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Pázmány Péter Catholic University
Budapest, Hungary

reguly.istvan@itk.ppke.hu

Abstract—In the span of 1.5 years, Intel has launched four
families of Xeon Processors, with some novel architectural
features; first the Sapphire Rapids generation which featured a
version with on-package HBM, the Emerald Rapids generation,
and then differentiated by releasing the performance-oriented
Granite Rapids and the efficiency-oriented Sierra Forest families.
In this work, we evaluate the performance and efficiency of CPUs
from each of these generations and variants, with a particular
focus on bandwidth-bound high performance computing (HPC)
applications. We contrast runtime and energy consumption
figures and track trends across generations.

Index Terms—Benchmarking, Xeon, Performance, Energy,
Cache, CFD

I. INTRODUCTION

In recent years, Intel has released multiple generations of
Xeon processors, each advancing performance and energy
efficiency. This was enabled by moving from the Intel 7 to the
Intel 3 process, and innovations such as chiplet designs or the
integration of High Bandwidth Memory (HBM). This paper
examines the performance and energy efficiency evolution of
these processors, specifically focusing on Sapphire Rapids
(SPR), Emerald Rapids (EMR), Granite Rapids (GNR), and
Sierra Forest (SRF) product families. These families are dif-
ferentiated based on their core counts, cache sizes, and energy
efficiency, and with the latest generation, the separation of
performance-oriented (P) and efficiency-oriented (E) families.

Memory bandwidth is a key limiter for many applications -
newer generations support higher speed DDR modules, going
from DDR5-4800 MHz in SPR, up to 8800 MHz with GNR,
and increasing from 8 memory channels to 12 with GNR
and SRF. At the same time the TDP for the highest core
count models were at 350W for SPR and EMR, and this was
increased to 500W with GNR.

Despite the advancements in GPU acceleration, many legacy
codes remain CPU-only (such as nuclear security), making the
evaluation of newer generation CPUs crucial. The absence of
plans for further HBM-equipped CPUs raises questions about
the performance of DDR-based solutions for these workloads.
Our study provides an evaluation of the performance and
energy efficiency of recent Intel Xeon processor generations.

By examining a set of primarily bandwidth-bound applica-
tions, we shed light on the implications of these architectural
innovations and inform the design of computing systems.

In this paper, we make the following contributions:
1) Establish performance baselines for the 5 Intel and 1

AMD systems to be used for architectural efficiency
calculations.

2) Benchmark a variety of structured- and unstructured-
mesh codes and contrast their performance in absolute
terms (runtime) as well as relative (achieved architec-
tural efficiency).

3) Measure the energy consumption of these applications
running on the 6 bare-metal Intel systems, and study
how energy efficiency improves across generations. For
four, we report the energy consumption of the DRAM
subsystem as well.

II. SYSTEMS AND BASELINE PERFORMANCE

For this study, we evaluate the following systems - with Intel
machines available in the Intel Developer Cloud. The full spec-
ifications are provided in Appendix A. Intel Xeon CPU MAX
9480 Processor with HBM (Sapphire Rapids, codenamed
SPR+HBM), Intel Xeon Platinum 8480+ Processor (Sapphire
Rapids, codenamed SPR+DDR), Intel Xeon Platinum 8592+
Processor (Emerald Rapids, codenamed EMR), Intel Xeon
Platinum 6960P Processor (Granite Rapids, codenamed GNR),
Intel Xeon 6740E Processor (Sierra Forest, codenamed SRF
96c), Intel Xeon (Unnamed) Processor (Sierra Forest, code-
named SRF 192c), AMD EPYC 9B14 (codenamed Genoa),
available as a C3D virtual machine in Google Cloud (this VM
has the access to RAPL energy counters disabled, therefore
we could not collect energy measurements).

Table I shows the achieved bandwidth as measured by
BabelStream Triad [1] with OpenMP, running on one or both
sockets of each tested platform, noting the highest achieved
bandwidth in Last Level Cache (LLC) and main memory
(DDR or HBM), as well as the speedup of main memory
bandwidth in comparison to SPR DDR. Subsequent genera-
tions of Xeon chips have larger Last Level Caches (LLC):
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TABLE I
KEY FEATURES OF THE STUDIED PLATFORMS: NUMBER OF PHYSICAL

CORES, LAST LEVEL CACHE SIZE, MEASURED MAXIMUM CACHE
BANDWIDTH (GB/S), SUSTAINED BANDWIDTH (GB/S) AT 39 GB TOTAL
ARRAY SIZE, AND RELATIVE SPEEDUP OF SUSTAINED BANDWIDTH OVER

SPR DDR.

SPR
HBM

SPR
DDR EMR GNR SRF

96c
SRF
192c Genoa

Cores 112 112 128 144 192 384 180
LLC (MB) 105 105 320 432 96 192 384
Cache BW 3481 4340 8149 7346 4139 7627 9534
DDR BW 1475 388 542 1150 396 667 529
Speedup 3.8 1.0 1.39 2.96 1.04 1.23 1.36

105 MB per socket for SPR, 320 MB for EMR, and 432
for GNR, but only 96 MB for SRF (96 core variant, 192
MB for the 192 core variant) - the tested Genoa CPU had
384 LLC per socket. Relative differences between maximum
cache bandwidth and maximum DRAM bandwidth are also
noteworthy: SPR, EMR and SRF (96 core) support 8 channels
of DRAM per socket, and have a ratio of 11-15×, GNR, SRF
192 core, and Genoa have 12 channels per socket, yet GNR
only has an 6.4× difference, and Genoa has a 18× difference.
We also see a 2.96× increase in main memory bandwidth in
the span of 1.5 years, going from SPR to GNR. SPR+HBM
(the Intel Xeon MAX CPU) has a much higher bandwidth,
but limited size HBM memory (64 GB per socket), and only
a 2.4× difference between LLC and HBM bandwidth

The Intel machines were bare metal systems accessed in the
Intel Developer Cloud, whereas the Genoa machine is a VM
in Google Cloud. While VMs are known to have inefficiencies
over bare-metal servers [2], these tend to be under 10% for
most applications comparable to our benchmarks (bandwidth
and compute intensive).

III. APPLICATIONS AND PARALLELIZATIONS

We consider a number of primarily bandwidth-bound codes,
which are implemented on top of two domain specific lan-
guages: OPS [3] (for structured meshes) and OP2 (for un-
structured meshes) [4]. Prior work has shown that these im-
plementations match or outperform the original hand-written
implementations, and therefore the use of a DSL does not
impede performance [5]–[8], but it does enable automatic
parallelization with MPI as well as a variety of shared-memory
parallel programming models.

Specifically we evaluate the following structured-mesh ap-
plications: CloverLeaf 2D/3D [9], OpenSBLI with Store All
(SA) and Store None (SN) formulations [6], RTM, and Acous-
tic [10]. We study the following unstructured mesh applica-
tions: MG-CFD [11], Volna [12]. These codes are mainly
bandwidth-bound, and to varying extents sensitive to latency
[13]. Furthermore, we run the compute-intensive miniBUDE
[14] proxy application. Details of benchmark applications and
configurations are given in Appendix A.

In this work, we evaluate pure MPI parallelizations (both
1 process per physical core and 1 process per SMT logical
core, where HyperThreading was enabled), as well as a hybrid

MPI+OpenMP parallelization, where we use one process per
NUMA region. For all computational loops in structured-mesh
applications OpenMP’s collapse is used for the whole loop
nest, with the innermost loop instructed to vectorize using omp
simd. For unstructured mesh codes we study auto-vectorizing
implementations that explicitly pack and unpack vector regis-
ters, with the vector length adjusted for the platform (256 bit
for SRF, 512 for the rest). In prior work, we studied SYCL
parallelization on CPUs [13], and showed that it delivers lower
performance compared to MPI/MPI+OpenMP - since this has
not improved significantly since, we do not report performance
with MPI+SYCL here.

IV. RESULTS

We perform four runs of each benchmark configuration and
average the results - each run reports both total wall time (ex-
cluding initial setup) as well as detailed per-subroutine timings
with achieved effective bandwidth. Bandwidth is calculated as
the sum of array sizes accessed by a given sweep across the
grid (multiplied by 2 if read and written), divided by execution
time, and it includes MPI communications. The variation in
measured results were consistently below 5%. In the following
results, we report the performance of the best variant (out of
MPI, MPI+OpenMP, and SMT configurations), unless stated
otherwise.

Figure 1 shows the wall times for different applications, and
Figure 2 shows the hardware efficiency as calculated by the
fraction of peak bandwidth (from Table I) and achieved effec-
tive bandwidth. miniBUDE is reported separately in Figure 2
showing fraction of peak FP32 compute achieved.

The first immediate observation is that the SPR HBM
system closely competes with GNR on the structured-mesh
benchmarks; these applications all have regular memory ac-
cess patterns and low to moderate amounts of computational
intensity, and therefore the primary factor determining per-
formance should be the available bandwidth. As Figure 2
shows, only 45% of peak bandwidth is achieved on average,
as shown in prior work [15] this is largely due to a shift
towards latency limitations, as well as a lack of concurrency
capable of saturating the available bandwidth [16]. Indeed,
on average SPR HBM spends 26% of total runtime doing
MPI communications, compared to 18-22% on the other Intel
platforms.

The simplest application, CloverLeaf 2D exhibits the high-
est fraction of peak bandwidth achieved, and is the most
consistent across different platforms too. Due to its simpler
access patterns, it even has cross-loop data reuse, resulting in
close to 100% utilization thanks to caching effects. CloverLeaf
2D also has a small MPI overhead; as little as 1.2% on EMR,
up to 20% on Genoa (average at 7%). MG-CFD also exhibits
excellent memory locality, especially at coarser multigrid
levels, hence the high efficiency values. For both codes we
can see a trend to higher efficiencies with larger cache sizes.

At the other end of the spectrum, RTM and Acoustic
employ high-order (8th) stencils, and especially the former
has complex control flow and significant amounts of compute,
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Fig. 1. Execution time of different benchmarks on the test systems, normalized to SPR DDR. Data labels are absolute runtimes.
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Fig. 2. Fraction of peak bandwidth achieved, and their average by platform.
Fraction of peak FP32 compute shown separately for miniBUDE

therefore we observer lower bandwidth utilization. These
applications are especially communication-intensive, with 34%
and 44% of time spent in MPI respectively.

In-between, with the OpenSBLI applications, the Store All
(SA) version achieves on average 65% bandwidth utilization,
and spends only 10% of runtime in MPI, and the more
computationally intensive Store None (SN) version achieves
53% of peak bandwidth and has a 25% MPI overhead -
nevertheless SN is actually 2.3× faster than SA, showing
that it is well worth trading computations for a reduction in
memory movement. The Volna unstructured-mesh code does
not have multigrid, yet achieves good cache locality in the
indirect-access loops (of which there are fewer compared to
MG-CFD).

The compute-intensive miniBUDE benchmark on the other
hand is limited by compute throughput and control latency to
a smaller some extent, we observe 27-47% efficiency, steadily

increasing with subsequent compute-oriented generations. The
Sierra Forest platforms on the other hand have significantly
reduced efficiency: these chips are built with efficiency cores,
with fewer and smaller (256-bit AVX2 instead of AVX-
512) vectors, and presumably cannot run at high-frequencies
on compute-intensive tasks unlike the performance-oriented
Xeons.

A. Performance evolution across generations of Xeons

It is revealing to analyze the performance improvement of
the subsequent generations of Xeons, given the architectural
improvements over time. Designs moved from 4 chiplets
with CPU cores in SPR to 2 chiplets with EMR, and to 3
with GNR, last level cache size increased from 105 MB per
socket from SPR to 432 MB with GNR. The introduction of
energy-efficient designs with SRF also significantly moved the
architectural trade-offs.

Considering that most of our benchmarks are mainly
bandwidth-limited, we calculate the ratio between
the observed speedup over SPR DDR to the ratio
of available bandwidth compared to SPR DDR:
(runtimeX/runtimeSPR DDR)/(bandwidthX/bandwidthSPR DDR).

This gives us a sense of how ”balanced” the architectural
evolution is in terms of improvements in bandwidth and other
factors (cache, compute, latency).

The most obvious case is that of the SPR HBM, which
is architecturally the same as SPR DDR with the exception
of the high-bandwidth memory, and therefore our benchmark
applications experience a shift from being purely bandwidth
limited to being more constrained by latency and cache
behavior, only improving overall by 64% compared to the
improvement in bandwidth.

The Emerald Rapids (EMR) platform saw a 15% improve-
ment in core count, a 3× increase in cache size, a move from
2 chiplets to one, and a 40% improvement in available band-
width. Overall these improvements have been balanced with
applications improving overall within 2% of the bandwidth
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increase, meaning EMR is approximately 40% faster than
SPR DDR on these benchmarks. The Granite Rapids (GNR)
platform presents an interesting further step in this direction:
we have another 12.5% increase in core count, a 1.35×
increase in cache size, and 2.13× improvement in bandwidth
compared to Emerald Rapids. This further massive lift in
available bandwidth is slightly less balanced however, with
91% speedup compared to the improvement in bandwidth.
Nevertheless, GNR in absolute terms is still on average 2.71×
faster than SPR DDR and 1.93× faster than EMR.

The Sierra Forest family of CPUs represents a different set
of architectural trade-offs with their energy-efficent design.
The 96 core variant has 8 memory channels per socket, just
like SPR and EMR, while the 192 core variant has 12 channels,
similarly to GNR. While core counts are 1.3-3.4× higher,
cache sizes are smaller, and the available bandwidth is 4% (96
core) or 70% (192 core) higher compared to SPR DDR. Yet
SRF is on average 5% and 10% faster compared to the increase
in bandwidth for the 96 core and 192 core variants respectively.
Thanks to the higher amount of concurrency, it can more
efficiently saturate the available bandwidth - and despite
the higher core counts it does not suffer from significantly
higher MPI overheads (19-23% on average, vs. 18-21% on
SPR/EMR/GNR). The 192 core SRF platform represents a
balanced improvement over the 96 core one, with a 1.65×
increase in bandwidth, yielding a 1.73× improvement in the
overall performance of our benchmarks (except miniBUDE,
which has a 2x improvement, directly proportional to available
cores).

B. Energy efficiency

Intel have built the Running Average Power Limit [17]
counters and controls into their chips since the Sandy Bridge
generation, which amongst other things has made it possible
to accurately measure power consumption at the millisecond-
scale. While energy counters may be available for the whole
system, and components such as integrated graphics, main
memory, and CPU package, on the studied Intel platforms we
were able to measure the consumption of the CPU+memory
system, and just the memory subsystem on EMR, SRF, and
GNR. On Genoa these counters were not available due to
security vulnerabilities in cloud VMs.

Figure 3 gives and overview of the reported energy con-
sumption (CPU and memory together, and memory separately,
for SPR HBM only on-package memory is included, external
DRAM is not). The trends paint a similar picture to the
execution times, since most of these CPUs have the same
2×350W TDP (SPR, EMR, SRF 192c), but notably the SRF
96c system has 2×250W, and the GNR has 2×500W (these
TDP figures apply to the CPU only and exclude off-chip
memory). This is also shown in Figure 4 that presents the
average power (energy consumption divided by execution
time), as well as the speedups in execution time compared
to SPR DDR. We can see SPR HBM running on average
2.4× faster than SPR DDR, but at the same power, yielding
a corresponding 2.4× improvement in energy efficiency. The

EMR system on average consumes 20W less power than SPR
DDR, but runs 1.42× faster, and therefore is 1.46× more
energy efficient. The SRF 96 core system runs at only 445
Watts, yet achieves a 1.09× speedup, and therefore is 1.75×
more energy efficient. The SRF 192 core system increases
TDP, but also bandwidth and overall performance - it is 1.87×
faster than SPR DDR, and is 1.88× more energy efficient.
The GNR system further increases TDP and effective power
to 1025 Watts on average - while being 2.72× faster than SPR
DDR, it is also 1.88× more energy efficient. Power figures for
the memory system are also included in Figure 4 where we
were able to measure them; on both EMR and SRF 96c they
account for 28% of total power - they both have 16 DIMMs
installed, though the former has 5600 MHz modules while
the latter 6400 MHz ones. The SRF 192 core system has 24
DDR5-6400MHz modules installed, and the memory system
represents 40% of total power on these benchmarks. The GNR
system has 24 DDR5-8800 MHz modules installed, accounting
for 27% of total power.

The SRF and GNR systems nicely demonstrate the avail-
able trade-offs between energy efficiency and performance in
relative terms to SPR DDR:

1) SRF 96 core: Slightly higher performance (1.09×) but
at a 1.4× lower power

2) SRF 192 core: Significantly higher performance
(1.87×), at the same power

3) GNR: Even higher performance (2.72×), but at 1.44×
more power

V. CONCLUSIONS

This paper evaluated the performance and energy effi-
ciency of Intel’s recent Xeon-series processors released over
the past two years, from the Sapphire Rapids generation,
through Emerald Rapids, and to the recently differentiated
energy-efficient Sierra Forest and performance-oriented Gran-
ite Rapids generations. We focus on a number of bandwidth-
bound structured mesh and unstructured mesh applications,
and compared results to an AMD EPYC Genoa-generation
CPU.

For the traditional performance-oriented Xeons these gener-
ations brought a 3-4× improvement in cache size and available
main memory bandwidth, but only a 38% increase in core
counts. Overall, our applications’ performance on Granite
Rapids improved by 2.7× compared to Sapphire Rapids, and at
the same time improved energy efficiency by 1.88×, despite
the higher TDP of 500W per socket. The newly introduced
energy-efficient Sierra Forest family of CPUs in contrast
have much higher core counts (96-192 per socket), and are
more energy efficient; delivering 9% more performance than
Sapphire Rapids with 75% less energy at only 250W per
socket (96 core version), or 87% higher performance at the
same 350W per socket, resulting in 87% less energy consumed
(192 core version).

Our work underlines the importance of architectural ad-
vancements in improving the performance and energy effi-
ciency of HPC systems. The rapid evolution from Sapphire
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Fig. 4. Average power draw of the CPU and memory, the memory separately
(where available), and speedup compared to SPR DDR

Rapids to Granite Rapids brought substantial benefits, partic-
ularly for bandwidth-bound applications. The introduction of
the energy-efficient Sierra Forest family further demonstrates
the potential for balancing performance and energy consump-
tion in server CPUs. These findings provide valuable insights
for optimizing HPC workloads and guiding the development
of next-generation processors.
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APPENDIX A
TEST SYSTEM SPECIFICATIONS

Detailed specifications of the test systems:
1) Intel Xeon CPU MAX 9480 Processor with HBM

(Sapphire Rapids, codenamed SPR+HBM), available in
the Intel Developer Cloud. Two sockets, each with 56
cores, Hyperthreading on. 2x4 NUMA regions, with
2x64 GB HBM in HBM-only mode, with SNC4. Clock
frequencies between 1.9 GHz (base frequency) - 2.6
GHz (all-core turbo), giving a theoretical 13.6-18.6
FP32 TFLOPS/s. Software: Intel OneAPI Base and HPC
toolkits, 2024.1 (including Intel MPI). Benchmarked Jun
5, 2024.

2) Intel Xeon Platinum 8480+ Processor (Sapphire Rapids,
codenamed SPR+DDR), available in the Intel Developer
Cloud. Two sockets, each with 56 cores, Hyperthreading
on. 16x32 GB DDR5-4800MHz RAM. Clock frequen-
cies between 2.0 GHz (base frequency) - 3.0 GHz
(all-core turbo), giving a theoretical 14.3-21.5 FP32
TFLOPS/s. Software: Ubuntu 22.04, Intel OneAPI Base
and HPC toolkits, 2024.1 (including Intel MPI). Bench-
marked June 13, 2024.

3) Intel Xeon Platinum 8592+ Processor (Emerald Rapids,
codenamed EMR), available in the Intel Developer
Cloud. Two sockets, each with 64 cores, Hyperthreading

on. 16x64 GB DDR5-5600MHz RAM. Clock frequen-
cies between 1.9 GHz (base frequency) - 2.9 GHz
(all-core turbo), giving a theoretical 15.5-23.7 FP32
TFLOPS/s. Software: Ubuntu 22.04, Intel OneAPI Base
and HPC toolkits, 2024.1 (including Intel MPI). Bench-
marked June 15, 2024.

4) Intel Xeon Platinum 6960P Processor (Granite Rapids,
codenamed GNR), available in the Intel Developer
Cloud. Two sockets, each with 3 NUMA nodes and
72 cores total, Hyperthreading on. 24x32 GB DDR5-
8800MHz RAM. Clock frequencies between 1.9 GHz
(base frequency) - 2.9 GHz (all-core turbo), giving a
theoretical 15.5-23.7 FP32 TFLOPS/s. Software: Centos
9 Stream, Intel OneAPI Base and HPC toolkits, 2024.1
(including Intel MPI). Benchmarked June 2, 2024.

5) Intel Xeon 6740E Processor (Sierra Forest, codenamed
SRF 96c), available in the Intel Developer Cloud. Two
sockets, each with 96 cores, no Hyperthreading. 16x64
GB DDR5-6400MHz RAM. Clock frequencies between
2.4 GHz (base frequency) - 3.2 GHz (all-core turbo),
giving a theoretical 7.3-9.8 FP32 TFLOPS/s. Software:
Centos 9 Stream, Intel OneAPI Base and HPC toolkits,
2024.1 (including Intel MPI). Benchmarked June 29,
2024.

6) Intel Xeon (Unnamed) Processor (Sierra Forest, co-
denamed SRF 192c), available in the Intel Developer
Cloud. Two sockets, each with 192 cores, no Hyper-
threading. 24x64 GB DDR5-6400MHz RAM. Clock
frequencies between 2.4 GHz (base frequency) - 3.2
GHz (all-core turbo), giving a theoretical 14.6-19.6 FP32
TFLOPS/s. Software: Centos 9 Stream, Intel OneAPI
Base and HPC toolkits, 2024.1 (including Intel MPI).
Benchmarked Jul 18, 2024.

7) AMD EPYC 9B14 (codenamed Genoa), available as a
C3D virtual machine in Google Cloud. Two sockets,
each with 90 available cores, Hyperthreading off. 2x2
NUMA regions, with 24x64 GB DDR5 RAM, of which
1440 is available. Clock frequencies between 2.6 GHz
(base frequency) - 3.6 GHz (turbo), giving a theoretical
19.9-27.5 FP32 TFLOPS/s. Software: Ubuntu 22.04,
GCC 11.3. Benchmarked Jun 6, 2023.

APPENDIX B
BENCHMARK APPLICATIONS

The details of benchmark applications are as follows:
1) CloverLeaf 2D/3D [9] – developed by the UK mini-

app consortium, CloverLeaf is a proxy for nuclear secu-
rity codes, simulating shockwaves using a structured-
mesh Eulerian hydrodynamics setup. The code is
largely bandwidth-bound, with some operations on
faces/edges that may be latency bound. Double preci-
sion, 76802(2D), 4083(3D) problem size, 50 iterations.

2) OpenSBLI SA & SN [6] – a shock-capturing Navier-
Stokes solver developed at the University of Southamp-
ton for studying aeroacoustic phenomena around air-
craft. The code has 2 variants – Store All (SA), which
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is bandwidth-bound, and Store None (SN), which re-
computes derivatives on the fly, thereby trading compute
for data movement, but is still mostly bandwidth bound.
Double precision, 3203 problem size, 20 time iterations.

3) RTM - computational geophysics proxy code, imple-
menting the forward pass of a Reverse Time Migration
algoritm. Uses an 8th order finite difference stencil. Due
to the large stencils, it is sensitive to cache locality
and vectorization, has large communications volume
over MPI. Single precision, 3203 problem size, 10 time
iterations.

4) Acoustic – a proxy extracted from Devito [10], it
is a structured-mesh high-order (8th) finite difference
acoustic wave propagation solver. Bandwidth and cache
locality bound, with large communications volume over
MPI. Single precision, 10003 problem size, 30 time
iterations.

5) MG-CFD [11] – a proxy for the Rolls-Royce CFD sim-
ulation code, implementing an unstructured mesh finite
volume Euler equations solver with multigrid. Bound by
latencies and indirect memory accesses. Double preci-
sion, NASA Rotor37 case with 8 million vertices, 25
iterations.

6) Volna [12] – unstructured mesh finite volume Nonlinear
Shallow Water Equations solver. Also sensitive to indi-
rect memory accesses as MG-CFD, but less so. Indian
ocean case with 30 million vertices, 200 time iterations.

7) miniBUDE [14] – proxy molecular docking code repre-
sentative of the University of Bristol’s BUDE. Compute
and latency bound. bm1 testcase, 30 iterations.

APPENDIX C
ARTIFACT DESCRIPTION

A. Abstract

The paper performs the detailed benchmarking of a number
of computational science applications and proxies on Intel(R)
Xeon processors fromt he Sapphire Rapids, Emerald Rapids,
Sierra Forest, and Granite Rapids families.

As such, the contributions of the paper rely entirely on com-
putational results - specifically performance measurements. All
measurements are reported automatically by the test frame-
work, and are then parsed using scripts or by hand, and
assembled into tables and figures shown in the paper. Most
figures show runtimes and energy consumption, or achieved
architectural efficiency, which are derived from the application
logs.

The reproducibility of the results in the paper re-
lies solely on the test framework available on GitHub
(https://github.com/reguly/tests), which has been built to make
it easy to run all experiments easily, producing application
logs, which contain all the raw data for the results (runtimes,
communication times, and bandwidth numbers).

B. Description
1) Check-list (artifact meta information):

• Algorithm: Structured and unstructured mesh stencil com-
putations

• Program: CloverLeaf, Acoustic, RTM, OpenSBLI, MG-CFD
• Compilation: Using standard CPU compilers, OneAPI and

GCC
• Transformations: Code generation through the OPS and

OP2 libraries
• Data set: built-in, or downloaded with the op2 get data.sh

script
• Run-time environment: See Appendix A of paper
• Hardware: See Appendix A of paper
• Execution: run all.sh script
• Output: application logs for each application
• Publicly available?: yes
2) How software can be obtained (if available): Source

codes available at https://github.com/reguly/tests
3) Hardware dependencies: Described in Appendix A of

the paper
4) Software dependencies: Fully contained in test reposi-

tory. Benchmarked applicaitons are described in Appendix B
of the paper

5) Datasets: Downloadable with the op2 get data.sh script

C. Installation

1) git clone --recursive
https://github.com/reguly/tests.git

2) To build dependent libraries, and download
meshes, execute the op2_dependencies.sh
and op2_get_data.sh scripts in the root directory

3) edit the source_intel, source_gnu files to match
your environment, and choice of compilers

4) execute the build_cpu.sh script to build MPI and
MPI+OpenMP versions of the applications

D. Experiment workflow

Edit and execute the run_all.sh script to match your
compiler and application types to be tested (CPUTEST and/or
TILING). Can use further command line parameters to run
only a specific application

E. Evaluation and expected result

Results are placed in log files named *_diag2, these
can be pulled into the current directory with e.g. find
../../tests/ -name "*diag2" -exec mv {} ./
;. Use the parse.py file, passing the name of the directory
containing these gathered files to extract timing data into
tables.

F. Experiment customization

Experiments can be customized by editing the high-level
configuration files in the root directory of the repository,
including source * files for different compilers, build * files
for building applications, and the runner scripts/run * scripts
for running individual applications.
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