
Ponte Vecchio Across the Atlantic: Single-Node
Benchmarking of Two Intel GPU Systems
Thomas Applencourt

Argonne Leadership Computing Facility
Argonne National Laboratory

Lemont, IL, USA
tapplencourt@anl.gov

Aditya Sadawarte
School of Computer Science

University of Bristol
Bristol, UK

aditya.sadawarte@bristol.ac.uk

Servesh Muralidharan
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL, USA
servesh@anl.gov

Colleen Bertoni
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL, USA
bertoni@anl.gov

JaeHyuk Kwack
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL, USA
jkwack@anl.gov

Ye Luo
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL, USA

yeluo@anl.gov

Esteban Rangel
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL, USA
erangel@anl.gov

John Tramm
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL, USA
jtramm@anl.gov

Yasaman Ghadar
Argonne Leadership Computing Facility

Argonne National Laboratory
Lemont, IL, USA
ghadar@anl.gov

Arjen Tamerus
University of Cambridge

Cambridge, UK
at748@cam.ac.uk

Chris Edsall
University of Cambridge

Cambridge, UK
cje57@cam.ac.uk

Tom Deakin
School of Computer Science

University of Bristol
Bristol, UK

tom.deakin@bristol.ac.uk

Abstract—Intel Data Center GPU Max 1550, known as Ponte

Vecchio (PVC), is a new Intel GPU architecture for high-

performance computing. It is the basis of two systems on the

June 2024 Top 500 list, Dawn (#51) and Aurora (#2).

This work provides micro-benchmarking data on PVCs from

which application developers may benefit, shows how the micro-

benchmarking results are indicative of mini-app performance

on PVC, and demonstrates real applications on large-scale Intel

GPU systems.

We quantify the obtainable performance from PVC systems

through micro-benchmarking fundamental architectural proper-

ties. We evaluate the performance of four mini-apps with known

performance characteristics, and two full applications, comparing

performance on a node of Aurora and Dawn with a node of

NVIDIA H100 GPUs and a node of AMD MI250 GPUs. We show

the figure-of-merit of the mini-apps on a single PVC ranges from

0.6–1.8X the performance of an H100, and 0.8–7.5X of a MI250.

I. INTRODUCTION

Aurora and Dawn are two recent GPU-based supercom-
puters at the Argonne Leadership Computing Facility and
the University of Cambridge, respectively. They are unique
in that while the majority of GPU-based supercomputers

See Acknowledgement for funding sources.

utilize Nvidia or AMD GPUs [1], Aurora and Dawn are
based on the Intel Data Center GPU Max 1550, a new GPU
architecture from Intel. We refer to these GPUs by its archi-
tectural codename Ponte Vecchio (PVC) for the remainder
of this paper. Nvidia GPUs have been involved in high-
performance computing for over a decade (e.g. Titan entered
the Top500 list [2] back in 2012). They have been extensively
benchmarked [3] [4] [5] forming an excellent resource for
application developers. In comparison, the Intel GPUs are new,
and very few benchmarking results are available as references.
Recent results from Dawn and Aurora in the Top500 provide
a glimpse into their potential through the LINPACK and
HPCG benchmarks [6], [7]. However, these results are from
large machine runs and are not always useful for application
optimizations, as discussed by Siefert et al. [8]. Since the
architecture behind PVC is new, it is important for application
developers targeting these machines to have a reference for
their performance characteristics. Using Dawn and Aurora, we
present microbenchmarking results so developers can relate
them to their own application’s performance. Additionally,
for users running on Aurora and Dawn, it is important to
understand how node-level design differences in dense GPU

1423979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00184

systems manifest in performance even while utilizing the same
GPU architecture.

To discover the achievable upper bounds of PVC on Dawn
and Aurora, we present results from a set of microbenchmarks
to characterize single node performance. We predominantly
focus on single-GPU and single-node performance. Since the
configuration of the node, such as the CPUs available, can
affect the performance of the GPU, running benchmarks on
a full node of the system is important for comparison. The
benchmarks were selected to capture the bounds of what
applications may hit, including flop-rate, memory bandwidths,
communication latency, PCIe bandwidth, general matrix multi-
plication (GEMM), fast Fourier transform (FFT), and memory
access latency. Further, they are written in high level languages
(OpenMP, SYCL, MPI) to provide useful information for ap-
plication developers, rather than lower-level languages whose
performance application developers using those high-level
languages may be unable to achieve. Our microbenchmarks
therefore provide indicative performance measurements of key
architectural features on Intel discrete GPU systems.

In addition, we evaluate single-GPU and single-node per-
formance of four mini-apps on Dawn, Aurora, a single-nodes
of NVIDIA H100 and AMD MI250 GPUs. Since the mini-
apps have known bottlenecks, we can evaluate the performance
between the four architectures in terms of the aforementioned
microbenchmarks to compare performance between the four
systems. We also compare the performance of two full appli-
cations across the four architectures on a single node.

To the best of our knowledge, this is the first paper to report
an extensive set of high-level microbenchmarks of the PVC on
the Aurora and Dawn nodes.

We make the following contributions:
• Quantification of obtainable fundamental performance

limits of PVC-based nodes through microbenchmarking
using high-level languages in the manner applications
would be developed;

• Evaluation of the performance of mini-apps with known
characteristics, relating their performance to the results
of the microbenchmarks;

• Demonstration of functionality and performance of mini-
apps and applications on PVC hardware;

• Performance comparison of two science applications
across a single node of four different systems with
varying CPU and GPU architectures (an Aurora node (six
PVC), a Dawn node (four PVC), a node of four NVIDIA
H100s, and a node of four AMD MI250s;

• Discussion of how microbenchmarking can provide in-
sight into application and mini-application performance
as well as its limitations.

This paper is organized as follows: we first present related
work in Section I-A, then an overview of the PVC architecture
in Section II, followed by an overview of the Dawn, Aurora,
NVIDIA H100, and AMD MI250 systems employed in Sec-
tion III. In Section IV we describe the microbenchmarks used
and the single-GPU and intra-node scalability on Dawn and
Aurora, and in Section V we present the mini-apps used and

their performance results. Section VI discusses the applications
and results. Section VII concludes.

This paper walks a fine line between a deep dive into the
PVC hardware and a thorough analysis of selected applica-
tions. It’s not meant to be a deep-dive on PVC hardware. The
H100 and MI250 performance comparison should be seen as
points of reference, and are here to demonstrate that PVC
performance is on par with other GPUs.

A. Related work
Although there have been many papers showing the perfor-

mance of mini-apps or applications on PVC hardware [9]–
[12], to the best of our knowledge there has not been a
paper providing extensive single-node benchmarking for PVC-
based systems. Single node performance papers have been
done for other architectures, for example Ref. [13] discusses
microbenchmarking of Frontier [14] nodes.

The literature has many examples where architecture com-
parisons are made directly or indirectly whereby parallel
programming models, domain specific languages, abstraction
layers, etc, are compared across different GPUs and CPUs. As
this is a ripe field, we omit specific references.

II. INTEL DATA CENTER GPU MAX 1550 SERIES

In this section we discuss the architecture and nomenclature
of the Intel Data Center GPU Max 1550 Series, previously
codenamed Ponte Vecchio (PVC) [15]–[17]. More details
about the lower-level architecture are discussed in Ref. [16]
The PVC GPU is structured in a hierarchical manner, similar to
the previous generations of low-power integrated Intel GPUs
such as Gen9 [18]. The basic element of the PVC is the Xe-
Core. The Xe-Core is composed of eight vector and matrix
engines, with a total register file of 512 KB. The vector unit
is 512-bits wide (8-wide for double precision) and supports
FMAs. The matrix unit is 4096-bits wide and supports only
lower precision operations. The register file can be partitioned
among hardware threads in two different ways: with 8 active
hardware threads with 128 registers each, or 4 active hardware
threads with 256 registers each. Since each vector engine
is able to perform two double precision FMAs per clock,
together all the vector engines in each Xe-Core can perform
256 double precision floating point operations per clock (8
vector engines/Xe-Core ⇥ 8 (512 bits SIMD)⇥2 (FMA)⇥2).
The maximum GPU clock speed is 1.6 GHz, but this can
downclock due to TDP (Thermal Design Power) constraints.

Sixteen Xe-Cores are grouped into a Xe-Slice. Four Xe-
Slices are grouped into a Xe-Stack. The Xe-Stack contains
a shared L2 (LLC) cache, HBM2e memory controllers, high
speed Stack-to-Stack interconnect within the same silicon sub-
strate and Xe-links high-speed coherent fabric for remote GPU
to GPU communication. The Stack is similar in concept to a
AMD GCD. Each Xe-Stack contains 192MiB LLC and also
connects to its own HBM2e memory stacks and is physically
tagged to its local last level cache. Then, two Xe-Stacks (incl.
its local HBM2e memory stacks) are bundled together into
an Intel Data Center GPU Max 1550 card, for a total of 128

1424

Xe-Cores and 32,768 double precision and single precision
floating point operations per clock. Only the first Xe-Stack
contains the PCIe link to connect the card to the host. Data
movement from the second Xe-Stack needs to go via the high-
speed Stack-to-Stack interconnect before reaching the host via
the first Xe-Stack’s PCIe link to the host. The Intel Data Center
GPU Max 1550 card supports PCIe Gen5 link speed for the
interface to the host.

Throughout this paper, we will benchmark the PVC device
in a number of ways, including as a single Xe-Stack (”One
Stack”), both stacks on a single PCIe card (”One PVC”), as
well as multiple GPUs in the node. We typically run one MPI
process per Stack, known as ”explicit scaling” [19].

III. SYSTEMS EMPLOYED

Four different systems were used in this work: two PVC
systems: Dawn and Aurora; one H100, and one MI250. We
used the H100 node and MI250 node of the Joint Laboratory

System for System Evaluation (JLSE). JLSE is a testbed
system at the Argonne Leadership Computing Facility which
is composed of nodes of a variety of architectures [20]. The
Aurora work was done on a pre-production supercomputer
with early versions of the Aurora software development kit.

Dawn is composed of 256 nodes, each with two 48-core
Intel Xeon Platinum 8468 CPUs with a total of 1024GB DDR
and four PVC with 128 GB HBM each [21]. As an operational
setting, each PVC card is power-capped to 600W. The GPUs
are connected all-to-all with Xe-Link. The default software
used was Intel oneAPI 2024.1 public release.

Aurora contains roughly forty times the number of nodes
as Dawn, with 10,624 total nodes [22]. Each node has two
52-core (104-thread) Intel Xeon Gold 5320 CPUs with 64GB
HBM and 512GB DDR5 each [23]. Unlike Dawn’s 4 PVC
per node, Aurora has 6 PVC (with 128 GB HBM each) per
node. However, while all 64 Xe-Cores per Xe-Stack on the
Dawn PVC are active, on Aurora each Xe-Stack has only 56
Xe-Core activated. Like on Dawn, all PVC are connected all-
to-all inside a node. The topology will be discussed more
in the peer-to-peer MPI micro-benchmark section. Another
difference from Dawn is that each PVC is set to have an
idle frequency of 1.6 GHz and each PVC on Aurora is power
capped to 500W. The default software used was also the Intel
oneAPI 2024.1 public release.

JLSE H100 node The JLSE-H100 node is composed of
two Intel Xeon Platinum 8468 CPUs (48 cores/96 threads)
with 512GB DDR5 total and four NVIDIA H100 SXM5
80GB GPUs. The default software used was NVHPC 24.1
and CUDA 12.3.0.

JLSE MI250 node The JLSE-MI250 node is composed of
two AMD EPYC 7713 64c CPUs (64 cores/128 threads) with
512 GB DDR4 and four AMD Instinct MI250 GPUs. The
default software used was ROCm 6.1.0.

IV. MICROBENCHMARKS

The goal of the microbenchmarks in this paper is to measure
the upper bounds of achievable performance for applications

running on PVCs. To achieve this, we implement the bench-
marks in high-level language programming models (OpenMP,
SYCL, and MPI) rather than lower-level programming models,
such as assembly code, in order to give an “unlikely-but-still-
achievable” upper bound on the performance of applications.
The benchmarks are available on GitHub [24] for comparison
and further development.

The focus of this paper is to illustrate the performance of
PVC through these microbenchmarks. To properly compare
the reasons why these microbenchmarks differ in performance
to other vendor GPUs requires a much lower-level design
discussion on the microarchitecture of PVC so it’s beyond
the scope of this paper. However, to present where PVC
stands in comparison, we provide flop-rates and memory and
PCIe bandwidths in Table IV from official AMD and Nvidia
sources [25], [26] and Frontier [13].

Our microbenchmark codes are new ports of industry-
standard algorithms used for benchmarking (stream triad,
chain of FMAs, data-transfert). We ported these codes to
SYCL and/or OpenMP. The benchmark source codes are
available on github at Ref. [24].

A. Microbenchmark Evaluation Framework
A summary of the microbenchmarks evaluated is presented

in Table I. Each microbenchmark is executed multiple times
and the best performance number is presented. This avoids
run-to-run variations and any other intermittent artifacts. In
addition, binding the MPI ranks to the CPU closest to the GPU
ensures data transfer doesn’t happen between CPU sockets.
For example, Aurora uses CPU cores 0 and 52 (the first core
from each CPU socket) for OS kernel threads. Therefore, rank
0 is bound to CPU core 1 and PVC 0 Stack 0. Each Stack is
mapped to one MPI rank. The ZE_AFFINITY_MASK envi-
ronment variable (similar to CUDA_VISIBLE_DEVICES) is
used to control the visibility of each Stack to each rank.

1) Peak Floating Point Operations per Second (FLOPs):
This OpenMP microbenchmark performs a chain of Fused
Multiple Add instructions (similar to clpeak [27]). Each kernel
performs 16 ⇥ 128 FMA operations using single and double
precision floating point values.

2) Device Memory Bandwidth: We measure bandwidth
to/from the device local High Bandwidth Memory (HBM)
though a simple triad (two loads, one store) kernel in OpenMP
loading 805 MB (192 *1024*1024 Bytes (LLC per Stack) *
4 (STREAM factor)) of double precision values per array.

3) Host to Device Transfer Bandwidth: This benchmark
measures the time to transfer data over the PCIe bus, 500 MB
in the case of host-to-device, device-to-host, or a total of 1 GB
when transferred simultaneously in both directions. We use
sycl::malloc_host() for the host memory. This is in-
ternally implemented by a call to ze_malloc_host() [28]
an equivalent to Nvidia pinned memory.

4) Device to Device Transfer Bandwidth: The time taken to
transfer data from one device to another is a key performance
metric. As described in Section II, the design of the PVC
consists of dual Stack architecture; therefore, we can have

1425

two scenarios of data transfer between Stacks. The first case
is when the Stack is part of the same PVC then we measure
the Stack to Stack bandwidth. The second case is when the
Stack is part of a remote PVC then we measure the band-
width achieved over Xe-link. In order to test these scenarios
using a high-level benchmark, we use MPICH with Level
Zero support [29] that can transfer GPU buffers using the
MPI routines. Nonblocking routines such as MPI_Isend()
and MPI_IRecv() are used to transfer messages of 500
MB in size to ensure sufficient overlap of send and receive
communication calls.

An important caveat to note here is that, at a high level,
it can be seen that all Stacks are connected in an all-to-all
manner via Xe-link; however, due to the physical placement
of the GPUs, certain Stacks even if they correspond to a similar
location between GPUs, could require an extra hop to reach.
Let’s assume the notation of GPU_ID.STACK_ID to refer
to each PVC and its Stack uniquely. At the hardware level,
each Stack belongs to one of two planes. If we look at the
connectivity pattern on Aurora, the two planes consist of 0.0,
1.1, 2.0, 3.0, 4.0, 5.1 for the first plane and 0.1, 1.0, 2.1, 3.1,
4.1, 5.0 for the second. Even though 0.0 and 1.1 Stack are
in different positions, since they are physically close to each
other, they are connected in a single plane. In such cases, to
transfer data from 0.0 to 1.0, the driver can use one of two
possible paths: 0.0 ! 1.1 ! 1.0 or 0.0 ! 0.1 ! 1.0.

5) General Matrix Multiplication (GEMM): GEMM is used
to measure floating-point (FP64, FP32, FP8, BF16, and TF32)
and small integer (I8) operation throughput. We use a square
N ⇥ N matrix of size N = 20480. The matrix size is large
enough such that even the smallest data size (I8) still saturates
the PVC’s compute throughput. The GEMMs are implemented
using the oneMKL library and the SYCL programming lan-
guage. A total of 2 ⇤N3 floating point operations is expected
to be performed.

6) Fast Fourier Transform (FFT): We test Forward and
Backward FFTs using a size of 4096 and 20,000 for 1D
FFTs, and 10,000 for 2D FFTs. We use the standard Cooley-
Tukey FFT of 5 ⇥N ⇥ log2 N number of flops for complex
transform and 2.5⇥N⇥log2 N for real. Similar to the GEMM
benchmark, FFTs are implemented using oneMKL and in the
SYCL programming model.

7) Memory Latency: The lats [30] benchmark measures
the memory access latency by chasing pointers on arrays of
various lengths to determine the different levels of the memory
hierarchy. It was originally designed to chase the pointers in a
ring; in a similar fashion on both the CPU and GPU architec-
tures (i.e., on a single thread). We modified this benchmark to
perform the same operation simultaneously on one sub-group
or warp (Coalesced Access) with 16 work-items, reflecting the
memory access patterns on modern GPUs [31].

B. Microbenchmark Results

The microbenchmarks were run on Aurora and Dawn. In
both cases, the benchmarks were run on a single Stack, a

single PVC (two Stacks), and all PVCs on a single node (four
on Dawn and six on Aurora).

1) Stack Linear Scaling: As expected, flops and memory
bandwidth scales linearly with the number of Stacks (recall
each Stack has its own local HBM memory).

For flops on Aurora, we observe 97% = 33/(17⇥2) scaling
efficiency for two Stacks, and 95% = 33/(17⇥12) for the full
node (we see 92% and 88% scaling efficiency, respectively, on
Dawn). 17 Tflop/s is 99% of the expected theoretical number:
1.2 GHz ⇥448 (vector engines per Stack) ⇥8 (512-bit SIMD)
⇥2 (FMA) ⇥2 = 17 TFlop/s. The third row of Table II shows
perfect scaling of main memory bandwidth with Stack count
on Aurora and Dawn.

2) Peak Flops performance: As per design specifications,
PVC is expected to have the same throughput for both FP32
and FP64 computations [17]. However, we observe the ratio
between single and double precision Flops is 1.3x (23/17) on
a single Stack on Aurora. This can be explained by the GPU
running at a lower frequency during FP64 FMA computations
due to the TDP design of the platform. To confirm this,
we measure the PVC operating frequency. We saw that the
PVC operated at ⇠1.2GHz for FP64 and ⇠1.6GHz for FP32
FMA operations. The ratio of flops on Aurora and Dawn
roughly follows the ratio of the number of Xe-Cores per Stack:
17/20 = 0.85 ⇡ 56/64 = 0.875.

Full node scaling efficiency was good (95% (195/(17⇥12))
on Aurora, 87% (140/(20 ⇥ 8)) for Dawn). The FP64 flop-
rate on one PVC card (two Stacks) is roughly equivalent to the
double-precision theoretical performance on an H100 (30–34
TFlop/s), while the FP32 flop-rate is similar to an MI250 (45
TFlops); see Table IV.

3) Device Memory Bandwidth: The stream HBM band-
width (1 TB/s) is low compared to the HBM2e spec and
official Intel specification for PVC (3 TB/s [15]). In compari-
son, MI250x on Frontier reach 1.3 TB/s per GCD (Table IV),
matching the expected 80% of the theoretical peak.

4) Host to Device Transfer Bandwidth: The PCIe band-
width between the host CPU and the GPU scales poorly
for the full node, 40% = 264/(53 ⇥ 12), suggesting some
contention on the host side. PCIe is a full duplex protocol,
so the bi-directional bandwidth is expected to be twice that
of uni-directional. However, we observe only 1.4x bandwidth
for bi- vs. uni-directional. Overall, since the PVC operates at
PCIe Gen5, it does achieve a higher bandwidth in comparison
to MI250x, which uses PCIe Gen4 (reaching 25 GB/s uni-
direction, Table IV).

5) General Matrix Multiplication (GEMM): SGEMM
reaches nearly 95% of the peak, and DGEMM reaches nearly
80% of the measured peak. The relative drop of DGEMM
efficiency is currently unexplained. It could be possible that
the hardware operates at a lower frequency for DGEMM
due to TDP or a potential limitation of the hardware for
the double-precision pipeline. The investigation is beyond the
scope of this paper. In comparison to Frontier, on one GCD
of MI250x GEMM reaches 24.1 TFlop/s for double precision
and 33.8 TFlop/s for single precision (Table IV). Thus, the

1426

TABLE I: Summary of microbenchmark results

Programming Model Description

Peak Compute OpenMP Chain of FMA to measure FLOPS
Device Memory Bandwidth OpenMP Triad used for HBM bandwidth
Host to Device Transfer Bandwidth SYCL Compute the Bandwidth of the PCIe datatransfer
Device to Device Transfer Bandwidth SYCL Measure the Bandwidth between 2 Ranks (Stacks on the GPU & between GPUs)
General Matrix Multiplication (GEMM) SYCL DGEMM, SGEMM, ...
Fast Fourier Transform (FFT) SYCL Backward and forward
Lats SYCL, CUDA, HIP Measure the access latency of different levels of the memory hierarchy

TABLE II: Microbenchmark Results except Point to Point

Aurora (PVC) Dawn (PVC)

One Stack One PVC Six PVC One Stack One PVC Four PVC

Double Precision Peak Flops 17 TFlop/s 33 TFLop/s 195 TFlop/s 20 TFlop/s 37 TFlop/s 140 TFlop/s
Single Precision Peak Flops 23 TFlop/s 45 TFlop/s 268 TFlop/s 26 TFlop/s 52 TFlop/s 207 TFlop/s
Memory Bandwidth (triad) 1 TB/s 2 TB/s 12 TB/s 1 TB/s 2 TB/s 8 TB/s
PCIe Unidirectional Bandwidth (H2D) 54 GB/s 55 GB/s 329 GB/s 53 GB/s 54 GB/s 218 GB/s
PCIe Unidirectional Bandwidth (D2H) 53 GB/s 56 GB/s 264 GB/s 51 GB/s 53 GB/s 212 GB/s
PCIe Bidirectional Bandwidth 76 GB/s 77 GB/s 350 GB/s 72 GB/s 72 GB/s 285 GB/s

DGEMM 13 TFlop/s 26 TFlop/s 151 TFlop/s 17 TFlop/s 30 TFlop/s 120 TFlop/s
SGEMM 21 TFlop/s 42 TFlop/s 242 TFlop/s 25 TFlop/s 48 TFlop/s 188 TFlop/s
HGEMM 207 TFlop/s 411 TFlop/s 2.3 PFlop/s 246 TFlop/s 509 TFlop/s 1.9 PFlop/s
BF16GEMM 216 TFlop/s 434 TFlop/s 2.4 PFlop/s 254 TFlop/s 501 TFlop/s 2.0 PFlop/s
TF32GEMM 107 TFlop/s 208 TFlop/s 1.2 PFlop/s 118 TFlop/s 200 TFlop/s 850 TFlop/s
I8GEMM 448 TIop/s 864 TIop/s 5.0 PIop/s 525 TIop/s 1.1 PIop/s 4.1 PIop/s

Single-precision FFT C2C 1D 3.1 TFlop/s 5.9 TFlop/s 33 Tflop/s 3.6 TFlop/s 6.6 TFlop/s 26 TFlop/s
Single-precision FFT C2C 2D 3.4 TFlop/s 6.0 TFlop/s 34 Tflop/s 3.6 TFlop/s 6.5 TFlop/s 25 TFlop/s

TABLE III: Microbenchmark Results for Stack to Stack Point to Point Communication

Aurora (PVC) Dawn (PVC)

One Stack-Pair Six Stack-Pairs One Stack-Pair Four Stack-Pairs

Local Stack Unidirectional Bandwidth 197 GB/s 1129 GB/s 196 GB/s 786 GB/s
Local Stack Bidirectional Bandwidth 284 GB/s 1661 GB/s 287 GB/s 1145 GB/s
Remote Stack Unidirectional Bandwidth 15 GB/s 95 GB/s - -
Remote Stack Bidirectional Bandwidth 23 GB/s 142 GB/s - -

TABLE IV: Performance characteristic of Nvidia H100 [25]
AMD MI250 [26] and AMD MI250x GPUs [32] . H100 and
MI250 are theoretical, MI250x are measured [13]

H100 MI250 1x GCD MI250x

FP32 peak 67.0 Tflop/s 45.3 Tflop/s -
FP64 peak 34.0 Tflop/s 45.3 Tflop/s -
SGEMM - - 33.8 TFlop/s
DGEMM - - 24.1 TFlop/s
Memory BW 3.4 GB/s 3.2 TB/s 1.3 TB/s
PCIe BW 128.0 GB/s 64.0 GB/s 25.0 GB/s
GCD to GCD - - 37.0 GB/s

GEMMs on one GCD of MI250x is ⇠50% faster than a PVC
Stack. However, the MI250X GEMM makes use of the matrix
core units [13], which have twice the peak of the non-matrix
cores. If we compare with MI250x’s theoretical peak double
precision matrix performance (48 Tflop/s per GCD [32]), the
efficiency is lower (50% versus GEMM on PVC is 80%).

6) Memory Latency: The memory latency measured in cy-
cles is shown in Figure 1. Notice how the latency significantly
increases with each hierarchy in the cache. On all cache levels,

both Dawn and Aurora consistently perform within 1–2% of
each other, as expected, since it’s the same architecture.

The graph shows that the Xe-Core on Dawn and Aurora
has a L1 cache of 512KiB (219 bytes), which matches the
specification of the hardware. The figure highlights that this is
larger than the other GPUs in this study. The L1 cache has 90%
higher latency than the H100 GPU and about 51% lower than
the MI250. Likewise, the L2 is also larger, with a latency of
50% and 78% higher than the H100 and MI250, respectively.
Understanding the cache occupancy and footprint of data in
non-synthetic applications is therefore crucial in understanding
their expected performance based on the data shown here. The
HBM2e on PVC shows 23% and 44% higher access latency
than HBM3 on the Nvidia GPUs and HBM2e on AMD GPUs,
respectively.

7) Device to Device Transfer Bandwidth: The local Stack
to Stack bi-directional bandwidth (shown in Table III) reaches
55% efficiency compared to the 2 ⇤ 197 that is expected.
The parallel efficiency is scaling linearly as expected with the
number of pairs (95% parallel efficiency). The Xe-Link (the
link connecting a Stack to a remote Stack) bandwidth is much

1427

211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232

Array Size (bytes)

0

200

400

600

800

M
e
m

o
r
y

L
a
te

n
c
y

(c
y
c
le

s
)

Dawn
Aurora

JLSE H100
JLSE MI250

Fig. 1: Memory Latency

slower. They are in fact slower than PCIe, and they reach 55%
efficiency in each direction. In comparison, MI250x in Frontier
nodes reach 37GB/s for GCD to GCD communication shown
in Table IV.

V. MINI-APPS

We evaluate mini-apps across the four systems described in
Section III. If a mini-app used a different software configura-
tion than mentioned previously, it is noted below. The build
and run scripts for the mini-apps are available in Ref. [24].

A. Mini-Apps Descriptions
The main characteristics of the mini-apps and their Figure-

of-Merits (FOMs) are summarized in Table V. In this section
the details of the mini-apps and how they were run is provided.

1) miniBUDE: miniBUDE [33] is a mini-app for BUDE,
the Bristol University Docking Engine. BUDE is a GPU-
accelerated program for performing in silico molecular dock-
ing, a computational technique used to predict the structure
of a complex formed between two molecules and gauge the
strength of their interaction [34]. miniBUDE performs virtual
screening on the NDM-1 protein by repeatedly evaluating
the energy of a single generation of poses for a number of
iterations, rendering it compute bound.

In this study, we use an input deck of 2672 ligands, 2672
proteins and 983040 poses. This is run with a combination
of poses per work-item (ppwi) and work-group sizes to find
the fastest result. The number of interactions (in Billion
Interactions/s) associated with this result is the FOM. On Intel
PVC, the SYCL port of miniBUDE is used, and on NVIDIA
H100 and AMD MI250 we use CUDA and HIP respectively.

2) CloverLeaf: Cloverleaf [35] is a Lagrangian-Eulerian
hydrodynamics benchmark, which represents a memory-
bandwidth-bound workload. Originally written in Fortran, the
mini-app computes the solution of compressible Euler equa-
tions; a system of four partial differential equations represent-
ing the conservation of energy, density, and momentum. This
study uses a variant of the Cloverleaf benchmark written in
C++ [36] and ported to various parallel programming models.

A grid of size 15360 (⇡ 47GB) is solved on each rank,
and the results are weakly scaled up to a full node. This

0

0.2

0.4

0.6

0.8

1

1.2

1.4

One Stack One PVC Full Node
miniBUDE CloverLeaf miniQMC mini-GAMESS

A
ur

or
a

FO
M

/D
aw

n
FO

M

Fig. 2: Figure of Merits on Aurora Relative to Dawn. The
black bars are the expected relative performance based on the
microbenchmarking results.

large problem size has been selected to minimise the overhead
incurred by MPI communication. The number of cells divided
by the total runtime represents the Figure of Merit.

3) miniQMC: miniQMC contains a simplified but compu-
tationally accurate implementation of the real space quantum
Monte Carlo algorithms implemented in the full production
QMCPACK application [37], [38]. The mini-app is designed
to enable tests and benchmarks of different programming
methodologies, optimizations and algorithms. The OpenMP
offload branch is used in this paper for evaluating GPU
performance. The mixed precision feature is turned on to
exercise FP32 performance. The FOM is defined as Nwalkers ⇥
N3

elec/Tdiffusion and the simulation uses a 2x2x1 cell and 320
walkers per GPU. The computation is weak scaled with MPI
on every Stack.

4) GAMESS RI-MP2 mini-app (mini-GAMESS): GAMESS
(General Atomic and Molecular Electronic Structure Software)
[39] is a freely-available software package which implements
many quantum chemistry methods. To help explore offloading
GAMESS to GPUs, a mini-app for the RI-MP2 method
was developed, and it implements the computation of the
perturbative correction. The main portion of the mini-app is
a call to DGEMM and a reduction, which has been offloaded
to GPUs using OpenMP, as discussed in [40]. In this study,
we used the code from [41] with branch SC24 PMBS.
For the performance comparison, the FOM is defined by
1/walltime(h), and a single input (i.e., W90.rand, an artificial
input with the same data structure of 90 water clusters) was
used on a single stack of GPU, a single GPU with two stacks,
and a single node with multiple GPUs.

1428

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Aurora GPU Aurora Node Dawn GPU Dawn Node
miniBUDE CloverLeaf miniQMC mini-GAMESS

A
ur

or
a

FO
M

or
D

aw
n

FO
M

/J
LS

E-
H

10
0

FO
M

Fig. 3: Figure of Merits on Aurora and Dawn Relative to JLSE-
H100. The black bars are the expected relative performance
based on the microbenchmarking results and theoretical peaks.

B. Mini-Apps Results

The results of running the mini-apps are summarized in
Table VI.

1) Comparing Aurora to Dawn: The Figure of Merits on
Aurora relative to Dawn for one Stack, one PVC, and full
nodes are shown in Fig. 2. The black bars above each column
designate the expected relative performance of the mini-app
based on the bounds of each mini-app (Table V) and the
microbenchmarks in Table II. For example, miniBUDE is a
single precision (FP32) flop-rate bound mini-app, and thus the
expected relative performance is the ratio of the peak single
precision performance on Aurora to that on Dawn, 0.88X
(23 Tflops/s/26 Tflop/s). Note that miniBUDE is not an MPI
application, so we run only one rank and target one Stack.
We see that in general the black expected performance bars
are close to the columns, and thus mini-apps are performing
as expected from Dawn to Aurora. miniQMC does not have
the expected performance bars in Figure 2, since it is affected
by CPU congestion and GPU instruction throughput (discussed
more below), and this is not captured by the microbenchmarks.

Unlike the other mini-apps, the FOM of miniQMC on six
GPUs on Aurora is less than that on four GPUs on Dawn.
This is caused by the fact that resources on each CPU socket
are shared by more GPUs attached to it on Aurora. Due
to some remaining computation on the CPU and CPU-GPU
data transfers, shared DDR and PCIe transfer buses further
penalize the intra-node weak scaling performance on Aurora.
The high GPU to CPU ratio doesn’t benefit miniQMC. In
this case, none of the microbenchmarks represented the CPU
congestion bottleneck in this mini-app. This is a limitation of
microbenchmarking single features whereby all the effects of
the full node configuration for certain codes are not captured.

2) Comparing a Dawn and Aurora node to an Nvidia node:
Figure 3 shows the FOMs relative to JLSE-H100 for one PVC
to one H100 and one Aurora or Dawn node to one JLSE-
H100 node. The performance of a single PVC on Aurora
and Dawn relative to an H100 ranges from 0.6x and 1.8x,
with Cloverleaf showing the lowest relative performance, and
miniQMC showing the highest. For a single node, the lowest
relative performance is 0.6x (Cloverleaf) and the highest is
1.3x (miniQMC). If intra-node scaling was perfect, we would
expect the ratios to stay the same. However miniQMC has
lower intra-node scaling on the Aurora and Dawn nodes than
the H100 node so the ratio is lower for the full node vs. the
single GPU. Note that for miniBUDE, since the application is
not MPI, we doubled the single-Stack value to get a full PVC
value.

The black bars are the expected relative performance, com-
puted from the ratios of the measured microbenchmarks in
Table II and the theoretical peaks for H100 in Table IV.
For example, for Cloverleaf (bound by memory bandwidth)
on a single GPU, the measured memory bandwidth on a
PVC on Aurora and Dawn is 2 TB/s, while for H100 the
memory bandwidth used is 3.35 TB/s (from Table IV). Thus
the expected ratio is 0.59, which is where the black bar is in
the figure. If the values are close the to black bars, then the
mini-apps are performing as expected. If the value is above
(below) the black bar, then it is performing better (worse)
on Dawn/Aurora than expected. Since we use the theoretical
value for H100 instead of the measured values, the black
bars are a lower bound since the measured values are likely
lower than the theoretical ones. In general, the mini-apps are
performing as expected, but we see miniBUDE performing
better than expected, and mini-GAMESS performing worse
than expected.

For miniBUDE, the results on Aurora and Dawn place them
around 45% and 49% of their peak single precision flops,
which is close to the expected performance (⇠50% peak). On
the other hand, H100 reaches 30% of its peak, which is much
lower than the PVC GPUs. We also performed a similar test
on an A100, which reached 62% of its peak. Hence, we expect
a deeper evaluation is necessary for miniBUDE on the newer
platforms to identify the source of this decreased floating point
efficiency.

3) Comparing a Dawn and Aurora node to an AMD node:
Figure 4 shows the FOMs relative to JLSE-MI250. Relative to
a MI250 GCD, the performance of a single Stack on Aurora
and Dawn range from 0.8x to 7.5x, with again Cloverleaf as
the lowest and miniQMC as the highest. For a single node,
the performance relative to JLSE-MI250 for Aurora and Dawn
ranges from 0.8x to 18x. Here, miniQMC scales better on
Aurora and Dawn than on JLSE-MI250. For miniQMC, H100
performance is on par with a single PVC Stack while MI250
is significantly penalized by software inefficiency (an order of
magnitude slower). The mini-GAMESS MI250 FOM results
are absent since it failed to build with the AMD Fortran
compiler. As in the previous figures, the black bars in Figure 4
indicate the expected relative performance based on the ratios

1429

0

2

4

6

8

10

12

14

16

18

Aurora Stack Aurora Node Dawn Stack Dawn Node
miniBUDE CloverLeaf miniQMC

A
ur

or
a

FO
M

or
D

aw
n

FO
M

/J
LS

E-
M

I2
50

FO
M

Fig. 4: Figure of Merits on Aurora and Dawn Relative to JLSE-
MI250. The black bars are the expected relative performance
based on the microbenchmarking results and theoretical peaks.

of the microbenchmarks and the MI250 peaks. We see that
for miniBUDE and Cloverleaf, the relative performance on
Aurora and Dawn compared to MI250 is close or above what
we expect. Similar to on H100, miniBUDE reached about 26%
of single-precision floating point peak, while we expect it to
reach about 50% of peak. As with H100, we expect a deeper
evaluation is necessary.

4) Miniapp conclusion: In general, the relative performance
of the mini-apps performed as expected based on the ratios
of the microbenchmarks, especially for comparing Aurora to
Dawn. However, using the results of the microbenchmarks to
predict mini-app performance had limitations. In particular,
as discussed above, running miniQMC resulted in a different
bottleneck than expected (CPU congestion) which was not
captured by the microbenchmarks.

Although (as mentioned in Section IV), the peak perfor-
mance of MI250x is 50% higher in Flop/s for GEMMs and the
memory bandwidth 30% higher, we see that for the mini-apps,
performance is competitive with or better than MI250, which
has a similar specification to MI250x. We plan to investigate
the performance difference in a future paper.

VI. APPLICATIONS

A. Science Application Descriptions

The main characteristics of the applications evaluated in this
paper are summarized in Table V. In this section the details
of the applications and how they were run is provided.

1) OpenMC: OpenMC is a Monte Carlo neutral particle
transport code capable of neutron and photon transport [42].
It is used in a variety of scientific and engineering fields, in
particular in support of both fission and fusion energy system
design and analysis. The Monte Carlo method employed by

OpenMC is the “gold standard” for fidelity in particle trans-
port, as it uses the bare minimum of physical approximations.
While Monte Carlo is highly accurate and can be used in a
general purpose manner for nearly any transport problem, its
primary downside is its high computational cost. In this light,
recent years have seen a significant focus on development
of GPU offloading capabilities with OpenMC [43]. OpenMC
uses the OpenMP target offloading model, allowing it to
run and scale efficiently on Intel, NVIDIA, and AMD GPU
architectures [44].

2) CRK-HACC: The Hardware/Hybrid Accelerated Cos-
mology Code (HACC) [45] is an N-body simulation code
designed for large-scale structure formation studies. Originally
developed for gravity-only simulations, CRK-HACC [46] now
incorporates gas hydrodynamics using a modern smoothed-
particle hydrodynamics (SPH) approach called conservative
reproducing kernel SPH (CRKSPH). With this new approach,
some discrepancies with grid-based hydrodynamic schemes
have been resolved, while maintaining the scaling and per-
formance of a particle-based scheme.

B. Science Application Results
The results of running the applications on full nodes of

Aurora, Dawn, JLSE-H100, and JLSE-MI250 are summarized
in Table VI. Here we discuss the results of the runs.

1) OpenMC: We assess the performance of OpenMC on
a small modular reactor (SMR) benchmark problem featuring
depleted fuel, as defined in [44]. The figure of merit is derived
from the rate of execution of the program when in the “active”
phase of the simulation that involves highly complex tallying
operations, and is measured in units of thousands of particles
per second. The results of OpenMC in Table VI demonstrate
the excellent performance of OpenMC on the Aurora PVC
architecture as compared to the NVIDIA and AMD nodes,
with the Aurora 6⇥ PVC node design offering 1.7⇥ the
performance of the JLSE 4⇥ H100 node design.

2) CRK-HACC: We evaluate the performance using two
cosmological adiabatic N-body simulations: 2⇥4803 particles
for a 12 rank configuration and 2⇥4003 particles for 8 ranks.
The typical CRK-HACC simulation assigns one MPI rank per
accelerator device and requires at least 8 MPI ranks to run
correctly. On Aurora, 12 MPI ranks map to each of the PVC
stacks; on Dawn and JLSE-MI250 nodes, 8 MPI ranks map to
each logical device (stack/GCD). On JLSE-H100 we assign 2
ranks per GPU. OpenMP is used for host-side CPU operations,
evenly dividing the available cores on each system. The SYCL
implementation of CRK-HACC [47] is used on Dawn and
Aurora, and the CUDA and HIP implementations are used on
JLSE-H100 and JLSE-MI250.

When comparing Dawn and Aurora nodes to the JLSE-
H100 and JLSE-MI250 systems, we calculate the scaled
performance of the GPUs. Single precision theoretical peak
multiplied by the aggregate GPU time is used. Relative to
the JLSE-H100 node, the Dawn and Aurora single-GPU
performance is 0.954 and 0.947; relative to the JLSE-MI250
node, performance is 0.987 and 0.981. The FOM results in

1430

TABLE V: Mini-App and Application Descriptions (See Mini-app and Application Descriptions in the text for more details)

Science Domain Language Programming model Characteristic Scaling Figure-of-Merit

miniBUDE BioChemistry C++ SYCL, HIP,
CUDA FP32 flop-rate bound N/A Billion Interactions

time(s)

CloverLeaf Computational Fluid Dynamics C++ SYCL, HIP,
CUDA Memory bandwidth bound Weak Ncells

time(s)

miniQMC Material Science C++ OpenMP Compute/Memory BW bound
CPU congestion bound Weak NwNe10

�11

diffusion time(s)

GAMESS RI-MP2 mini-app Quantum Chemistry Fortran OpenMP DGEMM bound Strong 1
time(h)

OpenMC Particle Transport C++ OpenMP Memory latency/bandwidth bound Weak Thousand particles
time(s)

HACC Cosmology C++ SYCL, HIP,
CUDA

CPU memory BW bound,
GPU FP32 flop-rate bound Weak NpNsteps

time(s)

TABLE VI: Mini-App and Application Figure-of-Merits Across Aurora, Dawn, and JLSE (Units for FOM are in Table V)

Aurora (PVC) Dawn (PVC) JLSE (H100) JLSE (MI250)

One Stack One GPU Six GPU One Stack One GPU Four GPU One GPU Four GPU One GCD Four GPU

miniBUDE 293.02 - - 366.17 - - 638.40 - 193.66 -
CloverLeaf 20.82 40.41 240.89 22.46 41.92 167.15 65.87 261.37 25.71 192.68
miniQMC 3.16 5.39 15.64 3.72 6.85 16.28 3.89 12.32 0.50 0.90
mini-GAMESS 19.44 38.50 197.08 24.57 43.88 164.71 49.30 168.97 - -

OpenMC - - 2039 - - - - 1191 - 720
HACC - - 13.81 - - 12.26 - 12.46 - 10.70

Table VI reflect the differences in GPU compute capabilities
along with the available CPU threads and bandwidth.

VII. CONCLUSIONS AND FUTURE WORK

In this work we presented benchmark results for the Intel
Data Center GPU Max Series (known as Ponte Vecchio
(PVC)) for a range of microbenchmarks, mini-apps and real
applications.

We measured the obtainable fundamental performance lim-
its of PVC-based nodes through microbenchmarking using
high-level languages in the manner applications would be
developed. This can be used as reference for future work.

By comparing the two different node-level architectures in
PVC systems in Dawn and Aurora, we highlight through the
microbenchmarks the potential performance impacts of multi-
GPU systems, typically as a result of the TDP considerations
available to the node at large. We saw that the microbenchmark
performance was as expected: for single-GPU results, the
compute-bound microbenchmarks on Aurora performed about
0.875x (the ratio of compute units) as on Dawn and the
memory-bound ones performed the same on both systems.

We were able to run and characterize applications writ-
ten in multiple language (C++, Fortran) and programming
models (SYCL, OpenMP) on multiple PVC-based systems,
demonstrating the robustness of the PVC software stack.
The two real-world applications tested in this study showed
performance on PVC which was competitive with H100 and
MI250.

Additionally, in Section V we saw that generally the mini-
apps performed as expected based on the microbenchmarks,
especially for comparing Aurora to Dawn. However, in some
cases, like in miniQMC, a different bottleneck arose during

running (GPU congestion) which was not captured by the
microbenchmarks. This shows a limitation of using this set of
microbenchmarks as not all possible bottlenecks are captured.

As this paper was mostly focused on characterizing Dawn
and Aurora nodes, in future work we plan to further compare
mini-apps and applications on other supercomputing systems
such as Frontier against Dawn and Aurora results. Future work
should also include study of machine learning and sparse data
applications.

This work provides a starting point for more in-depth
benchmarking of Intel GPUs at a micro-architectural level in
the future, and offers a useful resource for application-level
studies with which to discuss performance.

ACKNOWLEDGMENT

This work was performed using resources provided by
Cambridge Dawn AI Service as part of the UK AI Re-
search Resource operated by the University of Cambridge
Research Computing Service (www.hpc.cam.ac.uk), funded
UKRI, DSIT, Dell EMC and Intel. This research also used
resources of the Argonne Leadership Computing Facility at
Argonne National Laboratory, which is supported by the Office
of Science of the U.S. Department of Energy, Office of
Science, under contract number DE-AC02-06CH11357. We
also gratefully acknowledge the computing resources provided
and operated by the Joint Laboratory for System Evaluation
(JLSE) at Argonne National Laboratory. The University of
Bristol is a oneAPI Center of Excellence which supported this
work.

1431

REFERENCES

[1] T. Lists, “Top500 list,” 2023. [Online]. Available: https://www.top500.
org/

[2] ORNL, “Titan,” https://web.archive.org/web/20130226194137/http:
//www.olcf.ornl.gov/wp-content/themes/olcf/titan/Titan Debuts.pdf.

[3] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
nvidia volta gpu architecture via microbenchmarking,” arXiv preprint
arXiv:1804.06826, 2018.

[4] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and
A. Moshovos, “Demystifying gpu microarchitecture through
microbenchmarking,” in 2010 IEEE International Symposium on
Performance Analysis of Systems & Software (ISPASS). IEEE, 2010,
pp. 235–246.

[5] W. Luo, R. Fan, Z. Li, D. Du, Q. Wang, and X. Chu, “Benchmarking
and dissecting the nvidia hopper gpu architecture,” arXiv preprint
arXiv:2402.13499, 2024.

[6] T. linpack, “Top500 linpack,” 2023. [Online]. Available: https:
//top500.org/project/linpack/

[7] J. Dongarra, M. A. Heroux, and P. Luszczek, “Hpcg benchmark: a new
metric for ranking high performance computing systems,” Knoxville,
Tennessee, vol. 42, 2015.

[8] C. M. Siefert, C. Pearson, S. L. Olivier, A. Prokopenko, J. Hu, and T. J.
Fuller, “Latency and bandwidth microbenchmarks of us department of
energy systems in the june 2023 top 500 list,” in Proceedings of the SC
’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, ser. SC-W ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1298–1305.
[Online]. Available: https://doi.org/10.1145/3624062.3624203

[9] F. Salvadore, G. Rossi, S. Sathyanarayana, and M. Bernardini, “Openmp
offload toward the exascale using intel® gpu max 1550: evaluation of
streams compressible solver,” The Journal of Supercomputing, pp. 1–34,
2024.

[10] M. Zubair, A. Walden, G. Nastac, E. Nielsen, C. Bauinger, and X. Zhu,
“Optimization of ported cfd kernels on intel data center gpu max 1550
using oneapi esimd,” in Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 1705–1712.

[11] K. Yuan, C. Bauinger, X. Zhang, P. Baehr, M. Kirchhart, D. Dabert,
A. Tousnakhoff, P. Boudier, and M. Paulitsch, “Fully-fused multi-layer
perceptrons on intel data center gpus,” arXiv preprint arXiv:2403.17607,
2024.

[12] P. Nguyen, P. Nayak, and H. Anzt, “Porting batched iterative solvers onto
intel gpus with sycl,” in Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 1048–1058.

[13] S. Atchley, C. Zimmer, J. Lange, D. Bernholdt, V. Melesse Vergara,
T. Beck, M. Brim, R. Budiardja, S. Chandrasekaran, M. Eisenbach
et al., “Frontier: exploring exascale,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2023, pp. 1–16.

[14] “Frontier,” https://www.olcf.ornl.gov/frontier/. [Online]. Available: https:
//www.olcf.ornl.gov/frontier/

[15] “Intel(R) Data Center GPU Max 1500,”
https://www.intel.com/content/www/us/en/products/sku/232873/
intel-data-center-gpu-max-1550/specifications.html. [Online].
Available: https://www.intel.com/content/www/us/en/products/sku/
232873/intel-data-center-gpu-max-1550/specifications.html

[16] W. Gomes, A. Koker, P. Stover, D. Ingerly, S. Siers, S. Venkataraman,
C. Pelto, T. Shah, A. Rao, F. O’Mahony, E. Karl, L. Cheney, I. Rajwani,
H. Jain, R. Cortez, A. Chandrasekhar, B. Kanthi, and R. Koduri, “Ponte
vecchio: A multi-tile 3d stacked processor for exascale computing,”
in 2022 IEEE International Solid-State Circuits Conference (ISSCC),
vol. 65, 2022, pp. 42–44.

[17] “Intel (r) xe gpu architecture,” https://www.intel.
com/content/www/us/en/docs/oneapi/optimization-guide-gpu/
2024-2/intel-xe-gpu-architecture.html. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/oneapi/
optimization-guide-gpu/2024-2/intel-xe-gpu-architecture.html

[18] “The compute architecture of intel processor graphics gen9.”
[Online]. Available: https://cdrdv2-public.intel.com/774710/
the-compute-architecture-of-intel-processor-graphics-gen9-v1d0-166010.
pdf

[19] J. R. Reinders, “Options for using a GPU Tile Hierarchy,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
flattening-gpu-tile-hierarchy.html, 2023.

[20] “Joint Laboratory for System Evaluation,” https://www.jlse.anl.gov/.
[Online]. Available: https://www.jlse.anl.gov/

[21] “Dawn - Intel GPU (PVC) Nodes,” https://docs.hpc.cam.ac.uk/hpc/
user-guide/pvc.html. [Online]. Available: https://docs.hpc.cam.ac.uk/
hpc/user-guide/pvc.html

[22] “Aurora,” https://www.alcf.anl.gov/aurora. [Online]. Available: https:
//www.alcf.anl.gov/aurora

[23] “Intel® xeon® gold 5320 processor,” https:
//www.intel.com/content/www/us/en/products/sku/215285/
intel-xeon-gold-5320-processor-39m-cache-2-20-ghz/
specifications.html. [Online]. Available: https:
//www.intel.com/content/www/us/en/products/sku/215285/
intel-xeon-gold-5320-processor-39m-cache-2-20-ghz/specifications.
html

[24] “Benchmarking Scripts for Reproducibility,” https://github.com/
UoB-HPC/abc-pvc-deepdive. [Online]. Available: https://github.com/
UoB-HPC/abc-pvc-deepdive

[25] “Nvidia h100 tensor core gpu,” https://resources.
nvidia.com/en-us-tensor-core/nvidia-tensor-core-gpu-datasheet. [On-
line]. Available: https://resources.nvidia.com/en-us-tensor-core/
nvidia-tensor-core-gpu-datasheet

[26] “Amd instinct™ mi250 accelerators,” https://www.amd.com/
en/products/accelerators/instinct/mi200/mi250.html. [Online]. Avail-
able: https://www.amd.com/en/products/accelerators/instinct/mi200/
mi250.html

[27] K. Bhat, “clpeak v1.1.2,” https://github.com/krrishnarraj/clpeak, 2022.
[28] oneAPI Level Zero Memory Specification. [Online]. Available:

https://spec.oneapi.io/level-zero/latest/core/PROG.html#types
[29] M. team, “MPICH README,” https://github.com/pmodels/mpich.
[30] M. Martineau, P. Atkinson, and S. McIntosh-Smith, “Benchmarking

the NVIDIA V100 GPU and Tensor Cores,” in Euro-Par 2018: Par-
allel Processing Workshops, ser. Lecture Notes in Computer Science,
G. Mencagli, D. B. Heras, V. Cardellini, E. Casalicchio, E. Jeannot,
F. Wolf, A. Salis, C. Schifanella, R. R. Manumachu, L. Ricci, M. Bec-
cuti, L. Antonelli, J. D. Garcia Sanchez, and S. L. Scott, Eds. Cham:
Springer International Publishing, 2019, pp. 444–455.

[31] M. Fang, J. Fang, W. Zhang, H. Zhou, J. Liao, and Y. Wang,
“Benchmarking the GPU memory at the warp level,” Parallel
Computing, vol. 71, pp. 23–41, Jan. 2018. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0167819117301825

[32] “Amd instinct™ mi250x accelerators,” https://www.amd.com/
en/products/accelerators/instinct/mi200/mi250x.html. [Online]. Avail-
able: https://www.amd.com/en/products/accelerators/instinct/mi200/
mi250x.html

[33] A. Poenaru, W.-C. Lin, and S. McIntosh-Smith, “A performance anal-
ysis of modern parallel programming models using a compute-bound
application,” in High Performance Computing, B. L. Chamberlain, A.-
L. Varbanescu, H. Ltaief, and P. Luszczek, Eds. Cham: Springer
International Publishing, 2021, pp. 332–350.

[34] S. McIntosh-Smith, J. Price, R. B. Sessions, and A. A. Ibarra,
“High performance in silico virtual drug screening on many-core
processors,” The International Journal of High Performance Computing
Applications, vol. 29, no. 2, pp. 119–134, 2015, pMID: 25972727.
[Online]. Available: https://doi.org/10.1177/1094342014528252

[35] A. Mallinson, D. Beckingsale, W. Gaudin, J. Herdman, J. Levesque, and
S. Jarvis, “Cloverleaf: Preparing hydrodynamics codes for exascale,” in
Cray User Group, Napa Valley, California, USA, May 2013.

[36] Cloverleaf mini-app GitHub Repository. [Online]. Available: https:
//github.com/UoB-HPC/CloverLeaf/tree/pvc-performance-portability

[37] J. Kim, A. D. Baczewski, T. D. Beaudet, A. Benali, M. C. Bennett, M. A.
Berrill, N. S. Blunt, E. J. L. Borda, M. Casula, D. M. Ceperley, S. Chiesa,
B. K. Clark, R. C. Clay, K. T. Delaney, M. Dewing, K. P. Esler, H. Hao,
O. Heinonen, P. R. C. Kent, J. T. Krogel, I. Kylänpää, Y. W. Li, M. G.
Lopez, Y. Luo, F. D. Malone, R. M. Martin, A. Mathuriya, J. McMinis,
C. A. Melton, L. Mitas, M. A. Morales, E. Neuscamman, W. D. Parker,
S. D. P. Flores, N. A. Romero, B. M. Rubenstein, J. A. R. Shea, H. Shin,
L. Shulenburger, A. F. Tillack, J. P. Townsend, N. M. Tubman, B. V. D.
Goetz, J. E. Vincent, D. C. Yang, Y. Yang, S. Zhang, and L. Zhao,
“QMCPACK: an open source ab initio quantum monte carlo package
for the electronic structure of atoms, molecules and solids,” Journal of
Physics: Condensed Matter, vol. 30, no. 19, p. 195901, Apr. 2018.

1432

[38] P. R. C. Kent, A. Annaberdiyev, A. Benali, M. C. Bennett, E. J.
Landinez Borda, P. Doak, H. Hao, K. D. Jordan, J. T. Krogel,
I. Kylänpää, J. Lee, Y. Luo, F. D. Malone, C. A. Melton, L. Mitas, M. A.
Morales, E. Neuscamman, F. A. Reboredo, B. Rubenstein, K. Saritas,
S. Upadhyay, G. Wang, S. Zhang, and L. Zhao, “QMCPACK: Advances
in the development, efficiency, and application of auxiliary field and
real-space variational and diffusion quantum Monte Carlo,” The Journal
of Chemical Physics, vol. 152, no. 17, p. 174105, May 2020, publisher:
American Institute of Physics.

[39] G. M. J. Barca, C. Bertoni, L. Carrington, D. Datta, N. De Silva,
J. E. Deustua, D. G. Fedorov, J. R. Gour, A. O. Gunina, E. Guidez,
T. Harville, S. Irle, J. Ivanic, K. Kowalski, S. S. Leang, H. Li,
W. Li, J. J. Lutz, I. Magoulas, J. Mato, V. Mironov, H. Nakata,
B. Q. Pham, P. Piecuch, D. Poole, S. R. Pruitt, A. P. Rendell,
L. B. Roskop, K. Ruedenberg, T. Sattasathuchana, M. W. Schmidt,
J. Shen, L. Slipchenko, M. Sosonkina, V. Sundriyal, A. Tiwari,
J. L. Galvez Vallejo, B. Westheimer, M. Włoch, P. Xu, F. Zahariev,
and M. S. Gordon, “Recent developments in the general atomic
and molecular electronic structure system,” The Journal of Chemical
Physics, vol. 152, no. 15, p. 154102, 2020. [Online]. Available:
https://doi.org/10.1063/5.0005188

[40] J. Kwack, C. Bertoni, B. Pham, and J. Larkin, “Performance of the RI-
MP2 Fortran Kernel of GAMESS on GPUs via Directive-based Offload-
ing with Math Libraries,” Sixth Workshop on Accelerator Programming
Using Directives, 2019.

[41] GAMESS RI-MP2 mini-app GitHub Repository. [Online]. Available:
https://github.com/jkwack/GAMESS\ RI-MP2\ MiniApp

[42] P. K. Romano, N. E. Horelik, B. R. Herman, A. G. Nelson, and
B. Forget, “OpenMC: A state-of-the-art Monte Carlo code for research
and development,” Ann. Nucl. Energy, vol. 82, pp. 90–97, 2015, https:
//doi.org/10.1016/j.anucene.2014.07.048.

[43] J. R. Tramm, P. K. Romano, J. Doerfert, A. L. Lund, P. C. Shriwise,
A. R. Siegel, G. Ridley, and A. Pastrello, “Toward portable GPU
acceleration of the OpenMC Monte Carlo particle transport code,” in
PHYSOR 2022 - International Conference on Physics of Reactors,
2022. [Online]. Available: https://www.researchgate.net/publication/
360792320 Toward Portable GPU Acceleration of the OpenMC
Monte Carlo Particle Transport Code

[44] J. R. Tramm, P. K. Romano, P. C. Shriwise, A. L. Lund, J. Doerfert,
P. Steinbrecher, A. R. Siegel, and G. Ridley, “Performance portable
Monte Carlo particle transport on Intel, NVIDIA, and AMD GPUs,” in
SNA + MC 2024: Joint International Conference on Supercomputing in
Nuclear Applications + Monte Carlo, Paris, France, Oct. 2024, accepted.
Pre-print available at https://arxiv.org/abs/2403.12345.

[45] S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Vishwanath, Z. Lukić,
S. Sehrish, and W.-k. Liao, “HACC: Simulating sky surveys on state-
of-the-art supercomputing architectures,” New Astronomy, vol. 42, pp.
49–65, Jan. 2016.

[46] N. Frontiere, J. D. Emberson, M. Buehlmann, J. Adamo, S. Habib,
K. Heitmann, and C.-A. Faucher-Giguère, “Simulating Hydrodynamics
in Cosmology with CRK-HACC,” The Astrophysical Journal Supple-
ment Series, vol. 264, no. 2, p. 34, Feb. 2023.

[47] E. M. Rangel, S. J. Pennycook, A. Pope, N. Frontiere, Z. Ma, and
V. Madananth, “A performance-portable sycl implementation of crk-
hacc for exascale,” in Proceedings of the SC’23 Workshops of The
International Conference on High Performance Computing, Network,
Storage, and Analysis, 2023, pp. 1114–1125.

1433

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions
C1 Quantification of obtainable fundamental perfor-

mance limits of PVC-based nodes through mi-
crobenchmarking using high-level languages in the
manner applications would be developed

C2 Evaluation of the performance of mini-apps with
known characteristics, relating their performance to
the results of the microbenchmarks

C3 Demonstration of functionality and performance of
mini-apps and applications on PVC hardware

C4 Performance comparison of two science applications
across a single node of four different systems with
varying CPU and GPU architectures (an Aurora node
(six PVC), a Dawn node (four PVC), a node of four
NVIDIA H100s, and a node of four AMD MI250s

C5 Discussion of how microbenchmarking can provide
insight into application and mini-application perfor-
mance as well as its limitations.

B. Computational Artifacts
A1 https://doi.org/10.5281/zenodo.13843869

Artifact ID Contributions Related
Supported Paper Elements

A1 C1-C5 Tables II,III,V,VI
Figure 1-4

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions
Computational Artifact A1 is the source code and run

scripts for the microbenchmarks as well as the instructions
to reproduce the mini-apps results. This supports C1 as it
contains the high-level implementations needed to reproduce
the microbenchmarking results. It supports C2, C3, and C4 as
it contains the compile and run instructions for the mini-apps
on Intel, Nvidia, and AMD hardware. C5 is supported as the
results from running the microbenchmarks and mini-apps are
analyzed in the text and the connection between the expected
results of the mini-apps from the microbenchmarking and the
actual results from the mini-apps is discussed.

Expected Results
We expected the microbenchmark code to build and run

correctly, and running it on Dawn or Aurora should be able
to confirm C1. As discussed in the paper, the compute-bound
microbenchmarks on Aurora should be 0.875x the results on
Dawn and the memory-bound ones should be equal on both
systems. The mini-apps and applications we expect to be able
to compile and run correctly on Aurora, Dawn, JLSE-H100,

and JLSE-MI250 (except for the GAMESS RI-MP2 code on
JLSE-MI250 as discussed in the text), which demonstrates
C3. We generally expect the ratios of the results on the
different systems to match the expected ratios based on the
microbenchmarks and the known bounds of the mini-apps,
which demonstrates C2. In certain cases (like miniQMC)
we encountered a different bottleneck than expected which
contributes to the discussion for C5.

Expected Reproduction Time (in Minutes)

We expect the runtime for all codes to be less than 2 hours.
Running the microbenchmark script on PVC should take less
than 30 min.

Artifact Setup (incl. Inputs)

Hardware: The systems used are listed below:

• Dawn: Each node is two 48-core Intel Xeon Platinum
8468 CPUs with a total of 1024GB DDR and four
Intel Data Center GPU Max 1550 Series, previously
codenamed Ponte Vecchio (PVC)

• Aurora: Each node is two 52-core (104-thread) Intel Xeon
Gold 5320 CPUs with 64GB HBM and 512GB DDR5
each and six Intel Data Center GPU Max 1550 Series,
previously codenamed Ponte Vecchio (PVC)

• JLSE-H100: Each node is two Intel Xeon Platinum 8468
CPUs (48 cores/96 threads) with 512GB DDR5 total and
four NVIDIA H100 SXM5 80GB GPUs

• JLSE-MI250: Each node is two AMD EPYC 7713 64c
CPUs (64 cores/128 threads) with 512 GB DDR4 and
four AMD Instinct MI250 GPUs

Software: The microbenchmark code and scripts needed to
build and download the mini-apps and applications are avail-
able at https://doi.org/10.5281/zenodo.13843869. The needed
modules and environment for Dawn, Aurora, JLSE-H100, and
JLSE-MI250 are located at https://doi.org/10.5281/zenodo.
13843869 in ./environment. The compilers that are used on
each system are:

• Dawn: The default software used was also the Intel
oneAPI 2024.1 public release.

• Aurora: The default software used was also the Intel
oneAPI 2024.1 public release.

• JLSE-H100: The default software used was NVHPC 24.1
and CUDA 12.3.0.

• JLSE-MI250: The default software used was ROCm
6.1.0.

Datasets / Inputs: The microbenchmarks (results in Table
I-III and Fig. 1) did not have separate input files. The inputs
for the mini-apps (results in Table VI and Fig. 2-4) are
contained within the scripts to run them in https://doi.org/10.
5281/zenodo.13843869 in ./mini� apps.

1434

Installation and Deployment: To install the microbench-
mark and mini-app codes evaluated in the paper, the source
code from https://doi.org/10.5281/zenodo.13843869 should be
obtained. Inside there are three main subfolders: microbench-
marks, mini-apps, and applications. In the microbenchmarks
and mini-apps case, the script that runs the code also builds
and installs the code so the instructions are covered in the
ArtifactExecution section below.

Artifact Execution
The workflow to run the inputs to generate the Tables and

Figures in the paper is as follows:
For Table II, and III:
• Move to the ‘microbenchmark‘ subdirectory. Run the

script ./microbenchmark/run table.sh on Dawn and
Aurora. This will generate the results for the microbench-
marking tables in the paper.

For Figure 1:
• Move to the ‘microbenchmark‘ subdirectory. Run the

script ./microbenchmark/run lats.sh on Dawn and
Aurora. This will generate the results for the memory
latency figure in the paper.

For Table VI:
• For miniBUDE: Move to the ‘mini-apps/miniBUDE‘

subdirectory. The input needs to be fetched from
cschpc/epmhpcgpu and copied to the minibude/data
directory. Run the script ./run.sh on Dawn, Aurora,
JLSE-H100, and JLSE-MI250. This compiles and runs
the miniBUDE code with the input used in the paper.

• For cloverleaf: Move to the ‘mini-apps/cloverleaf‘ sub-
directory. Run the script ./run.sh on Dawn, Aurora,
JLSE-H100, and JLSE-MI250. This compiles and runs
the cloverleaf code with the input used in the paper.

• For mini-GAMESS: Move to the ‘mini-
apps/gamess rimp2 mini app‘ subdirectory. Follow
the steps in the ./mini � app � reproducibility.sh
script to run the code on Dawn, Aurora, JLSE-H100,
and JLSE-MI250.

• For miniQMC: Move to the ‘mini-apps/miniQMC‘ sub-
directory. Move into the subfolder for each system (for
example, ‘aurora pvc‘ for Aurora) and run ./mini �
app� reproducibility.sh

For Figure 2:
Figure 2 plots the Figures-of-Merit on Aurora relative to

Dawn. This can be computed by taking the Aurora results from
Table VI and dividing them by the Dawn results in Table VI.
The black bars designate the expected relative performance
(i.e. Aurora peak / Dawn peak) of the mini-app based on the
bounds of each mini-app, which are listed in Table V, and the
microbenchmark results in Table II. For example, miniBUDE
is listed in Table V as bound by the single precision (FP32)
flop-rate. Thus the expected relative performance is the ratio
of the peak single precision performance on Aurora to that on
Dawn, 0.88X (23 Tflops/s/26 Tflop/s), where the peak values
come from Table II.

For Figure 3:
Figure 3 plots the Figures-of-Merit on Aurora and Dawn

relative to the JLSE-H100 Figures-of-Merit. This can be
computed by taking the Aurora and Dawn results from Table
VI and dividing them by the JLSE-H100 results in Table VI.
The black bars designate the expected relative performance
(i.e. Aurora peak or Dawn peak / JLSE-H100 peak) of the
mini-app based on the bounds of each mini-app, which are
listed in Table V, the microbenchmark results in Table II, and
the bounds of JLSE-H100 listed in Table IV. For example
for one GPU, Cloverleaf is listed in Table V as bound by the
memory bandwidth. Thus the expected relative performance is
the ratio of the peak memory bandwidth on Aurora or Dawn
to that on JLSE-H100, 0.59X (2 TB/s/3.35 TB/s) for Aurora
and Dawn (it’s the same since they have the same memory
bandwidth per GPU). The peak values for Aurora and Dawn
come from Tables I and for JLSE-H100 come from Table II.

For Figure 4:
Figure 4 plots the Figures-of-Merit on Aurora and Dawn

relative to the JLSE-MI250 Figures-of-Merit. This can be
computed by taking the Aurora and Dawn results from Table
VI and dividing them by the JLSE-MI250 results in Table VI.
The black bars designate the expected relative performance
(i.e. Aurora peak or Dawn peak / JLSE-MI250 peak) of the
mini-app based on the bounds of each mini-app, which are
listed in Table V, the microbenchmark results in Table II, and
the bounds of JLSE-MI250 listed in Table IV. For example
for one PVC Stack / one AMD GCD, miniBUDE is listed
in Table V as bound by the single precision (FP32) flop-rate.
Thus the expected relative performance is the ratio of the peak
FP32 flop-rate on Aurora or Dawn to that on JLSE-MI250.
For Aurora it’s 1.0X (23 Tflops/s/(45.3/2) Tflop/s) and for
Dawn it’s Aurora 1.1X (26 Tflops/s/(45.3/2) Tflop/s). The
peak values for Aurora and Dawn come from Tables I and
for JLSE-MI250 come from Table II (where the JLSE-MI250
number is divided by two since it’s run on a single GCD
instead of two.

Artifact Analysis (incl. Outputs)
The output of running the codes above for the microbench-

marks and mini-apps are available in A1, and the values in
the table can be read directly to generate the tables or figures
in the paper.

1435

