
Performance Analysis of Runtime Handling of
Zero-Copy for OpenMP Programs on MI300A

APUs
Carlo Bertolli∗, Thorsten Blass‡, Lynd Stringer†, Nicole Aschenbrenner‡, Jan-Patrick Lehr‡,

Doru Bercea∗, Dhruva Chakrabarti†, Lawrence Meadows†, and Ron Lieberman∗
∗Advanced Micro Devices (AMD), Austin, USA,

Email: {Carlo.Bertolli, Doru.Bercea, Ron.Lieberman}@amd.com
†Advanced Micro Devices (AMD), Santa Clara, USA,

Email: {Lynd.Stringer, Dhruva.Chakrabarti, Lawrence.Meadows}@amd.com
‡Advanced Micro Devices (AMD), Munich, Germany,

Email: {Thorsten.Blass, Nicole.Aschenbrenner, JanPatrick.Lehr}@amd.com

Abstract—In current discrete GPU systems, the penalty of data
movement between host and device memory is inevitable, forcing
many large-scale applications to include optimizations that amor-
tize this cost. On systems like the AMD Instinct™ MI300A series
accelerators, based on the accelerated processing unit (APU)
architecture, host and device memories are unified into a single
physical storage. On an APU, the GPU can access memory in the
same way the CPU does, thus avoiding the need for additional
data movement (zero-copy). To inform developers of MI300A
on expected advantages and potential overheads, we follow an
experimental approach to study our OpenMP implementation
that leverages MI300A zero-copy. Performance results show that
zero-copy is faster than the legacy “copy” implementation by a
ratio of 1.2X-2.3X for a production-ready application, but that
incurs up to 11% penalty for one SPECaccel 2023 benchmark.

I. INTRODUCTION

Most GPU-accelerated large-scale systems used in high
performance computing (HPC) applications [1], [2] are based
on a discrete memory architecture, where CPUs and GPUs
each have their own physical memory storage. The historical
impact of this is that most applications deployed since the
advent of GPU-systems use latency hiding strategies in their
code. Separate storage between CPU and GPU influences
node and operation price, as well as application performance,
due to the need of moving data near the computation. AMD
Instinct MI300A series accelerators [3], standing for accel-
erated processing unit (APU), approaches these problems by
having the CPU and GPU device on the same socket share
the same physical (main memory) storage. Data transfers
needed by previous discrete GPUs are no longer required. The
APU architecture offers an opportunity to continue improving
exascale computing, but requires software changes to fully
capture the advantage.

A major concern for HPC users is that incorporating
software changes and new optimizations into their existing
applications leads to high maintenance costs. Past application
porting efforts, to support the end of CPU-only nodes and
the introduction of heterogeneous CPU-GPU nodes alongside

grid-programming languages like CUDA® [4] and HIP [5],
are a testament of how high the application re-engineering
costs can be. Today, these costs are mitigated by mature high-
level programming abstractions (OpenMP [6], [7], Kokkos [8],
SYCL® [9], Raja [10], OpenACC [11]) and domain-specific
frameworks [12], [13]. These solutions are widely adopted
by HPC production-grade applications that rely on efficient
compilers and runtimes to provide performance portability.

In this paper, we describe our work that is based on the
existing OpenMP LLVM implementation and that leverages
its unified shared memory zero-copy semantics to model the
APU’s single physical memory. In zero-copy, there is no extra
memory allocation due to GPU offloading and GPU threads
rely on unified memory to access CPU-allocated memory.
We implemented two theoretically simple - albeit technically
sophisticated - extensions of LLVM’s zero-copy implemen-
tation to be able to execute in zero-copy any OpenMP ap-
plication [14], [15], not just those that have been designed
to use the unified_shared_memory construct, and to
optimize unified memory overheads by prefetching the GPU
page table. The resulting zero-copy runtime configurations
expose an optimization space that we study in this paper, to
drive the next iteration of OpenMP compiler and runtime for
MI300A.

For applications ported from discrete GPU systems to
MI300A without modifications, we study the performance
impact of two commonly used memory management optimiza-
tions: data prefetching and data streaming. Data prefetching
consists of a bulk CPU-to-GPU memory data transfer at the
start of the application followed by a long-running GPU
computation with minimal or no data transfer. In a multi-
threaded setup, data streaming is used to hide the data transfer
cost of one thread behind the kernel execution of another.
We show that our implementation offers the best performance
possible for the QMCPack [16] production-grade OpenMP
application without removing these optimizations for discrete
GPUs. We further study zero-copy performance on MI300A by

1420979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00183

reporting on experiments using SPECaccel® 2023 [17] C/C++
benchmarks, which exercise OpenMP application program-
ming patterns different from QMCPack.

This paper makes the following contributions:
• LLVM-based compiler and runtime optimizations that

enable transparent zero-copy to obtain best performance
on MI300A for applications optimized for discrete GPUs.

• An experimental study of the effects of data transfer
optimization strategies in a production-grade application
when ported to an APU system using zero-copy.

• An experimental study on how zero-copy performs on
MI300A with various OpenMP programming patterns
exercised by SPECaccel 2023 C/C++ benchmarks.

Section II describes related work. Section III gives back-
ground information on APU architecture and the OpenMP
programming model. Section IV describes the LLVM exten-
sions we implemented for MI300A. Section V presents our
experiments. Finally, Section VI synthesizes the lesson learned
from the experiments and Section VII concludes.

II. RELATED WORK

GPU programming languages such as CUDA and HIP re-
quire applications to manage host and device memory directly
in their program without an intervening abstraction, using host
and device memory allocation routines (e.g., malloc for
host memory and cuda/hipMalloc for device memory).
Porting a CUDA or HIP application from a discrete GPU
system to an APU requires a re-implementation of how an
application manages its data in memory, potentially completely
eliminating device memory management in the program.

There are HPC languages and frameworks whose program-
ming constructs include abstract data management that is
similar to OpenMP and are relevant to ease of porting to APU
systems. Examples are Kokkos [8] and SYCL [9]. Kokkos
includes the concept of Memory Space that is used for generic
programming and can be instantiated to a unified memory
implementation. Porting an application from a discrete GPU
system to an APU requires instantiating the abstract Memory
Space used by an application with an implementation that uses
Unified Memory. Switching an abstract class implementation
between different subclasses is straightforward in C++.

Fig. 1. Compiler view of AMD Instinct MI300A series accelerator architec-
ture and the OpenMP offloading software stack.

SYCL includes a similar concept to OpenMP, called Unified
Shared Memory. Allocating memory in Unified Shared Mem-
ory provides the program with a pointer that can be accessed
on both CPU and GPUs without translation, further allocations
or memory copies. Allocations in Unified Shared Memory are
characterized by their kind, which can be host, device, or
shared. Porting a SYCL application from a discrete GPU
system to an APU requires changing the allocation kind used
in the program. We expect Kokkos, SYCL, and other similar
languages and frameworks to offer APU implementations
whose performance characteristics will reflect that of OpenMP,
and that will include similar optimization mechanisms as
described in this paper.

The performance characteristics of unified memory systems
have been studied for discrete GPU systems in the past. In
an earlier study of OpenMP offloading with unified memory
capability, it was found that performance was considerably
lowered when the GPU memory was oversubscribed [18].
Another study [19] reports the behavior of HIP applications
using unified memory on discrete GPUs. Authors found that
using unified memory may improve programmer productivity,
but that it has non-trivial performance characteristics and
impact.

To target one of the key performance factors of unified
memory, the authors propose a compiler-driven hybrid exe-
cution for explicit and implicit data management [20]. In [21]
the authors present a detailed analysis of NVIDIAs unified
virtual memory system and reveal insights into the behavior
of page fault generation and servicing.

Other approaches exist to help developers with software-
defined unified memory schemes for specific application do-
mains, such as graph processing [22], oversubscribing GPU
memory for very large deep neural networks [23], or using
multiple GPU devices [24].

III. BACKGROUND

A. Abstract APU Architecture

Fig. 1 shows the architecture of a single APU socket. Each
socket features: an array of high bandwidth memory (HBM)
units, which are configured as a single logical memory from
the perspective of the CPU and GPU, a set of CPU cores, and a
set of accelerated compute die(s) (XCD), which are configured
as a single logical GPU device.

APU sockets can be composed together in a multi-socket
accelerator card, where either CPU or GPU threads on a socket
can access memory located in a different socket. GPUs in
different sockets are seen by OpenMP as multiple devices.
Programmers of a multi-socket APU card can either: program
multiple sockets using a single OpenMP program, by carefully
selecting CPU and GPU thread affinity (e.g., CPU thread
running on a socket offloads to the GPU device on the same
socket) or use one MPI process per socket, with multiple
OpenMP threads per process, to offload to the GPU device
on the same socket. The experiments we analyze in this paper
are on a single socket APU.

1421

#pragma omp declare target (alpha)
double alpha;
int main() {

int N = ...; // problem dependent
double * a = new double[N];
double * b = new double[N];
// initialize a and b and alpha from I/O
FileInput(N, a, b, &alpha);

#pragma omp target teams loop map(tofrom: a[:N]) \
map(to: b[:N]) map(always, to: alpha)

for(size_t i = 0; i < N; i++)
a[i] += b[i] * alpha;

}

Fig. 2. Example program for OpenMP offloading with data environments.

B. System Software

The ability for threads on CPU and GPU to access the same
memory using same addresses, may it be on a discrete GPU
system or an APU, is obtained using Unified Memory support,
which includes the XNACK capability. We give an abstract
description of the role of XNACK on an APU as it is relevant
to optimizations described later.

Suppose a GPU thread is provided, via kernel arguments,
an address addr that was obtained by a CPU thread using
an OS library call, such as malloc. The first time the GPU
thread accesses a page pointed to by addr, the GPU page
table does not contain a translation for addr. The XNACK-
replay protocol implements a search in the CPU page table and
the insertion of the page table entry in the GPU page table,
to enable logical-to-physical address translation. GPU threads
are stalled while the GPU Translation Lookaside Buffer (TLB)
implementation is executing the XNACK-replay protocol. This
cost is one-off per page during the course of application
execution.

The OpenMP software stack (see Fig. 1) is relevant to the
implementation of certain functionalities on APUs, such as
device memory allocation. ROCr [25] is an implementation
of the HSA™ [26] API with extensions for AMD GPUs.
OpenMP uses ROCr to implement data management and
kernel execution on AMD GPUs. The OpenMP offloading
runtime, ROCr, and the driver run on the CPU.

When a program invokes a device memory allocation rou-
tine (e.g., hipMalloc) on an APU socket, as there is no
separate device memory, the driver invokes the OS memory
allocator to fulfill the request. Legacy code using hipMalloc
is still supported, but effectively results in unnecessary mem-
ory duplication and transfers.

C. OpenMP

The reader is encouraged to refer to the OpenMP specifica-
tion [6] and OpenMP GPU offloading programming guides [7]
for full details on OpenMP offloading. In this section, we
describe a simple program that gives essential information
needed for the understanding of the paper.

Fig. 2 shows a program that performs a numerical compu-
tation on two arrays and a global variable. Pragma target

teams loop is used to offload from host thread to a GPU
device using multiple workgroups (known as threadblocks in
HIP and CUDA) and threads in each workgroup to execute
the for-loop iterations in parallel.

OpenMP abstracts CPU and GPU memory using data
environments. A CPU or GPU thread can access data present
in their own data environments. For instance, pointers a and
b and the memory they point to are available in the CPU
data environment when declared and allocated in the main
function. The construct map for a and b adds the pointers and
their pointed memory to the GPU data environment, so that
GPU threads can access them. Global variables can be made
available on GPU data environments by declaring them using
pragma declare target, as shown for global alpha in
the example program.

It is important to understand that data environments are
not the same as physical storage: the host and device data
environments in the program example can be implemented
by the same physical storage or by separate ones. Data
environments are an abstraction for programmers to spec-
ify memory consistency and visibility from CPU and GPU
threads. In a different perspective, programmers cannot assume
that programming multiple host and device data environments
necessarily means using multiple physical storage and that
mapping memory means GPU memory allocation and CPU-
GPU data transfer.

Mapping memory is not necessary when programmers
use the requirement pragma unified_shared_memory,
where a pointer “[..] will always refer to the same location in
memory from all devices [..]” [6] and “Host pointers may be
passed as device pointer arguments to device memory routines
[..]” [6].

On a discrete GPU, data mapping is implemented with
device memory allocations and host-device data transfers. In
the program of Fig. 2, the map constructs are implemented as
follows: device memory allocations for a and b arrays before
the kernel launch; host-to-device (to) data transfer for arrays
a and b before kernel launch; device-to-host (from) data
transfer for array a after the kernel has completed executing.
On an APU, we refer to this implementation as copy.

IV. APU PROGRAMMING IN OPENMP

As described in Section III, the OpenMP abstract data model
is designed to enable implementations to map host and device
data environments either to different physical storage or to
the same one. The “native” way to implement the OpenMP
runtime on APUs is to use zero-copy: the OpenMP runtime
does not perform extra unnecessary memory allocations and
data transfers to implement map constructs; CPU and GPU
threads access the same physical pages for mapped data using
the same logical addresses. We describe different runtime con-
figurations and how they handle the creation and modification
of data environments. From an OpenMP semantics viewpoint,
they are all equivalent.

1422

A. “Legacy” Copy

The “Legacy” Copy configuration maps GPU device mem-
ory allocations to the single APU memory. When memory
is mapped, the OpenMP runtime allocates “device” memory
via ROCr and the GPU driver. The driver allocates HBM
space, in the same way OS-allocators (e.g., mmap) do. As
the GPU runtime is transparent to the language runtime (see
Section III), the OpenMP runtime can operate in the default
copy mode that is normally used on discrete GPU systems
without any changes.

In the example of Fig. 2, mapping a and b means that the
OpenMP runtime matches them with the pointers and memory
returned by ROCr when allocating “device” memory (let’s call
them a_prime and b_prime). Consequently, while the CPU
thread executing the main function accesses a and b, the
GPU threads executing in the target region access the matching
a_prime and b_prime pointers and their memory. Memory
copies between CPU and GPU are implemented as HBM-to-
HBM copies.

B. Unified Shared Memory

Unified Shared Memory is obtained by adding #pragma
omp requires unified_shared_memory to all trans-
lation units of an application. The implementation of Unified
Shared Memory configuration predates the work done for
this paper and it is available in LLVM trunk [27] as well
as ROCm 6.1.1 [28]. It is the main mechanism underlying
the OpenFOAM MI300A porting results described in [29]. In
this paper, we briefly review its implementation details as a
comparison point for our extensions.

In Unified Shared Memory, when memory is mapped, no
storage operation is performed. Target regions that result in
kernel launches are passed host memory pointers by value.
This makes the Unified Shared Memory configuration an
implementation of the zero-copy pattern.

Using the requirement pragma affects the behavior of both
compiler and runtime for global variables. Consider the pro-
gram in Fig. 2. The compiler produces two code objects, one
for the GPU and one for the CPU. One difference between
the two code objects is the implementation of the global
alpha. In the generated CPU code, it is a global variable
in the module, with the same type as in the source code.
In the generated GPU code, it is a global variable, but the
type is pointer to the type of the original global variable.
At initialization time, the pointer in the GPU code object is
assigned the address of the global in host memory. Code in
target regions is generated using double indirection to access
the global alpha.

Applications built with #pragma omp requires
unified_shared_memory can only be deployed on
GPUs that support Unified Memory. They cannot be switched
between Copy and Unified Shared Memory implementations
based on deployment environment. As such, they are less
portable than the remaining solutions.

C. Implicit Zero-Copy

Implicit Zero-Copy (or Implicit Z-C in short) extends the
zero-copy behavior for local variables to programs that do
not use pragma unified_shared_memory. The OpenMP
runtime detects that the system it is running on is an APU
and that XNACK (Unified Memory support) is enabled in the
current run environment and automatically toggles the same
runtime behavior used for Unified Shared Memory described
above. Unlike Unified Shared Memory, an application running
as Implicit Z-C on MI300A (or supported APUs) is run as
Copy configuration on discrete GPUs, potentially optimizing
CPU-GPU memory transfer operations using carefully placed
mapping operations. This makes Implicit Z-C the performance
portable solution for applications that are optimized for dis-
crete GPUs.

Special care is needed for global variables. Referring back
to the example in the previous section, when building an ap-
plication without unified_shared_memory, the compiler
generates a copy for alpha in both CPU and GPU code
objects. That is, the CPU and each GPU have their own copies
of the global variable. Kernel code that accesses the global
does not use the double indirection mechanism described in
Unified Shared Memory, but it directly accesses the global
location in the GPU code object.

When operating in Implicit Zero-Copy, the OpenMP
runtime knows that the application was not built with
unified_shared_memory and it switches handling of
globals as if operating in Copy mode. When a global is
mapped, system-to-system memory transfers are issued. In this
way, the host and device copies are kept consistent according
to OpenMP mapping semantics.

Implicit Zero-Copy is a solution for programmers that do
not want to change their applications but still want to obtain
zero-copy implementation. This configuration is available both
in LLVM “trunk” (see patch [14]) and in ROCm 6.1.1 [28]1.

D. Eager Maps

As described in Section III, when a GPU thread accesses
a memory page allocated via an OS-allocator (e.g., mmap)
for the first time, the driver loads its page table entry into the
GPU page table (XNACK mechanism). Subsequent uses of the
same page do not require loading the same entry again, but first
access cost is generally an expensive operation. OpenMP data
management abstractions can be used to optimize this process.
The assumption is that programmers must map all memory that
is used in target regions, which is true when the program does
not use the requires clause unified_shared_memory.
Any memory location that a kernel accesses needs to be
mapped before the kernel is launched. Upon mapping, the
OpenMP runtime triggers GPU page table prefaulting using
a ROCr call. This call does not allocate memory, nor replaces

1ROCm provides Implicit Zero-Copy as an opt-in run configuration
also on discrete GPU systems, by setting the environment variable
OMPX APU MAPS to value 1 in an environment where XNACK support is
enabled (e.g. HSA XNACK environment variable is set to value 1).

1423

the original memory allocated by the CPU thread that is being
mapped, but it adds to the GPU page table all CPU page
table entries corresponding to the mapped memory. This eager
ahead-of-time prefaulting operation is expensive the first time
a page is added to the GPU page table. Similar to what happens
in the XNACK algorithm, the host page table is walked to
identify the entry to be added. Unlike XNACK, this operation
is issued from the host side and requires supervisor privilege
to modify page tables, using a system call.

Any subsequent prefault issued from the host for a page that
has already been prefaulted is a simple access to the GPU page
table to verify that the page is present. The cost is higher than
in the case of the XNACK protocol, because accessing the
GPU page table on the host requires a system call, similar to
when modifying it.

When using this Eager Maps configuration, the GPU does
not need to run with XNACK support. The OpenMP runtime
behaves in zero-copy mode, the same way as for the Implicit
Zero-Copy configuration. Section V describes quantitative
trade-offs between Implicit Zero-Copy and Eager Maps con-
figurations. Eager Maps is available in ROCm 6.1.1 [28].

V. EXPERIMENTS

In this section we present experimental results that aim at
answering the following two questions:

• What are the performance consequences of using APU
programming mechanisms described in previous sec-
tions?

• Do I have to rewrite or re-optimize/tune my application
when moving to an APU?

We test QMCPack [16], a production-grade application that
uses OpenMP offloading for its main user-programmed ker-
nels, and C/C++ benchmarks in SPECaccel 2023. SPECaccel
2023 benchmarks exercise multiple programming patterns for
OpenMP GPU offloading, which enabled us to study corner
cases for the zero-copy configurations. Results are obtained
running with base tuning and ref (reference workload) size
options (see [30] for more information about SPEC accel run
configurations).

Experiments were performed on an AMD Instinct MI300A
series accelerator with a single socket, with one CPU and one
GPU, with AMDGPU driver version 6.3.5.

Each SPECaccel 2023 experiment is run 8 times. QMCPack
experiments are run 4 times each, to limit the total execution
time for the experiments. The median value is used to compute
ratios and we report the Coefficient of Variation (CoV) to
support statistical robustness of our claims. To match Copy
and zero-copy configurations, we turn on Transparent Huge
Pages (THP) so that both configurations work with 2MB page
sizes.

A. Experiments with QMCPack

QMCPack features more than fifty target constructs for
OpenMP offloading and roughly the same number for data,
task, and parallelism management. QMCPack is especially
relevant to study zero-copy performance on MI300A because

it employs two main optimization patterns tailored for discrete
GPUs:

• Ahead-of-time Data Transfer: this is implemented as a
bulk data transfer at the beginning of the application,
followed by a long-running GPU computation phase with
minimal data transfers.

• Data Transfer Latency Hiding: this is implemented by
using multiple OpenMP host threads offloading to the
same device, where a data transfer issued by a thread
can be masked by profitable computation in a kernel from
another thread.

We show that these optimizations do not hurt performance
when using zero-copy programming mechanisms and that they
are effective at minimizing overheads when running in Legacy
Copy mode on MI300A.

Results shown in this paper are for running QMCPack
“NiO” performance tests [31], from small (S2) to large (S128)
problem sizes. Results for the smallest available problem size
(S1) is not included in this paper, as it is not representative of
GPU application performance: it spends all execution in the
offloading runtime and minimal time in GPU kernels, resulting
in zero-copy configurations disproportionately winning over
Copy.

Small problem sizes are used to study the overheads in-
curred by a specific OpenMP implementation, while large
problem sizes reflect the performance of real production exper-
iments. We build QMCPack using the following configuration:

-DQMC_COMPLEX=OFF
-DQMC_MIXED_PRECISION=OFF
-DQMC_MPI=OFF, -DENABLE_CUDA=OFF,
-DQMC_CUDA2HIP=OFF,

We do not use HIP device library in QMCPack because
that results in memory allocation being performed using HIP
device runtime, which nullifies the effects of OpenMP zero-
copy implementations.

Full details on QMCPack build configuration and related
instructions can be found at [32]. We run QMCPack using a
single MPI process with 1, 2, 4, and 8 OpenMP CPU threads
offloading to the same device. The version of QMCPack
that we used is obtained from the main development branch
(develop) at: https://github.com/QMCPACK/qmcpack with
latest git commit SHA 78340fd6.

Library dependencies for QMCPack are as follow-
ing: libopenblas-dev 0.3.20, hdf5-1.12.0, BOOST 1.74.0.3,
libfftw3-3. This configuration is sufficient for single node
performance runs.

1) Raw Data Graphs: All experimental data provided in
this paper compare three run configurations against the base-
line Legacy Copy implementation. The three configurations
are: Unified Shared Memory, Implicit Zero Copy, and Eager
Maps. Each graph contains three lines, each corresponding to
the ratios between the execution time of Copy and Unified
Shared Memory, Implicit Zero Copy, and Eager Maps.

The first set of graphs (see Fig. 3) shows the values for the
described ratios for a fixed problem size when using 1, 2, 4,

1424

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8

R
a
ti
o
s
 w

.r
.t
.
C

o
p
y
 c

o
n
fi
g
u
ra

ti
o
n

Number of OpenMP Threads

Problem Size S2

Implicit Zero Copy
Eager Maps

Unified Shared Memory

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8

R
a
ti
o
s
 w

.r
.t
.
C

o
p
y
 c

o
n
fi
g
u
ra

ti
o
n

Number of OpenMP Threads

Problem Size S16

Implicit Zero Copy
Eager Maps

Unified Shared Memory

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8

R
a
ti
o
s
 w

.r
.t
.
C

o
p
y
 c

o
n
fi
g
u
ra

ti
o
n

Number of OpenMP Threads

Problem Size S64

Implicit Zero Copy
Eager Maps

Unified Shared Memory

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 1 2 3 4 5 6 7 8

R
a
ti
o
s
 w

.r
.t
.
C

o
p
y
 c

o
n
fi
g
u
ra

ti
o
n

Number of OpenMP Threads

Problem Size S128

Implicit Zero Copy
Eager Maps

Unified Shared Memory

Fig. 3. Ratios between the execution times of Copy and zero-copy configurations for different problem sizes by varying number of OpenMP threads.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

S2 S4 S8 S16 S24 S32 S48 S64 S128

R
a
ti
o
 w

.r
.t
.
C

o
p
y
 c

o
n
fi
g
u
ra

ti
o
n

Problem Size

8 OpenMP host threads

Implicit Zero Copy
Eager Maps

Unified Shared Memory

Fig. 4. Ratios between the execution times of Copy and zero-copy configu-
rations when using 8 OpenMP host threads by varying problem size.

and 8 OpenMP threads on the host to offload to the GPU.
Different graphs refer to different problem sizes.

The graph in Fig. 4 is sourced from the same data as Fig. 3,

but it highlights the ratio behavior with 8 OpenMP host threads
when varying the problem size.

Experiments show the following Coefficient of Variation
(CoV) values: Copy has 0.03, Implicit Zero Copy has 0.10,
Unified Shared Memory has 0.08. Eager Maps has two major
outliers: S32 and 8 threads has one data point that is one order
of magnitude larger than the rest of the data and has a CoV of
4.2. Eager maps uses a system call to prefault TLB entries and
the anomalous data point may be due to random interference
by the operating system. S128 has a maximum CoV of 2.9,
and above 1 for any number of OpenMP threads. We believe
this is due to TLB thrashing. For all other problem sizes, Eager
Maps shows 0.03 CoV. In general, these CoV values indicate
that the reported ratios are robust w.r.t. statistical variations in
the performance measurements.

2) Performance Comparison of Implicit Zero-Copy and
Unified Shared Memory with Copy: Overall, the graphs in
Fig. 3 show that Implicit Zero-Copy and Unified Shared Mem-
ory configurations for APUs perform similarly and always
better than the “Legacy” Copy configuration. As a reminder,
the two APU configurations only differ at runtime in the
way they handle global variables. QMCPack does not use
global variables, which justifies the two configurations having

1425

identical results.
To understand these results, we analyzed the case of S2 with

one OpenMP thread using rocprof HSA call tracing. Table I,
left side, lists some of the most significant, in terms of latency,
calls to HSA performed when running in Copy and Implicit
Zero-Copy configurations. Latency ratio is computed by divid-
ing the total time spent in Copy configuration executing the
ROCr call, by the same metric for Implicit Z-C, as reported
by rocprof.

Copy configuration uses the first signal-related HSA call
for kernel dispatch and memory copies and Implicit Zero-
Copy almost exclusively for kernel dispatch. The rest of the
HSA calls are used for memory allocation and management.
Implicit Zero-Copy uses these calls for loading the GPU code
and data, and other support structures, during initialization.
Copy additionally uses these calls to implement OpenMP data
mapping during the whole execution.

Latency ratios reported in Table I include operations per-
formed during initialization, whereas Fig. 3 only includes
steady-state computation ratios. While the ratios reported in
the table cannot be immediately used to compute the ratios
in the graphs, they indicate the source of difference between
Copy and zero-copy configurations in general reported in
Fig. 3: Copy spends thousands more time than Implicit Zero-
Copy in copying memory between two HBM locations.

Going back to the graphs in Fig. 3 we see that with 8
OpenMP threads results in improved ratios between Implicit
Zero-Copy and Unified Shared Memory against the “Legacy”
Copy configuration. This is because more OpenMP threads
will share the same runtime stack, including components
such as the OpenMP host and offloading runtimes, ROCr,
and the driver and GPU firmware. When running in Legacy
Copy configuration, OpenMP threads on the host need to:
allocate memory for the GPU, transfer memory between CPU
and GPU, and launch kernels and synchronize all operations
between themselves using HSA signals. APU configurations
only need to launch kernels and synchronize their execution,
as there is no extra memory to manage. This means a smaller
number of calls to the runtime, which pays off when increasing
the number of threads.

To justify this conclusion, we study the HSA calls per-
formed by Copy and Implicit Zero-Copy configurations for S2
input with 8 OpenMP threads (see Table I, right side). Similar
to the case of 1 OpenMP thread, Implicit Zero-Copy performs
a significant smaller amount of calls to HSA. However, we
notice that the number of calls to the HSA API increases for
both Copy and Implicit Zero-Copy when using 8 OpenMP
threads compared to using 1 OpenMP thread. Specifically, in
Copy, HSA call memory async copy is called 1,124,258 for
Copy with 8 OpenMP threads, and 307,607 for 1 OpenMP
thread. As Implicit Zero-Copy does not call that function, the
latency ratio between the two configurations is significantly
higher compared to the case of one OpenMP thread. This
explains why increasing the number of OpenMP threads used
to offload to the GPU results in increased difference between
Copy and Implicit Zero-Copy.

3) Effects of Data Transfer Optimizations: Results in Fig. 4
show that performance advantages obtained with APU con-
figurations diminish when the problem size increases. This
is because memory management overheads incurred in the
Legacy Copy configuration are minimized (in fact, hidden)
due to the optimizations that QMCPack includes for discrete
GPU systems. As noted elsewhere, on an APU, data transfers
are between different locations in the same storage and it
has generally higher performance than a host-device memory
transfer in discrete GPUs. As there is less to hide, less host
multi-threading is needed on an APU than a discrete GPU
for data transfer hiding purposes. This supports our claim
that portability from discrete GPU systems and APUs does
not require a rewriting of data management optimizations, but
that they can help improving performance of the Legacy Copy
configuration.

To understand this trend, we analyzed two ratios between
S2 and S24 problem sizes, where S2 represents the highest
ratio point and S24 a local minimum. Total kernel execution
times reported by rocprof for Copy and Implicit Zero-Copy
configurations increases 10 times between S2 and S24. Total
HSA call execution time increases 5X for Copy and 10X for
Implicit Zero-Copy, although the latter has a much smaller to-
tal compared to the former. As expected, going from S2 to S24,
QMCPack generally uses larger data structures rather than
ten times their number, which can be transferred by roughly
the same amount of memory copy operations, resulting in a
smaller increase of Copy compared to Implicit Zero-Copy.
From these results, we infer that increases in problem size
reflects in memory copy overheads (for Copy) about at half
rate than kernel execution time. This means that kernel time
starts dominating total execution time and it becomes the first
order overhead for large realistic problem sizes.

4) Eager Maps: We notice that the Eager Maps configu-
ration diverges from Implicit Zero Copy and Unified Shared
Memory configurations in some of the runs. The implicit cost
of Eager Maps is that of a system call every time a memory
page is mapped from a CPU thread. The first time some
memory is mapped, the cost is of the order of the number
of pages to be added to the GPU page table. When the same
memory is mapped again, the cost is that of a system call,
as there is nothing to add. Unlike Eager Maps configuration,
Implicit Zero-Copy and Unified Shared Memory use page fault
handling when a GPU thread touches a page for the first time.
Successive accesses to the same page are free.

Graphs of Fig. 3 and highlighted in Fig. 4 show that for
smaller problem sizes than S128, the performance advantage
of Eager Maps over the Copy configuration scales at a lower
rate than the other two APU configurations. This disadvantage
is not present for S128, as the problem size is large enough
that the overhead incurred due to GPU TLB prefaulting is
hidden by the average time it takes to execute kernels. In
a sense, this is similar to data management overheads and
their optimization. There is an inherent cost per thread that is
paid to prefault the GPU page table, which is of the order of
the latency of a system call. That cost is hidden by memory

1426

TABLE I
HSA API CALL STATISTICS FOR COPY AND IMPLICIT ZERO-COPY FOR QMCPACK PROBLEM SIZE S2 WITH 1 AND 8 OPENMP THREADS.

1 OpenMP Thread 8 OpenMP Threads
Copy Implicit Z-C Copy/* Copy Implicit Z-C Copy/*

ROCr/HSA Call Used for #Calls #Calls Latency Ratio #Calls #Calls Latency Ratio
signal wait scacquire Kernel Completion 351,653 99,627 2.07 1,360,088 738,483 2.71
memory pool allocate Allocate device memory 23,277 19 7.41 20,848 90 3.68
memory async copy Memory copy 307,607 3 3,190 1,124,258 3 1.11× 104

signal async handler Memory copy 194,848 0 N/A 491,492 0 N/A

management optimizations for discrete GPU systems and we
have already noted above that increasing the problem size
makes such optimizations more effective.

To justify these statements we analyzed two metrics in
comparison between Implicit Zero-Copy and Eager Maps for
S2 input with one OpenMP thread. First, the advantage of
Eager Maps over Implicit Zero-Copy is due to increased TLB
hits when host allocated memory is first touched by the GPU.
We found that, for the first hundred kernel launches, the
difference between the two configurations is in the order of
tens of milliseconds. After the initial phase, the difference
lowers to milliseconds and lower, persisting due to the use of
host-allocated arrays to perform cross-team (block) reductions
on the host. The advantage of Eager Maps sums to less than
a second, in the order of a tenth of a second.

Second, the advantage of Implicit Zero-Copy over Ea-
ger maps is due to the absence of calls, on the host,
to the TLB prefaulting ROCr/HSA API call, named
svm_attributes_set. Using rocprof tracing, this call is
called over a million and a half times and it costs a few
seconds over the entire application execution. If considering
whole application execution time, we can see that Eager Maps
saves less than a second, but pays a few seconds to perform
prefaulting.

B. Experiments with SPECaccel 2023

TABLE II
RATIOS BETWEEN COPY AND EACH ONE OF THE ZERO-COPY

CONFIGURATIONS FOR SPECACCEL 2023. RATIO HIGHER THAN 1 MEANS
ZERO-COPY CONFIGURATION PERFORMS BETTER THAN COPY.

Benchmark stencil lbm ep spC bt
Implicit Z-C 0.99 1.05 0.89 7.80 4.88
Unified Shared
Memory

0.99 1.043 0.89 7.61 4.77

Eager Maps 0.98 1.025 0.99 8.10 5.10

SPECaccel 2023 benchmarks include OpenMP program-
ming patterns that, unlike QMCPack, are not specifically
optimized for discrete GPUs and exercise relevant corner cases
when comparing Copy with the three zero-copy configurations.
We only consider C/C++ tests on a single-socket MI300A node
(SPECaccel does not use MPI). We report the ratio between
Copy configuration and the other zero-copy configurations
(see Table II). For all configurations and runs, the highest
detected Coefficient of Variation was 0.03. This indicates
robust numerical results in our tests.

TABLE III
OVERHEAD ANALYSIS FOR 403.STENCIL AND 452.EP. MM IS THE

OVERHEAD INDUCED BY MEMORY MANAGEMENT, INCLUDING
GPU-SPECIFIC MEMORY ALLOCATION AND CPU-GPU MEMORY COPIES.
GPU-SPECIFIC MEMORY MEANS MEMORY ALLOCATED VIA ROCR AND

ASSOCIATED WITH ITS GPU AGENT, PHYSICALLY LOCATED IN THE SAME
STORAGE AS HOST-ALLOCATED MEMORY. MI IS OVERHEAD INDUCED BY

FIRST TOUCH (OR INITIALIZATION) OF MEMORY ON THE GPU, WHICH
INCLUDES EXECUTING THE XNACK PROTOCOL FOR EVERY PAGE OF THE
TOUCHED MEMORY. TIME QUANTITIES WERE OBTAINED BY SPECIFYING
LIBOMPTARGET_KERNEL_TRACE=3 WHEN RUNNING THE APPLICATION

AND ANALYZING THE RESULTING TRACE.

Base unit: microsec. stencil ep
MM MI MM MI

Copy O(105) O(0) O(105) O(0)
Implicit Z-C or USM O(0) O(106) O(0) O(106)
Eager Maps O(104) O(0) O(105) O(0)

Benchmarks 403.stencil and 452.ep report lower perfor-
mance in zero-copy configurations, compared to copy. In Copy
configuration, 403.stencil performs two data copies, between
host thread allocated memory and ROCr allocated memory, at
the beginning and at the end of the simulation. 452.ep allocates
GPU memory using ROCr but does not perform memory
copies. Steady-state computations of both kernels access mem-
ory exclusively from the GPU - with an exception for scalar
reduction variables. Let’s denote the memory management
overhead for Copy as MMcopy . Implicit Zero-Copy and Uni-
fied Shared Memory fold the memory management operations
for these two benchmarks resulting in MMzcopy = 0.

Looking at individual kernel performance, we noticed that
452.ep initializes memory in a target region, which performs
worse if the memory being initialized was obtained using
an OS-allocator (e.g., malloc, mmap) compared to using a
ROCr memory allocator, as in Copy configuration. This is
due to different management of TLB with XNACK-enabled
and XNACK-disabled. When initializing memory that was
originally allocated using an OS-allocator, in XNACK-enabled
state, GPU TLB page faults are performed while the kernel
is running, upon touch of a memory page and page-by-page.
When initializing memory that was originally allocated using
ROCr (GPU memory pool allocator), in XNACK-disabled
state, GPU TLB page faults are performed in bulk upon
allocation. This is evident when running with driver debug
prints turned on: XNACK-enabled (Implicit Zero-Copy, Uni-
fied Shared Memory) shows TLB fault handling events upon
first touch. XNACK-disabled (Copy) shows none. Let’s denote

1427

the cost of memory initialization (MI) for zero-copy (Implicit
Zero-Copy and Unified Shared Memory) as MIzcopy and for
Copy as MIcopy . From the description above, MIcopy = 0.
403.stencil suffers less from the first-touch overhead due to
the fact that it initializes a much smaller array compared to
452.ep.

For 403.stencil, MMcopy is of the order of hundreds of
thousands of microseconds. MMzcopy = 0. MIcopy = 0 and
MIzcopy is of the order of a few million microseconds. The
difference between the overhead incurred by Copy (MMcopy)
and that incurred by zero-copy (MMzcopy) is negative in value
and of the order of tens of microseconds. This explains why
zero-copy configurations perform slightly worse than Copy.

For 452.ep, MMcopy = MMzcopy = 0. MIcopy = 0 and
MIzcopy is of the order of a few million microseconds. That
makes total execution time of Copy configuration faster by a
few million microseconds than Implicit Zero-Copy and Unified
Shared Memory, justifying the 0.89 ratio reported in Table II.

We note that Eager Maps seems to alleviate part of the
slowdown for 452.ep. When using Eager Maps, OpenMP
memory mapping translates to prefaulting the GPU page table,
which translates to MIeager = 0, effectively matching Eager
Maps performance to that of Copy. Table III summarizes
the overheads in terms of their orders of magnitude for the
403.stencil and 452.ep benchmarks.

404.lbm performs a large data transfer at the beginning
of the application, when running in Copy configuration. This
is not executed for the zero-copy configurations, which con-
sequently perform slightly better. 457.spC and 470.bt show
significant performance improvements when using any zero-
copy configurations. 457.spC performs data allocations and
data deletions every 13 kernel launches, and the memory
being allocated is in the order of GBs. Data allocations are
synchronous w.r.t. subsequent kernel launches, due to data
dependency, and are not parallelized in the runtime due to
the individual copy sizes. Kernel executions inside the data
allocation and data deletion sequence may take up to 6% the
time it takes to perform a single allocation. Consequently,
the Copy configuration is significantly slowed down compared
to zero-copy configurations. 470.bt is similar, except that the
largest data allocation is above 2GBs, 10 kernels are executed
between the data allocation and data deletion sequence, and the
most time consuming kernel is approximately 30% of the time
it takes to execute the largest data allocation. Both 457.spC
and 470.bt return best results when using eager maps. Similar
to other benchmarks, this is due to the fact that implicit zero-
copy and unified shared memory suffer from the first-touch
initialization issue for the data being otherwise allocated in
Copy configuration. Host data is allocated on the program
stack at each of the containing host function invocation, and
is first-touched on the GPU every time the function is called.
Eager maps overcomes that issue by prefaulting the GPU page
table and avoiding GPU-issued page faults and related kernel
handling overhead.

VI. LESSONS LEARNED

We identified the following two MI300A optimizations as
most effective.

Folding Memory Copies: for Copy configuration, the most
significant source of overhead is data transfers. Frequent and
large data transfers cancel any positive one-time effect on ker-
nel execution enabled by using ROCr allocators for data. All
zero-copy configurations overcome this overhead by folding
copy operations. This overhead is significant in QMCPack and
SPECaccel 2023 benchmarks 457.spC and 470.bt.

GPU TLB Bulk Page Faulting: for Implicit Zero-Copy and
Unified Shared Memory configurations, the most significant
source of overhead is GPU page table faulting. When in
Copy mode, ROCr allocator triggers bulk GPU page table
prefaults and first-touch memory initialization kernels are not
affected by page table faults while running. In Implicit Zero-
Copy and Unified Shared Memory page faults are handled
during kernel execution, page-by-page, resulting in worse
performance compared to Copy. Eager Maps overcomes first-
touch overhead of zero-copy by prefaulting host-allocated
memory upon mapping, and before it is touched on the GPU,
resulting in TLB page fault free initialization. This overhead
is the most significant and 452.ep and has a minor role in
403.stencil.

Our initial analysis of SPECaccel 2023 shows that TLB
prefaulting of Eager Maps is profitable when a large amount
of memory is first touched on the GPU. For smaller sizes
and multiple arrays, each prefaulting request introduces an
overhead that should be considered against the cost of page-
by-page GPU fault handling. This is evident in QMCPack
where we see frequent prefaulting requests to the driver that
are issued concurrently by multiple OpenMP host threads,
resulting in lowered Eager Maps performance compared to
the other zero-copy configurations.

VII. CONCLUSION

This paper shows the results of our study on porting
applications optimized for discrete GPUs to the MI300A
APU GPU. We extended the LLVM OpenMP compiler and
runtime to support zero-copy for all OpenMP applications
on APUs and we applied our implementation to the QMC-
Pack production application and to SPECaccel 2023 C/C++
benchmarks to study its effects. Experiments show that im-
plementations based on zero-copy always achieve superior
performance compared to the Copy configuration, with few
corner cases that we clearly identify as being caused by
GPU page table initialization. For those corner cases, the
eager maps configuration is a solution that enables running
with zero-copy but without the overhead of Implicit Zero-
Copy and unified shared memory. Furthermore, data transfer
optimizations implemented for discrete-GPU systems do not
slow down zero-copy based implementations, but they improve
performance of the copy configuration. As a result, we expect
all production grade applications to move to zero-copy without
major limitations.

1428

REFERENCES

[1] (November 13, 2023) Frontier remains No. 1 in the TOP500
but Aurora with Intel’s Sapphire Rapids chips enters with a
half-scale system at No. 2. 11/17/2023. [Online]. Available:
https://www.top500.org/news/frontier-remains-no-1-in-the-top500-
but-aurora-with-intels-sapphire-rapids-chips-enters-with-a-half-scale-
system-at-no-2/

[2] O. R. N. Laboratory. (May 30, 2022) Frontier supercomputer
debuts as world’s fastest, breaking exascale barrier. 11/14/2023.
[Online]. Available: https://www.ornl.gov/news/frontier-supercomputer-
debuts-worlds-fastest-breaking-exascale-barrier

[3] AMD Instinct™ MI300A Accelerators. 12/8/2023. [On-
line]. Available: https://www.amd.com/en/products/accelerators/instinct/
mi300/mi300a.html

[4] CUDA C++ Programming Guide. [Online]. Available: https://docs.
nvidia.com/cuda/cuda-c-programming-guide/index.html

[5] HIP Programming Manual. [Online]. Available: https://rocm.docs.amd.
com/projects/HIP/en/latest/user guide/programming manual.html

[6] OpenMP Technical Report 12: Version 6.0 Preview 2, 2023, available
at https://www.openmp.org/wp-content/uploads/openmp-TR12.pdf.

[7] T. Deakin and T. G. Mattson, Programming Your GPU with OpenMP:
Performance Portability for GPUs. The MIT Press, 11 2023. [Online].
Available: https://doi.org/10.7551/mitpress/14866.003.0015

[8] Kokkos Documentation: Memory Spaces. [Online].
Available: https://kokkos.github.io/kokkos-core-wiki/API/core/memory
spaces.html#memory-spaces

[9] Heterogeneous Programming with SYCL: Data Management with
Unified Shared Memory. [Online]. Available: https://enccs.github.io/
sycl-workshop/unified-shared-memory/#usm-memory-allocation

[10] D. A. Beckingsale, J. Burmark, R. Hornung, H. Jones, W. Killian, A. J.
Kunen, O. Pearce, P. Robinson, B. S. Ryujin, and T. R. W. Scogland,
“RAJA: Portable Performance for Large-Scale Scientific Applications,”
in 2019 IEEE/ACM International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2019, pp. 71–82.

[11] The OpenACC Application Programming Interface,
2022, https://www.openacc.org/sites/default/files/inline-
images/Specification/OpenACC-3.3-final.pdf.

[12] Pytorch Webpage. [Online]. Available: https://pytorch.org/
[13] Tensorflow Webpage. [Online]. Available: https://www.tensorflow.org/
[14] (2024) [OpenMP] Enable automatic unified shared memory on MI300A.

[Online]. Available: https://github.com/llvm/llvm-project/pull/77512
[15] (2023) SC23 OpenMP Booth Talk: OpenMP Target Offloading

for AMD GPUs. [Online]. Available: https://www.openmp.org/wp-
content/uploads/sc23-openmp-offloading-lehr.pdf

[16] P. R. C. Kent, A. Annaberdiyev, A. Benali, M. C. Bennett, E. J.
Landinez Borda, P. Doak, H. Hao, K. D. Jordan, J. T. Krogel,
I. Kylänpää, J. Lee, Y. Luo, F. D. Malone, C. A. Melton, L. Mitas,
M. A. Morales, E. Neuscamman, F. A. Reboredo, B. Rubenstein,
K. Saritas, S. Upadhyay, G. Wang, S. Zhang, and L. Zhao, “QMCPACK:
Advances in the development, efficiency, and application of auxiliary
field and real-space variational and diffusion quantum Monte Carlo,”
The Journal of Chemical Physics, vol. 152, no. 17, p. 174105, 05
2020. [Online]. Available: https://doi.org/10.1063/5.0004860

[17] SPECaccel ® 2023. 3/18/2024. [Online]. Available: https://www.spec.
org/accel2023/

[18] A. Mishra, L. Li, M. Kong, H. Finkel, and B. Chapman, “Benchmarking
and Evaluating Unified Memory for OpenMP GPU Offloading,” in Pro-
ceedings of the Fourth Workshop on the LLVM Compiler Infrastructure
in HPC, ser. LLVM-HPC’17. New York, NY, USA: Association for
Computing Machinery, 2017.

[19] Z. Jin and J. S. Vetter, “Evaluating Unified Memory Performance in
HIP,” in 2022 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2022, pp. 562–568.

[20] L. Li and B. Chapman, “Compiler assisted hybrid implicit and explicit
GPU memory management under unified address space,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’19. New York, NY, USA:
Association for Computing Machinery, 2019.

[21] T. Allen and R. Ge, “In-depth analyses of unified virtual memory system
for GPU accelerated computing,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’21. New York, NY, USA: Association for Computing
Machinery, 2021.

[22] P. Wang, J. Wang, C. Li, J. Wang, H. Zhu, and M. Guo, “Grus:
Toward Unified-memory-efficient High-performance Graph Processing
on GPU,” ACM Trans. Archit. Code Optim., vol. 18, no. 2, feb 2021.

[23] J. Jung, J. Kim, and J. Lee, “DeepUM: Tensor Migration and Prefetching
in Unified Memory,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ser. ASPLOS 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 207–221.

[24] A. K. Ziabari, Y. Sun, Y. Ma, D. Schaa, J. L. Abellán, R. Ubal, J. Kim,
A. Joshi, and D. Kaeli, “UMH: A Hardware-Based Unified Memory
Hierarchy for Systems with Multiple Discrete GPUs,” ACM Trans.
Archit. Code Optim., vol. 13, no. 4, dec 2016.

[25] (2024) HSA Runtime API and runtime for ROCm. [Online]. Available:
https://github.com/ROCm/ROCR-Runtime

[26] HSA Platform System Architecture Specification, 2018, available
at http://hsafoundation.com/wp-content/uploads/2021/02/HSA-SysArch-
1.2.pdf.

[27] (2024) Llvm “trunk” repository. [Online]. Available: https://github.com/
llvm/llvm-project

[28] (2024) AMD ROCm 6.1.1 documentation. [Online]. Available:
https://rocm.docs.amd.com/en/docs-6.1.1/

[29] S. Tandon, L. Grinberg, G.-T. Bercea, C. Bertolli, M. Olesen, S. Bnà,
and N. Malaya, “Porting HPC Applications to AMD InstinctTM MI300A
Using Unified Memory and OpenMP,” 2024.

[30] Using SPECaccel® 2022: The ’runaccel’ Command. 9/24/2024.
[Online]. Available: https://www.spec.org/accel2023/Docs/runaccel.html

[31] (2024) QMCPack NiO Performance Tests: How to Obtain and
Run. [Online]. Available: https://qmcpack.readthedocs.io/en/develop/
installation.html#role-of-qmc-data

[32] QMCPack User’s Guide and Developer’s Manual. [Online]. Available:
https://qmcpack.readthedocs.io/en/develop/

1429

