
Microarchitectural comparison and in-core modeling
of state-of-the-art CPUs:

Grace, Sapphire Rapids, and Genoa
Jan Laukemann

Erlangen National High Performance Computing Center
Friedrich-Alexander-Universität Erlangen-Nürnberg

Erlangen, Germany
jan.laukemann@fau.de

Georg Hager
Erlangen National High Performance Computing Center

Friedrich-Alexander-Universität Erlangen-Nürnberg
Erlangen, Germany
georg.hager@fau.de

Gerhard Wellein
Erlangen National High Performance Computing Center

Erlangen, Germany
gerhard.wellein@fau.de

Abstract—With Nvidia’s release of the Grace Superchip, all
three big semiconductor companies in HPC (AMD, Intel, Nvidia)
are currently competing in the race for the best CPU. In
this work we analyze the performance of these state-of-the-
art CPUs and create an accurate in-core performance model
for their microarchitectures Zen 4, Golden Cove, and Neoverse
V2, extending the Open Source Architecture Code Analyzer
(OSACA) tool and comparing it with LLVM-MCA. Starting
from the peculiarities and up- and downsides of a single core,
we extend our comparison by a variety of microbenchmarks
and the capabilities of a full node. The “write-allocate (WA)
evasion” feature, which can automatically reduce the memory
traffic caused by write misses, receives special attention; we show
that the Grace Superchip has a next-to-optimal implementation
of WA evasion, and that the only way to avoid write allocates on
Zen 4 is the explicit use of non-temporal stores.

Index Terms—Intel Sapphire Rapids, NVIDIA Grace CPU
Superchip, AMD Genoa, Golden Cove, Neoverse V2, Zen 4, in-
core, performance analysis, performance modeling

I. INTRODUCTION

A. Motivation and related work
The Grace Hopper Superchip as well as the Grace CPU

Superchip (GCS) mark the first HPC and data center systems
by Nvidia with their own CPU, based on Arm’s Neoverse
V2 design. One chip comprises 72 cores running at 3.4 GHz
all within one ccNUMA domain. With this approach, Nvidia
wants to catch up with the x86 competition and offer a full
solution covering both accelerators (i.e., GPGPUs) and hosts
(i.e., CPUs). In this work, we analyze the Nvidia Grace CPU
Superchip, compare its performance to the state-of-the-art
competitor x86 CPUs Intel Sapphire Rapids (SPR) and AMD
Genoa, and provide an in-core performance model for all
three microarchitectures for lower-bound runtime prediction
that can be used as part of holistic performance models such
as Roofline [1], leading to valuable insights into performance
bottlenecks of these new CPU architectures.

Although previous work comparing the NVIDIA GCS with
competitive x86 and Arm CPUs exists [2], [3], it focused
mainly on application performance and ignored microarchi-
tectural details.

While there is a wide range of tools for runtime prediction
of machine code via static code analysis, we choose to use
the Open Source Architecture Code Analyzer (OSACA) [4],
[5] as it provides the user with the possibility of adding
new microarchitectures into the existing framework relatively
easily. Moreover, it stands out as it is not restricted to a
single ISA (compared to uiCA [6] and Facile [7]), proved
to provide superior accuracy (compared to llvm-mca [8]) for
already existing performance models, focuses on performance
prediction rather than the code quality (compared to the Code
Quality Analyzer (CQA) [9]), and provides a white-box model
for more insight for the user (compared to AI-based tools like
Ithemal [10] and GRANITE [11]). In [12] a thorough analysis
on write-allocate evasion for Intel Ice Lake and Sapphire
Rapids CPUs was conducted. In this work we broaden the
view to AMD Genoa and the NVIDIA Grace CPU Superchip.

B. Brief overview of the in-core port models

When thinking about the performance of a single CPU
core, we assume what is widely known as the port model:
Each instruction, optionally split into one or more micro-
ops (µ-ops), gets assigned to and processed by execution
units (EUs) and may even require multiple EUs (e.g., to
load data and do an arithmetic computation on the loaded
value). On the other hand, one EU might exist multiple times
and can thus increase the instruction throughput via out-of-
order (OoO) execution; e.g., two FMA units that can be
accessed in parallel double the throughput for this instruction
type. One or more EUs are grouped behind a port as seen by

1405979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00181

D
ec

od
e,

 R
en

am
e,

 D
is

p
at

ch

Fe
tc

h

OUT OF ORDER

Is
su

e

Branch 0

Branch 1

Int Single-Cycle ALU 0

Int Single-Cycle ALU 1

Int Single-Cycle ALU 2

Int Single-Cycle ALU 3

Int Multi-Cycle ALU 0 | Mul | Divide

Int Multi-Cycle ALU 1 | Mul | Divide

SIMD/FP ALU 0 | FP Divide | FP Sqrt

SIMD/FP ALU 2 | FP Divide | FP Sqrt

SIMD/FP ALU 1

SIMD/FP ALU 3

Load 0 | AGU

Load 1 | AGU

Load 2

Store 0

Store 1

P0

P16

P15

P14

P13

P12

P11

P10

P9

P8

P7

P6

P5

P4

P3

P2

P1

IN ORDER

Fig. 1. Arm Neoverse V2 core block diagram and port model, compiled from
Arm’s Software Optimization Guide [13]. The port numbering (“P[0-9]+”)
is chosen by the authors and is not part of the official documentation.

the scheduler, i.e., for each port and each cycle, one µ-op can
be issued (with a global maximum number of µ-ops issued
per cycle). Figure 1 shows the port model of the Neoverse
V2 microarchitecture, used in Nvidia’s Grace CPU. While
the width of the SVE registers is relatively small (128 bit),
there is considerable instruction level parallelism (ILP) in
available ports with similar execution units. As often seen
in modern OoO-architectures, the execution of instructions
including floating-point data is separated from the execution
of integer data. For more information about the idea of port
models, see [4].

C. Testbed and experimental methodology

All experiments were carried out on dedicated servers in
our test cluster: A two-socket Nvidia Grace CPU Superchip,
a two-socket Intel Xeon Platinum 8470, and a two-socket
AMD EPYC 9684X system. The specific hardware features
are listed in Table I. For compilation we used GCC 12.1, the
oneAPI 2023.2 compiler framework and LLVM Clang 17.0.6
for the x86 machines and the Arm C Compiler 23.10 (based
on LLVM 17) and GCC 13.2 for the Grace server. For cycle-
accurate measurements we set the clock frequency to the
corresponding base frequency using SLURM [14] if possible,
i.e., 2.0 GHz for SPR and 2.55 GHz for Genoa. While Grace
does not allow frequency fixing, we could not observe any
frequency change running our benchmarks and validated the
clock frequency of all runs with hardware performance coun-
ters using LIKWID [15] 5.3.0 [16]1. This tool was also used
for all other hardware performance counter measurements. To
validate our in-core performance models, we used the OSACA

1As there is no official release of the LIKWID software with Nvidia Grace
support and only limited support for Genoa, we used the development versions
from PR585 and PR618, respectively.

[4], [5] tool in version 0.5.3 including our own extensions
(which will be part of the next release) for supporting the
microarchitectures in this paper. Furthermore, the LLVM Ma-
chine Code Analyzer (LLVM-MCA) [8] used for comparing
the accuracy of our model.

II. ARCHITECTURAL ANALYSIS

A. Hardware model and instruction performance

Since a port model visualization of all three microarchitec-
tures as shown in Figure 1 would go beyond the scope of this
work, we show the key aspects of the three cores in Table II.

While Golden Cove and Zen 4 have approximately the same
number of ports (12 and 13, respectively), the Neoverse V2
stands out with its 17 ports, fully offloading any non-floating-
point operations to other ports and providing a high ILP. As a
downside, even though the core supports the SVE vector exten-
sion for width-agnostic vector registers, the maximum register
width is 128 bit, which is only a fourth of Golden Cove’s
512 bit registers. This leads to the expectation that the Golden
Cove architecture can show its strength when executing highly
vectorized code while the Neoverse V2 shines with code that
is hard to vectorize and has many scalar instructions, as often
seen in data center and AI workloads. The Zen 4 meets the two
extremes in the middle with 256-bit registers and slightly more
ILP than Golden Cove. Even though Zen 4 supports the AVX-
512 extensions, their execution is split into 2×256 bit packets.
While a comparison of the sustained peak memory bandwidths
heavily depends on the built-in memory type and the number
of DIMMs and would not represent a fair competition, we
can compare them with the theoretical maximum and state that
Genoa only achieves 81% of its theoretical memory bandwidth
peak, while GCS and SPR reach 87% and 90%, respectively.

While there is some documentation on the microarchi-
tectures’ backends [13], [17], [18], the information often
is incomplete or insufficient to build a useful performance
model. Therefore, we write microbenchmarks with various
benchmark tools [19], [20] for every interesting instruction
to obtain its throughput, latency, and port occupation. For the
latter, it is often necessary to interleave the instruction with
known instructions to infer the potential ports of execution.
While each model comprises hundreds of entries of individual
combinations of assembly instructions and operands, we show
the throughput and latency for some of the most important
double-precision instructions in Table III. While the “VEC”
rows refer to the common SIMD instructions in x86 and
AArch64, such as v[add, mul, fmadd213, div]pd
and f[add, mul, mla, div], respectively, the “scalar”
rows refer to scalar assembly instructions from recent ISA
extensions working on vector registers, such as v[add,
mul, fmadd213, div]sd, f[add, mul, div], and
fmadd. However, these numbers often fit the throughput and
latency of similar or equivalent instructions from the respective
ISA, e.g., when including a negate, a subtract instead of add,
additional masking, or instruction aliases.

2GCS’s 6 Int ports comprise 2 multi-cycle + 4 single-cycle ports.

1406

TABLE I
COMPARISON OF THE CORE FEATURES OF THE GRACE CPU SUPERCHIP (GCS), THE INTEL XEON PLATINUM 8470 (SPR), AND THE AMD EPYC
9684X (GENOA). FOR ALL SERVERS, THE L1 AND L2 CACHE ARE EXCLUSIVE CACHES PER CORE, WHILE THE L3 IS SHARED WITHIN ONE CHIP.

Nvidia Grace Superchip “GCS” Intel Xeon Platinum 8470 “SPR” AMD EPYC 9684X “Genoa”
Cores 72 52 96

Frequency (max/base) 3.4 GHz / 3.4 GHz 3.8 GHz / 2.0 GHz 3.7 GHz / 2.55 GHz
Theor. DP Peak 3.92 Tflop/s 6.32 Tflop/s 8.52 TFlop/s
Achiev. DP Peak 3.82 Tflop/s 3.49 Tflop/s 5.1 TFlop/s

TDP 250 W 350 W 400 W
Cache size (L1/L2/L3) 64 KB / 1 MB / 114 MB 48 KB / 2 MB / 105 MB 32 KB / 1 MB / 1152 MB

Main memory 240 GB LPDDR5X 512 GB DDR5 384 GB DDR5
ccNUMA domains 1 4 (SNC-mode) 4 (NPS=4)

Max. mem bandwidth 546 GB/s / 467 GB/s 307 GB/s / 273 GB/s 461 GB/s / 375 GB/s
(theor. / measured)

TABLE II
COMPARISON OF THE IN-CORE FEATURES AND PORT MODELS FOR THE

GCS, SPR, AND GENOA CORES.

GCS SPR Genoa
(Neoverse V2) (Golden Cove) (Zen 4)

Number of ports 17 12 13
SIMD-width 16 B 64 B 32 B

Int units 62 5 4
FP vector units 4 3 4

Loads/cy 3× 128B 2× 512B 2× 256B
Stores/cy 2× 128B 2× 256B 1× 256B

The Golden Cove architecture shows the highest throughput
for all shown vector instructions due to its large register
width. The Neoverse V2 can demonstrate its strength for scalar
instructions due to the large ILP. A single Zen 4 core is slower
or breaks even in terms of throughput for all instructions
shown; however, a full chip comprises 96 cores while an SPR
chip comes only with 52 cores. Therefore, if an application
allows a high parallelism on the node level, e.g., through
OpenMP, the overall throughput of the Genoa system might
come out first, as shown in the artificial peak FLOP benchmark
used in Table I. When looking at the latencies of the investi-
gated instructions, one can clearly observe the superiority of
the Neoverse V2 which shows a lower or even latency for
every single instruction in Table II. Thus, arithmetic-heavy
latency-bound codes such as iterative solvers using the Gauss-
Seidel method [21] could benefit from running on a Grace
CPU Superchip compared to the two competitors. Especially
Intel seems to trade off their high throughput performance
against a relatively high instruction latency, even though they
managed to decrease the ADD latency by half compared to
the predecessor Ice Lake microarchitecture.

B. Clock frequency throttling

Although wide registers can provide a good out-of-the-box
speedup when using vectorization on a single core, it is a well-
known problem for Intel to require the cores to throttle down
for AVX-512-heavy code and when using multiple cores due to
thermal constraints. Therefore we analyzed the sustained clock
frequency for arithmetic-heavy codes while scaling across a
socket on all systems (see Fig. 2). Each benchmark ran for
several minutes and the clock frequency of all active cores

0 20 40 52 60 72 80 96
1,000

1,500

2,000

2,500

3,000

3,500

4,000

Cores

A
vg

C
PU

cl
oc

k
[M

H
z]

GCS
SPR AVX-512
SPR AVX/SSE

Genoa

Fig. 2. Sustained CPU clock frequency for arithmetic-heavy code on GCS,
SPR, and Genoa across one chip. If no ISA extension is specified, the
architecture could sustain the same frequency for all supported ISA extensions.

was tracked using hardware performance counters. While SPR
shows a different behavior right from the start for AVX-512-
heavy code, the sustained frequency for the GCS and Genoa
did not change across ISA extensions. Both SPR and Genoa
eventually fall down to a frequency of 2.0 GHz and 3.1 GHz
for AVX-512-heavy code, which results in 53% and 84%
of their respective single-core turbo limit, even though SPR
manages to sustain a frequency of 3.0 GHz for the case of
AVX- or SSE-heavy code (78% of Turbo). The Nvidia GCS
exhibits a constant frequency of 3.4 GHz (the base frequency)
throughout the whole socket. Therefore, for highly parallel
arithmetic-heavy code, one might see better performance on
GCS compared to SPR despite even for throughput- or latency-
bound code due to a 1.7× higher sustained clock frequency.

C. Performance modeling with OSACA

The individual measurements as shown in Table III can be
incorporated with the specific port occupations into an in-core
performance model that can be used for optimistic runtime
prediction or as a building block for node-wide performance
models (e.g., a more realistic horizontal ceiling in the Roofline
Model [1] or the in-core component of the Execution-Cache-
Memory (ECM) Model [22]). The Open Source Architecture
Code Analyzer (OSACA) provides such an in-core model
based on static analysis of assembly code without compiling
or running it. The tool delivers three different predictions:
a) an optimistic throughput analysis considering the port

1407

TABLE III
THROUGHPUT AND LATENCY FOR SOME DOUBLE-PRECISION INSTRUCTIONS ON GCS, SPR, AND GENOA. IF MULTIPLE VALUES FOR ONE INSTRUCTION
WERE APPLICABLE, E.G., DUE TO DIFFERENT PERFORMANCE FOR DIFFERENT VECTOR WIDTHS, THE BEST PERFORMANCE (I.E., HIGHEST THROUGHPUT,
LOWEST LATENCY) WAS SELECTED. NOTE THAT THE THROUGHPUT OF THE “GATHER” AS A LOAD INSTRUCTION IS GIVEN IN “CACHE LINES PER CYCLE”

WHILE THE REST IS EVALUATED IN DOUBLE PRECISION ELEMENTS PER CYCLE.

GCS SPR Genoa GCS SPR Genoa
(Neoverse V2) (Golden Cove) (Zen 4) (Neoverse V2) (Golden Cove) (Zen 4)

Instruction Throughput [DP elements / cy] Latency [cy]
gather [CL/cy] 1⁄4 1⁄3 1⁄8 9 20 13

VEC ADD 8 16 8 2 2 3
VEC MUL 8 16 8 3 4 3
VEC FMA 8 16 8 4 4 4

VEC FP Div 0.67 0.5 0.8 7 14 13
Scalar ADD 4 2 2 2 2 3
Scalar MUL 4 2 2 3 4 3
Scalar FMA 4 2 2 4 5 4
Scalar Div 0.4 0.25 0.2 12 14 13

pressure on each individual port (i.e., the reciprocal throughput
of all instructions executed on a port considering perfect
scheduling), b) a loop-carried-dependency analysis, trying to
detect dependency chains across loop iterations and showing
the overall runtime (i.e., latency) of each one, and c) a critical
path analysis, detecting the longest dependency chain within
one loop, which insights on potential slowdowns due to no full
overlap of dependency chains for a very long critical path or a
small number of loop iterations. As a runtime prediction, we
use the maximum number of cycles (i.e., slowest runtime) out
of the throughput analysis and the loop-carried-dependency
analysis as suggested in previous work on this tool [23]. For
validation of our models we used 13 streaming microbench-
marks (Jacobi [2D 5-point|3D 27-point|3D 7-point|3D 11-
point] stencil, ADD, COPY, Gauss-Seidel 2D 5-point stencil,
π-computation by integration, INIT, Schönauer Triad, Sum
reduction, STREAM Triad [24], UPDATE), compiled with
different compilers (Armclang, GCC, oneAPI, and Clang) and
different optimization flags (-O1, -O2, -O3, and -Ofast),
resulting in 416 tests and 290 unique assembly representations.

Figure 3 (based on graphs in [25]) shows histograms of
the relative prediction error (RPE) for the kernels with our
models of the investigated microarchitectures incorporated into
OSACA versus the LLVM performance models in LLVM-
MCA. Each bucket marks a range of 10% relative error; bars
right of the red dotted zero line indicate a prediction faster than
the actual measurement while bars left of the line indicate
a slower prediction. The bucket in the very left collects all
predictions larger than -1.0 (i.e., off by more than a factor of
2). As we aim to provide a lower-bound estimate, we prefer
to see all errors on the right of the zero line. Except for a
few versions of the Gauss-Seidel kernel for the Neoverse V2,
where OSACA (correctly) predicts a register dependency that
the CPU can overcome by register renaming, and the π kernel
for Zen 4, where our model assumes a lower throughput for
the scalar divide than we measure, this is the case for all other
tests (96%) with our performance model. There is one kernel
predicted incorrectly by more than a factor of 2, and 37%
(44%) are predicted accurately with a positive RPE of less than

Golden
Cove

Neoverse
V2

Zen 4

Golden
Cove

Neoverse
V2

Zen 4

Fig. 3. Relative prediction error of 416 test blocks for LLVM-MCA and
OSACA. Bars right of the red dotted line indicate a prediction faster than the
actual measurement while bars left of the line indicate a slower prediction.

10% (20%). The LLVM-MCA model, however, predicts 75%
of the test kernels slower than the actual measurements, with
14 measurements being off by more than a factor of 2. Only
10% (16%) are predicted correctly with positive a RPE of less
than 10% (20%), although this value increases to 32% (48%)
when considering the 10% (20%) bucket on the negative side
of the zero line. The average RPE of only the under-predictions
(i.e., right-hand-side errors) of our model in OSACA shows
a smaller error for Golden Cove, V2, and Zen 4 with 24%,
30%, and 18% versus the LLVM model showing 38%, 34%,
and 20%. When looking at the global (i.e., absolute) RPE, our
model still performs better for Golden Cove (30% vs 35%) and
V2 (26% vs 52%), and is slightly worse for Zen 4 than the

1408

LLVM-based model (18% vs 16%).

D. Write-Allocate Evasion

Looking beyond the CPU core towards data movement
in the memory hierarchy, one interesting feature that has
entered x86 processors with the Intel Ice Lake generation
is the automatic evasion of write-allocate (WA) transfers
from memory. Write-allocate usually occurs in cache-based
architectures when a standard store operation from a register
to memory causes a write miss: Since the core can only
communicate with its L1 cache, the cache line must be read
from memory before it can be modified and then (later) written
back. This extra data traffic can impact the performance and
clutter the cache with data that may not be needed soon. Cache
line claim and non-temporal stores are two ways to avoid
write-allocates. Both can be supported by special instructions
that claim a cache line in the cache without reading it first
(available on some Arm CPUs) or write data to memory
through a special write-combine buffer outside the normal
cache hierarchy (available on Arm and x86 CPUs). Cache line
claim can also be automatic if a core is able to detect that a
cache line will be overwritten entirely. This feature has been
supported for a long time by many Arm CPUs (including,
e.g., the Marvell ThunderX2 and GCS) and by Intel server
chips starting with the Ice Lake family, where Intel termed it
SpecI2M [26].

In order to fathom the ability of the CPUs under investi-
gation to employ automatic and explicit WA evasion, we run
a simple store-only (array initialization) benchmark, measure
the actual memory data traffic (which includes write-allocates),
and divide it by the amount of stored data. With perfect
WA evasion in place, this ratio should be equal to one.
It should be equal to two if the full WA transfers apply.
On Intel CPUs it was shown previously [12], [27] that the
efficiency of SpecI2M depends crucially on the saturation of
the memory interface: Only if a significant fraction of the
maximum memory bandwidth is utilized will the WA evasion
mechanism kick in. Figure 4 shows the results of the store
benchmark with respect to the number of cores utilized for
all three CPUs. In case of SPR and Genoa, we have added a
variant with non-temporal (NT) stores for reference; ideally,
NT stores should eliminate the WA transfers entirely.

The results show that only GCS is able to completely avoid
WA transfers automatically in this simple scenario (solid green
line). The SpecI2M mechanism in SPR can only reduce write-
allocates by up to 25% and only kicks in when a large part of
the 13 cores on a ccNUMA domain is utilized (solid blue line).
The only way to WA evasion on Genoa is via non-temporal
stores, which works perfectly, however (dotted dark red line vs.
solid red line). Finally, on SPR even the non-temporal stores
are not 100% effective, and there is a residual 10% of WA
traffic except for very small core counts (dotted blue line).

III. CONCLUSION

Via a thorough in-core analysis of the Nvidia Grace CPU
Superchip, the Intel Sapphire Rapids, and the AMD Genoa

0 20 40 52 60 72 80 96
1

1.2

1.4

1.6

1.8

2

Cores

Tr
ue

tr
af

fic
/

re
po

rt
ed

tr
af

fic

GCS
SPR

SPR NT stores
Genoa

Genoa NT stores

Fig. 4. Ratio of actual memory traffic to stored data volume vs. number of
cores for a store-only benchmark loop (working set 40 GB). A value of 1.0
indicates perfect WA evasion, while a value uf 2.0 indicates full WA traffic.
The variants labeled “NT stores” use non-temporal store instructions, while
the others use standard stores.

CPU, we showed peculiarities of their microarchitectures
Neoverse V2, Golden Cove, and Zen 4, respectively, estab-
lished an in-core performance model for each of them, and
applied it to simple streaming kernels. We showed that the
models, incorporated in the Open Source Architecture Code
Analyzer (OSACA), yield more accurate lower bounds for
in-core runtime than the existing LLVM-MCA model for
a comprehensive set of microbenchmarks. Furthermore, we
investigated the node-level capabilities of the HPC servers
such as the sustained CPU clock frequencies and the memory
bandwidth and focused on implicit and explicit Write-Allocate
evasion techniques. In future work, we plan to continue these
investigations by applying our in-core model to a node-wide
performance model such as the Execution-Cache-Memory
(ECM) model and study real-life applications on a larger scale.

ACKNOWLEDGMENT

This work was partly funded by BMBF through the
DAREXA-F project.

REFERENCES

[1] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009, DOI: 10.1145/1498765.1498785.

[2] F. Banchelli, J. Vinyals-Ylla-Catala, J. Pocurull, M. Clascà, K. Peiro,
F. Spiga, M. Garcia-Gasulla, and F. Mantovani, “NVIDIA Grace Su-
perchip Early Evaluation for HPC Applications,” in Proceedings of
the International Conference on High Performance Computing in Asia-
Pacific Region Workshops, ser. HPCAsia ’24 Workshops. New York,
NY, USA: Association for Computing Machinery, 2024, p. 45–54, DOI:
10.1145/3636480.3637284.

[3] N. A. Simakov, M. D. Jones, T. R. Furlani, E. Siegmann, and R. J.
Harrison, “First Impressions of the NVIDIA Grace CPU Superchip and
NVIDIA Grace Hopper Superchip for Scientific Workloads,” in Proceed-
ings of the International Conference on High Performance Computing
in Asia-Pacific Region Workshops, ser. HPCAsia ’24 Workshops. New
York, NY, USA: Association for Computing Machinery, 2024, p. 36–44,
DOI: 10.1145/3636480.3637097.

[4] J. Laukemann, J. Hammer, J. Hofmann, G. Hager, and G. Wellein,
“Automated Instruction Stream Throughput Prediction for Intel and
AMD Microarchitectures,” in 2018 IEEE/ACM Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems
(PMBS), 2018, pp. 121–131, DOI: 10.1109/PMBS.2018.8641578.

1409

[5] J. Laukemann, J. Hammer, G. Hager, and G. Wellein, “Automatic
Throughput and Critical Path Analysis of x86 and ARM Assembly
Kernels,” in 2019 IEEE/ACM Performance Modeling, Benchmarking and
Simulation of High Performance Computer Systems (PMBS), 2019, pp.
1–6, DOI: 10.1109/PMBS49563.2019.00006.

[6] A. Abel and J. Reineke, “uiCA: Accurate Throughput Prediction of Basic
Blocks on Recent Intel Microarchitectures,” in ICS ’22: 2022 Interna-
tional Conference on Supercomputing, Virtual Event, USA, June 27-30,
2022, ser. ICS ’22, L. Rauchwerger, K. Cameron, D. S. Nikolopoulos,
and D. Pnevmatikatos, Eds. ACM, June 2022, pp. 1–12, DOI:
10.1145/3524059.3532396.

[7] A. Abel, S. Sharma, and J. Reineke, “Facile: Fast, Accurate, and
Interpretable Basic-Block Throughput Prediction,” in 2023 IEEE Inter-
national Symposium on Workload Characterization (IISWC), 2023, pp.
87–99, DOI: 10.1109/IISWC59245.2023.00023.

[8] LLVM Compiler Infrastructure, “LLVM machine code analyzer,”
accessed 2024-09-01. [Online]. Available: https://llvm.org/docs/
CommandGuide/llvm-mca.html

[9] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and G. Lar-
tigue, “CQA: A code quality analyzer tool at binary level,” in 2014
21st International Conference on High Performance Computing (HiPC),
2014, pp. 1–10, DOI: 10.1109/HiPC.2014.7116904.

[10] C. Mendis, A. Renda, S. Amarasinghe, and M. Carbin, “Ithemal:
Accurate, Portable and Fast Basic Block Throughput Estimation
using Deep Neural Networks,” in International Conference on
machine learning. PMLR, 2019, pp. 4505–4515. [Online]. Available:
https://proceedings.mlr.press/v97/mendis19a.html

[11] O. Sykora, P. Phothilimthana, C. Mendis, and A. Yazdanbakhsh,
“GRANITE: A Graph Neural Network Model for Basic Block Through-
put Estimation,” in 2022 IEEE International Symposium on Workload
Characterization (IISWC). Los Alamitos, CA, USA: IEEE Computer
Society, nov 2022, pp. 14–26, DOI: 10.1109/IISWC55918.2022.00012.

[12] J. Laukemann, T. Gruber, G. Hager, D. Oryspayev, and G. Wellein,
“CloverLeaf on Intel Multi-Core CPUs: A Case Study in Write-
Allocate Evasion,” in 2024 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS), 2024, pp. 350–360, DOI:
10.1109/IPDPS57955.2024.00038.

[13] Arm Limited, “Arm Neoverse V2 Core Software Optimization Guide,”
Arm Limited, Tech. Rep., 2022, accessed 2024-09-01. [Online].
Available: https://developer.arm.com/documentation/109898/latest/

[14] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Job Scheduling Strategies for
Parallel Processing, D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 44–60,
DOI: 10.1007/10968987 3.

[15] T. Roehl, J. Treibig, G. Hager, and G. Wellein, “Overhead Analysis of
Performance Counter Measurements,” in 43rd International Conference
on Parallel Processing Workshops (ICCPW), Sept 2014, pp. 176–185,
DOI: 10.1109/ICPPW.2014.34.

[16] T. Gruber, J. Eitzinger, G. Hager, and G. Wellein, “Likwid,” Nov. 2023.
[Online]. Available: https://doi.org/10.5281/zenodo.10105559

[17] Intel® 64 and IA-32 Architecture Optimiza-
tion Reference Manual, Intel Corporation, 1 2023.
[Online]. Available: https://software.intel.com/en-us/download/
intel-64-and-ia-32-architectures-optimization-reference-manual

[18] A. Abel and J. Reineke, “uops.info: Characterizing Latency, Throughput,
and Port Usage of Instructions on Intel Microarchitectures,” in ASPLOS,
ser. ASPLOS ’19. New York, NY, USA: ACM, 2019, pp. 673–686,
DOI: 10.1145/3297858.3304062.

[19] J. Hammer, G. Hager, and G. Wellein, “OoO Instruction Benchmarking
Framework on the Back of Dragons,” 2018, SC18 ACM SRC Poster.
[Online]. Available: https://sc18.supercomputing.org/proceedings/src
poster/src poster pages/spost115.html

[20] J. Hofmann, “ibench - Instruction Benchmarks,” 2017. [Online].
Available: https://github.com/RRZE-HPC/ibench

[21] J. Hofmann, C. L. Alappat, G. Hager, D. Fey, and G. Wellein, “Bridging
the Architecture Gap: Abstracting Performance-Relevant Properties of
Modern Server Processors,” Supercomputing Frontiers and Innovations,
vol. 7, no. 2, p. 54–78, Jul. 2020, DOI: 10.14529/jsfi200204.

[22] H. Stengel, J. Treibig, G. Hager, and G. Wellein, “Quantifying Per-
formance Bottlenecks of Stencil Computations Using the Execution-
Cache-Memory Model,” in Proceedings of the 29th ACM on Interna-
tional Conference on Supercomputing, ser. ICS ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 207–216, DOI:
10.1145/2751205.2751240.

[23] J. Laukemann and G. Hager, “Core-level performance engineering with
the open-source architecture code analyzer (osaca) and the compiler ex-
plorer,” in Companion of the 2023 ACM/SPEC International Conference
on Performance Engineering, ser. ICPE ’23 Companion. New York,
NY, USA: Association for Computing Machinery, 2023, p. 127–131,
DOI: 10.1145/3578245.3583716.

[24] J. D. McCalpin, “Memory Bandwidth and Machine Balance
in Current High Performance Computers,” IEEE Computer
Society Technical Committee on Computer Architecture (TCCA)
Newsletter, pp. 19–25, Dec. 1995. [Online]. Available: https:
//www.researchgate.net/publication/213876927 Memory Bandwidth
and Machine Balance in Current High Performance Computers

[25] Julian Hammer, “Design and Implementation of an Automated Perfor-
mance Modeling Toolkit for Regular Loop Kernels,” Ph.D. dissertation,
Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 2023, DOI:
10.25593/opus4-fau-21514.

[26] I. E. Papazian, “New 3rd Gen Intel® Xeon® Scalable Processor (Code-
name: Ice Lake-SP),” in Hot Chips Symposium, 2020, pp. 1–22, DOI:
10.1109/HCS49909.2020.9220434.

[27] G. Hager. [Online]. Available: https://blogs.fau.de/hager/archives/8997

1410

Appendix: Artifact Description
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 We propose three in-core performance models for
the microarchitectures Neoverse V2, Golden Cove,
and Zen 4 from the state-of-the-art servers NVIDIA
Grace CPU Superchip, Intel Sapphire Rapids, and
AMD Genoa, respectively, for the static code an-
alyzer OSACA and compare the accuracy with
LLVM-MCA.

C2 We investigate the architectural differences between
the three servers in terms of sustained clock fre-
quency for arithmetic-hot code.

C3 We investigate the architectural differences between
the three servers in terms of write-allocate evasion.

B. Computational Artifacts

A1 https://github.com/RRZE-HPC/OSACA/releases/tag/
v0.6.0

A2 https://github.com/RRZE-HPC/ibench
A3 https://doi.org/10.5281/zenodo.13770512

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Tables 2–3

A2 C1 Tables 2–3

A3 C1, C2, C3 Figures 2–4

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The OSACA tool is used to apply the created in-core
performance models on the target code to analyze and contains
the performance information for an assembly instruction for a
specific architecture.

Expected Results

The results should be consistent with the numbers shown in
Table 2 and 3.

Expected Reproduction Time (in Minutes)

The expected computational time of this artifact is 1 minute.

Artifact Setup (incl. Inputs)

Hardware: Since the tool in version 0.6.0 already contains
all data for the relevant hardware models, no specific hardware
is needed.

Software: To see the performance data, no further software
than the git repository from the artifact link is enough.

Datasets / Inputs: No datasets or input data is needed.

Installation and Deployment: To install OSACA, you re-
quire Python in version 3.10 and the python packages net-
workx, pyparsing, ruamel.yaml, and Kerncraft ≥ v0.8.16.

Artifact Execution

Clone the repository via git and open the hardware mod-
els for the microarchitectures (“v2.yml” for Neoverse V2,
“spr.yml” for Golden Cove, and “zen4.yml” for Zen 4, re-
spectively) in osaca/data/. The information for Table II
can be found in the “load throughput”, “store throughput”,
“ports”, and “port model scheme” fields of the database file.
See Section II-C for the corresponding assembly instruction
for Table 3.

Artifact Analysis (incl. Outputs)

No further output as the execution requires the manual
lookup of the database files.

B. Computational Artifact A2

Relation To Contributions

The ibench tool is used to measure the actual throughput
and latency values shown in the OSACA database used for
Tables 2 and 3.

Expected Results

The results should match the performance data in the
OSACA database YAML files.

Expected Reproduction Time (in Minutes)

The expected computational time of this artifact is 1 minute.

Artifact Setup (incl. Inputs)

Hardware: The measurements require to be run on a
NVIDIA Grace Superchip, Intel Sapphire Rapids, and AMD
Genoa server.

Software: To compile the benchmarks, a modern compiler
like GCC 13.2 is needed on all systems. On Sapphire Rapids
and AMD Genoa, fixing the frequency is required for accurate
measurements. Although this can be done in different ways,
the authors of this work used the SLURM for this and further
only show this option in the Artifact Description; please refer
to the SLURM documentation for installation.

Datasets / Inputs: Most of the assembly instructions already
exist in the ibench repository. To reproduce all instructions, the
manual creation of further benchmarks is required. Please refer
to the existing benchmarks in src/<ISA-extension> to
create the corresponding benchmarks if needed.

Installation and Deployment: Clone the repository via git,
adjust the “Makefile” to match your compiler and compile the
benchmarks on the target platform with make.

1411

Artifact Execution

T1: After successful compilation, you can
run each ISA extension (such as “AVX-512”
or “SVE”) with a fixed frequency using srun

--cpu-freq=<base-freq>-<base-freq>:performance

./ibench <ISA-extension> <base-freq>, with
base-freq being the base frequency of the server.
Note that fixing the clock frequency is not needed for
the NVIDIA Grace Superchip as it runs already with the
frequency of 3.4 GHz.

Artifact Analysis (incl. Outputs)

T1 will output the throughput and latency measurements of
all compiled benchmarks of the given ISA extension.

C. Computational Artifact A3

Relation To Contributions

The artifact includes all necessary scripts for creating the
Figures 2–4 in the paper.

Expected Results

The results should be consistent with the graphs shown in
Figures 2–4.

Expected Reproduction Time (in Minutes)

The expected computational time of this artifact is 5 hours
on each platform.

Artifact Setup (incl. Inputs)

Hardware: The measurements require to be run on a
NVIDIA Grace Superchip, Intel Sapphire Rapids, and AMD
Genoa server. Make sure the Sapphire Rapids server is set in
SNC mode and the Genoa server is set to NPS=4 mode.

Software: The artifact requires OSACA==0.6.0 (see re-
quirements in Section II-A of the Artifact Description), as
well the Python packages jupyter, kerncraft, pandas==2.2.1,
numpy==1.26.4, and matplotlib==3.5.2. Furthermore, LLVM-
MCA, the compilers GCC 12.1 and Arm C Compiler 23.10 for
the NVIDIA Grace Superchip and GCC 13.2, oneAPI 2023.2,
and LLVM Clang 17.0.6 for Intel Sapphire Rapids/AMD
Genoa are needed. Finally, the Likwid toolsuite needs to be
installed on all systems.

Datasets / Inputs: No further inputs are needed.

Installation and Deployment: Make sure all software re-
quirements are installed. Please refer for this to the re-
spective documentation of all mentioned packages mentioned
in Section II-C. Copy the content of the artifact into the
validation/ directory of the OSACA repository.

Artifact Execution
The workflow consists of four tasks: T1, T2, T3, T4 with

the sequence T3 → T4 while the rest is independent.
T1: For each of the three servers, adjust the

test_frequency.sh file (i.e, set the right ARCH
value) and run it on the target hardware. This creates three
CSV files named freqs_<ARCH>.csv and one file named
freqs_spr_avx.csv.
T2: For each of the three servers, run the

test_store_ratio.sh file on the target hardware.
This creates three CSV files named store_<ARCH>.csv
and another file with “ nt” suffix for Sapphire Rapids and
Genoa.
T3: On each of the three servers, run the

build_and_run_PMBS24.py script, preferably with
a fixed clock frequency to the base frequency of the servers
in case of Sapphire Rapids and Genoa. You might have to
manually add the number of bytes per assembly iteration
if the script is not capable of retrieving this information
automatically. This creates a result directory in the “build/”
directory for each architecture.
T4: After finishing T3, you can open the

Analysis_PMBS24.ipynb Jupyter notebook and go
through the cells to post-process the created data from T3.

Artifact Analysis (incl. Outputs)
Compare the CSV files from T1 with Figure 2 in the paper,

you should see the same behavior of declining frequencies
for Intel Sapphire Rapids and AMD Genoa and a constant
sustained frequency for NVIDIA Grace.

Compare the CSV files from T2 with Figure 4 in the paper,
you should see that the measured traffic to reported traffic
ratio stays constant at around 2.0 for AMD Genoa, constant
at around 1.0 for NVIDIA Grace and AMD Genoa with NT-
stores, and declines with respect to the ccNUMA domains
for Intel Sapphire Rapids, with a minimum around 1.4 to 1.6
(depending on the server model). The NT-stores version for
Sapphire Rapids should match with Figure 4 and stay around
1.1.

The produced graph in the final part of the Jupyter Notebook
of T4 should match with Figure 3 in the paper.

1412

