Samples (%)

-

MILC Spectrum

FP&4 Performance Roofline (TFfs)

80
60
40
20

20 DeepCAM

60
40 0.1

20 0.01

0.1 1 10
Arithmetic Intensity (FP-ops / byte)

0.001 0.01 1000

Fig. 2. Algorithmic Intensity distributions for the NERSC-10 GPU bench-
marks.

4 GPUs on a single node. The DCGM command line interface
was used to collect the same metrics named in Section III.
The benchmarks’ distribution of DCGM samples vs. Al
is shown in Figure 2. The benchmarks have distinct and
diverse signatures with respect to FP types and Al. Both
MILC applications, generation and spectrum, have a mix
of FP32 that are near the machine balance but memory-
bandwidth bound, and FP64 vector and tensor operations
that are strongly bandwidth bound. BerkelyGW-Epsilon uses
double precision exclusively, with memory-bound FP64 vector
operations and FP64 tensor operations associated with matrix
inversion that are compute-bound. BerkeleyGW-Sigma uses
only FP64 vector operations, but with very high Al. LAMMPS
FP64 vector operations are clearly to the right of the machine
balance, while its FP32 vector operations are to the left.
DeepCAM is the only benchmark that uses FP16 and the
only benchmark that does not use FP64. Thus, counter to
the arguments in Section III, tensor activity for DeepCAM is
assumed to use FP16. DeepCAM’s FP16 and FP32 operations
are near the A100 machine balance, but bandwidth-bound,
while its FP16 tensor operations are compute-bound. Across
all of the benchmarks, the peaks of the Al distributions are

| Perimutter Workioad 4 10

pseudo-64

-
]

©
T
-l

-

0.1

@
T
ol

0.01

w
T
-l

| NERSC-10 Benchmarks

-
=1

I R — 4 10

Fraction of Samples (%)

©
T
-l

[

Pseudo-64 Peformance Roofline (TF/s)

= . — L
0.001 0.01 01 1 10 100 1000
Arithmetic Intensity (FP-ops / byte)

Fig. 3. Pseudo-64 Algorithmic Intensity distributions for Perlmutter’s GPU
workload and NERSC-10 benchmarks.

much narrower than the full workload shown in Figure 1,
which suggests that although the benchmarks may represent
a few important uses of the supercomputer, they do not
exemplify every pattern and proportion of usage, as would
be expected.

In order to compare the benchmarks to the workload using
a single metric, we define the “pseudo-64" operation count as
a weighted sum of 0.25x the FP16 operations, 0.5x the FP32
operations, and 1.0x the FP64 and tensor operations; which is a
proxy for FPU utilization scaled by FP64 rates. Figure 3 shows
the distribution of samples among pseudo-64 Al measurements
for the Perlmutter workload and the average of the NERSC-10
Benchmarks. The two distributions are qualitatively different
from each other. The Perlmutter workload has a single wide
peak close to the machine balance with equal fractions of
samples on the memory-bound and compute-bound sides of
the roofline. The NERSC-10 Benchmark distribution spans the
same range of AI values and also has a near equal division
between memory-bound and compute-bound samples, but the
samples are clustered into several narrow peaks.

V. RELATED WORK

A large body of work uses roofline analysis to understand
application performance. See References [18]-[22] for a lim-
ited sample. In all of these examples, the roofline model is
applied to jobs on an individual basis. Our approach uses the
roofline model to learn about the entire workload, with no
attention given to individual jobs.

System monitoring research is also relevant. Most of this
work focuses on either the efficient aggregation of metrics [9],
[10]. Practical use of this data is typically focused on oper-
ational questions such as system health and utilization; and
does not address questions of performance.

Earlier HPC workload analyses from NSF centers [23],
NCAR [24] and NERSC [25] have focused largely on identify-
ing and classifying applications and the schedulable resources
they request from the job scheduler. Where workload analyses
have examined utilization of resources within job allocations,
it has been limited to memory capacity. They have not ex-
amined rates (memory bandwidth or FLOP performance) and
have not compared those rates to a performance model. To the

best of our knowledge, this paper is the first presentation of a
system-wide roofline performance analysis.

VI. DISCUSSION

Several sources of uncertainty should be considered when
interpreting these results. The floating point activity metrics
count any activity the pipelines and our simple estimate of
the floating point count assumes the entire warp is active,
but this may not be true if some threads within the warp are
masked. Further, the estimate is based on the peak floating
point performance, but the actual floating point count could
be a factor of two lower if the code cannot take advantage of
fused multiply-add pipes. Both of these effects would cause
the estimated Al to be artificially low. The low sampling rate
(1 Hz) may mute bursts of high floating point or memory by
averaging over a long time-window, thus causing moments of
particularly high (or low) Al to go undetected. Last, we have
ignored many samples when all of the floating point activity
metrics were exactly zero due to an unidentified problem
with DCGM. A consequence of this filtering is that we are
unable to distinguish between data collection errors and times
when the activity is truly zero due to I/O or communication.
Understanding the effect of these errors requires additional
research.

ACKNOWLEDGMENT

This research used resources of the National Energy Re-
search Scientific Computing Center (NERSC), a Department
of Energy Office of Science User Facility using NERSC award
ASCR-ERCAP0026875. ROR: https://ror.org/05v3mvql4

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, p. 65-76, apr 2009.

[2] S. Pakin and P. McCormick, “Hardware-independent application
characterization,” in 2013 IEEE International Symposium on Workload
Characterization (IISWC), 2013, pp. 111-112.

[3] “Pin - A Dynamic Binary Instrumentation Tool ,”
https://www.intel.com/content/www/us/en/developer/articles/tool/
pin-a-dynamic-binary-instrumentation-tool.html, 2013, Accessed:
8-31-2024”, organization = "Intel”.

[4] “HPE Slingshot,” [Online]. Available:
https://www.hpe.com/psnow/doc/PSN1012904596USEN, Accessed:
2024-08-22.

[5] “Perlmutter, a HPE Cray EX system,”
https://docs.nersc.gov/systems/perlmutter/architecture/, Accessed:
2024-08-22.

[6] “AMD EPYC 7763, https://www.amd.com/en/products/processors/
server/epyc/7003-series/amd-epyc-7763.html, Accessed: 2024-08-22.

[7] “NVIDIA A100 Tensor Core GPU Architecture,”
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/
pdf/A100-PCIE-Prduct-Brief.pdf, Accessed: 2024-08-22.

[8] “NVIDIA DCGM,” https://developer.nvidia.com/dcgm, Accessed:
2024-08-22.

[9] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop,

A. Gentile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan,

M. Showerman, J. Stevenson, N. Taerat, and T. Tucker, “The
Lightweight Distributed Metric Service: A Scalable Infrastructure for
Continuous Monitoring of Large Scale Computing Systems and
Applications,” in SC’14: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis,
2014, pp. 154-165.

1394

[20]

(21]

22

(24

(25]

E. Bautista, M. Romanus, T. Davis, C. Whitney, and T. Kubaska,
“Collecting, Monitoring, and Analyzing Facility and Systems Data at
the National Energy Research Scientific Computing Center,” in
Workshop Proceedings of the 48th International Conference on
Parallel Processing, ser. ICPP Workshops *19. New York, NY, USA:
Association for Computing Machinery, 2019.

E. Konstantinidis and Y. Cotronis, “A quantitative roofline model for
GPU kernel performance estimation using micro-benchmarks and
hardware metric profiling,” Journal of Parallel and Distributed
Computing, vol. 107, pp. 37-56, 2017.

“mt-gemm,” https://gitlab.com/NERSC/nersc-proxies/mt- gemm,
NERSC, 2021, Accessed: 7-27-2024.

“NERSC-10 Benchmarks,” https://gitlab.com/NERSC/N10-benchmarks,
2023, Accessed: 8-31-2024”, organization = "NERSC”.

MIMD Lattice Collaboration and Bernard, C and others, “The MILC
Code,” 2010.

J. Deslippe, G. Samsonidze, D. A. Strubbe, M. Jain, M. L. Cohen, and
S. G. Louie, “BerkeleyGW: A massively parallel computer package for
the calculation of the quasiparticle and optical properties of materials
and nanostructures,” Computer Physics Communications, vol. 183,

no. 6, pp. 1269-1289, 2012

A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M.
Brown, P. S. Crozier, P. J. in "t Veld, A. Kohlmeyer, S. G. Moore,

T. D. Nguyen, R. Shan, M. J. Stevens, J. Tranchida, C. Trott, and S. J.
Plimpton, “LAMMPS - a flexible simulation tool for particle-based
materials modeling at the atomic, meso, and continuum scales,”
Computer Physics Communications, vol. 271, p. 108171, 2022.

T. Kurth, S. Treichler, J. Romero, M. Mudigonda, N. Luehr,

E. Phillips, A. Mahesh, M. Matheson, J. Deslippe, M. Fatica, Prabhat,
and M. Houston, “Exascale deep learning for climate analytics,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, ser. SC *18. 1EEE
Press, 2018.

M. Javed, K. Ibrahim, and X. Lu, “Performance analysis of deep
learning workloads using roofline trajectories,” CCF Transactions on
High Performance Computing, vol. 1, 11 2019.

K.-H. Kim, K. Kim, and Q.-H. Park, “Performance analysis and
optimization of three-dimensional FDTD on GPU using roofline
model,” Computer Physics Communications, vol. 182, no. 6, pp.
1201-1207, 2011. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0010465511000452
D. Doerfler, J. Deslippe, S. Williams, L. Oliker, B. Cook, T. Kurth,
M. Lobet, T. Malas, J.-L. Vay, and H. Vincenti, “Applying the
Roofline Performance Model to the Intel Xeon Phi Knights Landing
Processor,” in High Performance Computing, M. Taufer, B. Mohr, and
J. M. Kunkel, Eds. Cham: Springer International Publishing, 2016,
pp. 339-353.

M. Wittmann, G. Hager, R. Janalik, M. Lanser, A. Klawonn,

0. Rheinbach, O. Schenk, and G. Wellein, “Multicore Performance
Engineering of Sparse Triangular Solves Using a Modified Roofline
Model,” in 2018 30th International Symposium on Computer
Architecture and High Performance Computing (SBAC-PAD), 2018,
pp. 233-241.

B. Mostafazadeh, F. Marti, F. Liu, and A. Chandramowlishwaran,
“Roofline Guided Design and Analysis of a Multi-stencil CFD Solver
for Multicore Performance,” in 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), 2018, pp. 753-762.

N. A. Simakov, J. P. White, R. L. Deleon, S. M. Gallo, M. D. Jones,
J. T. Palmer, B. D. Plessinger, and T. R. Furlani, “A Workload
Analysis of NSF’s Innovative HPC Resources Using XDMoD,” ArXiv,
vol. abs/1801.04306, 2018. [Online]. Available:
https://api.semanticscholar.org/CorpusID:13400191

“Cheyenne Workload and Usage Analysis,” https:
/Iwww.cisl.ucar.edu/sites/default/files/2021- 10/UCAR_RFP000074_
Attachment_5_Cheyenne_Workload_and_Usage_Analysis_v1.1.pdf,
NCAR, 2020, Accessed: 8-31-2024.

B. Austin, W. Bhimji, R. Gerber, M. Mustafa, C. Daley, H. He,

R. Thomas, T. Davis, K. Konate, C. Whitney, S. Farrell, G. Lockwood,
N. Wright, and Z. Zhao, “NERSC-10 Workload Analysis,”
https://portal.nersc.gov/project/m888/nersc10/workload/N10_Workload_
Analysis.latest.pdf, NERSC, 2020, Accessed: 8-31-2024.

1395

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C7 Two thirds of the floating point operations on Perl-
mutter use double-precision (FP64) and one third
uses single-precision (FP32). Half-precision (FP16)
operations are rare in this scientific computing work-
load.

The median of FP64 Al measurements (3.2) is more
than an order of magnitude less than the median
for FP32 Al measurements (0.06). The fraction of
FP64 Al measurements that exceed the A100 system
balance and have the potential to be compute bound
is 38%; for FP32, this fraction is only 21%.

We define a “pseudo-64” operation that allows the
computation of a total Al for all floating point
operations. By this metric, 46% of the Perlmutter
workload is memory-bound and 54% is compute
bound.

We compare the NERSC-10 benchmark suite to the
Perlmutter workload and observe that although the
benchmarks replicate the workload’s overall balance
of memory- and compute-bound samples, effects of
using a finite suite are clearly visible in the shapes
of the Al distribution.

Cs

Cs

Cy

B. Computational Artifacts
A; https://doi.org/10.5281/zenodo. 13853536

Artifact ID Contributions Related
Supported Paper Elements
A C1-0Cy Figures 1-3

II. ARTIFACT IDENTIFICATION
A. Computational Artifact Aq
Relation To Contributions

(1 is supported by the histograms of the arithmetic in-
tensity shown in Figure 1 (LDMS/LDMS_AI_v3.png). The
histograms are provided in tabular form by files LDMS/AI_
FP16A_hist.out, LDMS/AI_FP32_hist.out, LDMS_FP64_hist.
out and LDMS/AI_TENSO_hist.out. The total flop counts for
each type can be estimated by integrating over the histogram.

Cy is also supported by Figure 1 and its tables. The
tabular histograms include the cumulative distribution func-
tions (CDF) not shown in the figure. The median Al values
correspond to the AI at which the CDF equals 50%. The
fraction of compute-bound codes corresponds to the value of
the CDF at the machine balance point.

(s is supported by Figure 3 (LDMS/LDMS_PS_v2.png)and
its tables (LDMS/AI_PS64A_hist.out, LDMS/N10bench.
d1000_PS64A hist). The fraction of compute-bound codes

1396

corresponds to the value of the CDF at the machine balance
point.

C} is supported by Figure 3 and visual comparison of the
upper and lower panels.

Expected Results

This was an observational study. There were no experiments
with expected results.

Expected Reproduction Time (in Minutes)

There are types of data included in this artifact: “workload”
data collected from the Perlmutter system, and “benchmark”
data collected by monitoring specific jobs.

The workload data was collected passively and cannot be
reproduced. Queries to the OMNI datastore to access the
workload metrics are reproducible, but would require privi-
leged system access. The Jupyter notebook for generating the
workload histograms is provided in LDMS/LDMS_data.ipnb.
Preparing the histograms requires approximately 1 hour on a
single core of a Perlmutter login node.

The benchmark data can be reproduced with approximately
1 hour of setup time per benchmark and less than ten minutes
of execution time per benchmark on one Perlmutter node.

Artifact Setup (incl. Inputs)

Hardware: This work was performed on Perlmutter, a
HPE-Cray Shasta supercomputer installed at NERSC in 2019.
The system is composed of two types of compute nodes:
3072 CPU-only nodes, and 1792 GPU- accelerated nodes,
all connected by a Slingshot network. This work focuses on
the GPU-accelerated nodes, each of which has one AMD
EPYC 7763 “Milan” CPU [6], 256 GB of DDR4 memory,
four NVIDIA A100 “Ampere” GPUs, and four HPE Slingshot
NICs. In most (1536) of the GPU nodes, the A100s have
40 GB of HBM2 memory, but a smaller number (256) have
80 GB of HBM2. Our analysis is limited to the 40 GB A100s.

Software: Four applications from the NERSC-10 Bench-
mark suite were run on Perlmutter: MILC, BerkeleyGW,
LAMMPS and DeepCAM. The benchmark suite is available
online: https://gitlab.com/NERSC/N10-benchmarks

MILC is a lattice quantum chromodynamics (QCD) frame-
work for subatomic physics. The MILC code can be ob-
tained from https://github.com/milc-qcd/milc_qcd.git. We used
commit 13ffa851. The GPU version of MILC relies on the
QUDA library, which can be obtained from https://github.com/
lattice/quda.git We used commit 35b57df9f. The instructions
to compile, inputs and data needed to run and performance
expectations are described in the benchmark website: https:
/gitlab.com/NERSC/N10-benchmarks/lattice-qcd-workflow/

BerkeleyGW models the electronic structure of materials.
The BerkeleyGW project website, https://berkeleygw.org/
includes a public download option. We used a custom
snapshot of their code-base that can be obtained from

https://portal.nersc.gov/project/m888/nersc10/benchmark_
data/BGW_input/ The instructions to compile, inputs
and data needed to run and performance expectations
are described in the benchmark website: https:
/gitlab.com/NERSC/N10-benchmarks/berkeley gw-workflow

LAMMPS is a molecular dynamics application for modeling
the physical properties of materials. The LAMMPS code
can be obtained from https://github.com/lammps/lammps.git.
We used commit 7d5fc356fe. The instructions to compile,
inputs and data needed to run and performance expectations
are described in the benchmark website: https:/gitlab.com/
NERSC/N10-benchmarks/exaalt

DeepCAM trains a deep neural network to classify at-
mospheric phenomena from previously computed climate
simulations. We used the following DeepCAM container:
registry.nersc.gov/das/deepcam-opt:23.09.01. DeepCAM de-
pends on numerous packages that are included in the afore-
mentioned container. The instructions to compile, inputs and
data needed to run and performance expectations are de-
scribed in the benchmark website: https://gitlab.com/NERSC/
N10-benchmarks/deepcam

Datasets / Inputs: The inputs and data sets for the NERSC-
10 Benchmarks identified above can be obtained by following
the instructions in each benchmark’s web page, which are
listed above.

The raw LDMS counters collected from the full-system
workload are not publicly distributed due to their large size.
Their histograms are provided in the LDMS directory of the
artifact.

Installation and Deployment: Instructions for compiling the
NERSC-10 Benchmarks are included in each benchmark’s
web page, which are listed above. For MILC and LAMMPS,
the GNU compliler collection, version 12.3.0 was used. Berke-
leyGW was compiled with the NVIDIA HPC SDK version
8.5.0. In all the above cases, the NVIDIA cuda compiler
version 12.2 was used to compile cuda code. For DeepCAM,
no additional compilation was needed because the executable
is distributed in a container.

The batch scripts used to run each benchmark have been
modified to start the dcgm daemon before each job. This
is accomplished by adding a wrapper script, wrap_dcgm.sh,
provided in the scripts directory of the artifact. to the job-
launch (e.g. srun) command. The scripts used to launch the
jobs are included in the artifact and are named dcgmi_*.sh.

Artifact Execution

Execution and post-processing of each benchmark has a
similar workflow. Benchmark jobs are submitted using a batch
script named with the pattern. (benchmark)/dcgmi_*.sh (for
example: LAMMPS/dcgmi_small_A100.sh). Standard output
for the job is included in the artifact. Counters are written to a
file named with the pattern (benchmark)/dcgm.d1000.(job-id)
.out. Histograms are produced by the script scripts/dcgmi_hist.
py and written to a separate file for each floating point type:
(benchmark)/dcgm.d1000. (job-id).out_(FPtype).hist. Figure 3
requires an additional histogram (N10bench.d1000_PS64A.

1397

hist) that combines the individual benchmarks; this is gen-
erated by the script N10pseudo.py.

All of the figures are generated from the histogram files
using the command ‘gnuplot -c jscript;‘, where script corre-
sponds to one of:

Figure 1: LDMS/LDMS_AI.gp
Figure 2: N10Obench.gp
Figure 3: LDMS/LDMS_PS.gp

