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Abstract—Modern central processing units (CPUs) feature
single-instruction, multiple-data pipelines to accelerate compute-
intensive floating-point and fixed-point workloads. Traditionally,
these pipelines and corresponding instruction set architectures
(ISAs) were designed for vector parallelism. In recent years,
major hardware vendors have further increased the throughput
of their CPUs by introducing matrix units with corresponding
ISA extensions. The Scalable Matrix Extension (SME) has been
announced for the Arm architecture in 2021 and Apple’s M4
chip is the first to support SME.

This paper presents an in-depth study of SME on M4. Our
microbenchmarks determine the maximum floating-point and
fixed-point throughput of M4’s SME acceleration and study the
achievable bandwidth for transfers to and from the matrix regis-
ters. Furthermore, we used the insights gained to design a just-in-
time code generator for SME-based small matrix multiplications.

The results presented show that M4’s SME support is FP32-
centric, with an achievable throughput of over 2.3 FP32 TFLOPS.
To maximize read and write bandwidth, loading and storing to
and from the matrix registers must be done in two steps. Our just-
in-time generated small matrix multiplication kernels outperform
the vendor-optimized BLAS implementation in almost all tested
configurations.

Index Terms—Scalable Matrix Extension (SME), M4, mi-
crobenchmarks, code generation, small GEMMs

I. INTRODUCTION

In 2008, Roadrunner, one of the first accelerated supercom-
puters, became operational [1]. Since then, many heteroge-
neous systems with different types of accelerators have been
built and successfully deployed for large-scale computing.
Prominent accelerated systems include Titan (NVIDIA K20X,
2012) [2], Tianhe-2 (Intel Knights Corner, 2013) [3], Summit
(NVIDIA V100, 2018) [4], Frontier (AMD MI250X, 2021)
[5], and Aurora (Intel Ponte Vecchio, 2023) [6].

A traditional accelerated machine consists of a host CPU
and one or more accelerator cards connected to the mother-
board by an appropriate interconnect. In this type of system,
the CPU and the accelerator(s) have different address spaces.
This means that communication between the host and the
device is explicit. “Offloading”, where certain computationally
intensive parts of the workload are offloaded to the accelera-
tor(s), is the dominant programming model on such machines.

In recent years, the integration of CPUs and accelerators has
become much tighter. Especially in the smartphone market,
system-on-a-chip (SoC) designs that tightly couple multiple
different accelerators on a single chip have become the norm.
Well-known examples include Apple’s A-series SoCs used
in the iPhone [7], Qualcomm’s Snapdragon SoCs [8] and
MediaTek’s Dimensity-series [9]. The introduction of Apple’s
M-series [10], and products like Qualcomm Snapdragon X
Elite [11], Intel Meteor Lake [12] and AMD Phoenix/Hawk
Point [13] also accelerated the use of SoCs in notebook
and desktop computing. In addition, SoCs targeting the HPC
market have been introduced or announced. Recent examples
include AMD’s Instinct MI300A [14] and Intel’s XPU strategy.
Accelerators on SoCs are typically used through tailored
programming models. For example, one might use HIP to
target an integrated AMD GPU, Metal for an Apple GPU, or
remote procedure calls to execute code on Qualcomm’s VLIW
Hexagon NPU. A key advantage of an SoC is that it typically
allows us to access the same memory from both the CPU and
the accelerator.

An even tighter coupling exists between recent matrix units
and their host CPU cores. Similar to floating-point copro-
cessors, these matrix units can be used directly through the
CPU instruction stream via Instruction Set Architecture (ISA)
extensions. Typically, data can be copied from vector registers
into a set of separate matrix registers, or loaded directly from
caches into the matrix registers. IBM introduced a matrix
unit with Power10 (2021), resulting in Matrix-Multiply Assist
(MMA) instructions [15]. Intel introduced matrix units in its
Xeon processors with Sapphire Rapids (2023) [16], which
supports Intel AMX. In contrast, Apple has not released doc-
umentation for its proprietary ISA extension required to use
matrix math acceleration in M1 (2020), M2 (2022), and M3
(2023). However, the extension is known as “Apple AMX”,
and a community-driven effort at least partially documents its
use [17].

In 2021 Arm announced the Scalable Matrix Extension
(SME) [18], which is similar to Apple AMX at its core, but
also introduces many features that are not documented for
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Apple AMX. On May 7, 2024, Apple announced the M4
chip at its “Let Loose” event [10]. M4 is the first publicly
available silicon that supports SME. This was confirmed by
the community with microbenchmarks a few days after the
SoC became available. Later, on June 13, 2024, a pull request
to the LLVM monorepository by Apple specifies ARMv9.2a
for M4’s CPU and confirms that it supports SME and SME2
[19]. This paper provides a thorough analysis of SME(2)
performance on M4. We make the following contributions:

• Extensive benchmarking of M4’s performance cores, ef-
ficiency cores, matrix acceleration, and memory subsys-
tem.

• Implementation of a just-in-time SME(2) code generator
for small matrix-matrix multiplications.

• Detailed performance analysis of the code generator and
comparison with the vendor-optimized BLAS implemen-
tation in Accelerate.

II. BACKGROUND

This section provides a brief introduction to the used testbed
in Sec. II-A and the studied ISA extension in Sec. II-B.

A. Testbed

All tests described in this paper were performed on a 2024
11-inch iPad Pro Wi-Fi 1 TB. The tablet is equipped with an
M4 chip with four performance cores and six efficiency cores,
as well as 16 GiB of memory. M4 is built in 3-nanometer
technology and consists of 28 billion transistors [10]. Both the
performance and efficiency cores can issue Scalable Matrix
Extension instructions. The iPad runs iOS version 17.5 and
was connected to a 2020 Mac mini via USB-C for all testing.

B. Scalable Matrix Extension

The Scalable Matrix Extension (SME) was added to the
Arm Architecture Reference Manual for A-profile architecture
on March 20, 2024. SME defines the following key features
[20]:

• Architectural state capable of holding two-dimensional
matrix tiles.

• A Streaming SVE processing mode.
• Instructions that accumulate the outer product of vectors

into a tile.
• Load, store, and move instructions that transfer a vector

to or from a tile row or column.
In addition, SME2 is a superset of SME and implements,
among other features, data processing instructions that operate
on groups of scalable vector registers.

We can enable access to the Streaming SVE (SSVE) mode
and the SME architectural state by issuing the SMSTART
instruction. Similarly, we can disable access to SSVE and
SME by issuing the SMSTOP instruction. Most of the SSVE
and SME data processing instructions operate on the scalable
vector registers and the ZA array. The respective sizes are
determined by the Streaming Vector Length (SVL), which is
512 bits on Apple’s M4. SSVE defines the 32 vector registers
Z0-Z31 of length SVL. The size of the ZA array in bytes

is given by SVL/8 × SVL/8 which is 4096 bytes on M4.
Instructions access the ZA array either as vectors of SVL bits
or through two-dimensional tiles, which are subarrays within
ZA.

Outer product data processing instructions form the core of
SME. These instructions take two scalable vector registers as
inputs and accumulate in a ZA tile. Outer product instruction
mnemonics end with MOPA. An example is the floating-
point outer product and accumulate instructions (FMOPA). In
FP32 arithmetic, the FMOPA instruction computes the outer
product of two SVL/32-element vectors located in two Z
vector registers. The result is added to the data in a ZA
tile with SVL/32 × SVL/32 elements. Since M4 has an
SVL of 512 bits, this effectively means that an FP32 FMOPA
instruction computes the outer product of two 16-element
source vectors and adds the result to a ZA tile with 16 × 16
elements. Thus, a single FP32 FMOPA instruction on M4
performs 16 × 16 × 2 = 512 floating point operations (see
also Fig. 6).

III. MICROBENCHMARKS

This section presents a collection of microbenchmarks that
determine the performance characteristics of the heteroge-
neous CPU and associated matrix acceleration in Apple’s M4
chip. Sec. III-A describes the overall structure of our iOS ap-
plication used for benchmarking. Next, in Sec. III-B we study
the floating-point performance when using “traditional” vector
instructions, i.e., ASIMD/Neon instructions. Then, in sections
III-C, III-D and III-E, we make use of the Scalable Matrix
Extension (SME/SME2) and examine the performance of the
available outer product, matrix-matrix and vector instructions.
Finally, in Sec. III-F we study the multi-core performance of
M4 and present bandwidth benchmarks in Sec. III-G.

A. Benchmarking App

We have written all the microbenchmarks presented here
in assembly language and call them from a C++ wrapper. In
turn, we call the C++ wrapper from a simple Swift application
using another Objectiv-C wrapper. The C++ wrapper measures
the elapsed time to execute a microbenchmark and handles
multithreading. We use Apple’s Dispatch framework for multi-
threading. Typical Linux-based pinning methods, such as using
taskset , are not supported on iOS. So we use the available
quality of service identifiers for concurrent queues in Dispatch.
In particular, we use QOS CLASS USER INTERACTIVE and
QOS CLASS UTILITY. While Dispatch does not provide direct
control over the executing cores, we have found that the
performance of a thread in the user-interactive queue matches
our expectations for a performance core, and the performance
of a utility thread matches our expectations for an efficiency
core. When spawning multiple utility threads, we observe a
maximum CPU utilization of 600% in Xcode’s monitoring
tool, even when using more than six threads, This indicates
that the six efficiency cores are being used exclusively for
utility threads. In our tests, spawning more than four user-
interactive threads results in CPU utilization of over 400%
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indicating that user-interactive threads may also be running
on the efficiency cores.

B. Neon: Traditional Vector Instructions

Our first set of benchmarks, studies the performance of
vector instructions using Arm’s ASIMD extension also called
Neon. The general kernel structure for determining the max-
imum FP32 performance of a core using Neon is given in
Lst. 1.

The kernel takes the number of repetitions as a 64-bit input.
This parameter is passed through the general purpose register
X0. The body of the repeat loop (lines 4-8) consists of 30
independent FMLA (vector) instructions. Neon specifies the
32 vector registers V0-V31, each of which is 128 bits wide.
FMLA (vector) multiplies the values in two source registers,
adds the product to the values in the destination register, and
writes the result back to the destination register. For example,
the instruction fmla v1.s , v30.s , v31.s (line 5) multiplies the
four FP32 values in V30 by those in V31, adds the product
to the four FP32 values in V1 and writes the result to V1.

1 / / b o i l e r p l a t e code
2 r e p e a t l o o p :
3 sub x0 , x0 , #1
4 fmla v0 . s , v30 . s , v31 . s
5 fmla v1 . s , v30 . s , v31 . s
6 / / 26 a d d i t i o n a l fm la i n s t r u c t i o n s
7 fmla v28 . s , v30 . s , v31 . s
8 fmla v29 . s , v30 . s , v31 . s
9 cbnz x0 , r e p e a t l o o p
10 / / b o i l e r p l a t e code
11 mov x0 , #30*8
12 r e t

Listing 1: Assembly kernel for determining the maximum
Neon floating-point throughput using the FMLA (vector) in-
struction and FP32 arithmetic.

In the kernel, we always use V30 and V31 as source registers
and the remaining registers as destination registers to maxi-
mize the distance of occurring read-after-write dependencies
on the destination registers. Also, in each loop iteration, the
number of outstanding repetitions is decremented by one
(line 3). The CBNZ instruction in line 9 jumps back to the
label repeat loop (line 2) if there are any repetitions left.
The instruction in line 11 writes the number of floating-point
operations performed in a single iteration to register X0, which
is the kernel’s return value. Our C++ wrapper calls the kernel
with a high enough number of repetitions so that the execution
takes at least one second.

We measured a Neon performance of 113 FP32 GFLOPS
using a single performance core. A single efficiency core has
a performance of 46 FP32 GFLOPS when running the kernel
in Lst. 1. We also tested the performance of FP16 and FP64
FMLA (vector) instructions. As shown in Tab. I, the instruction
throughput is the same, meaning that compared to FP32
arithmetic, we can perform twice as many FP16 operations

per second and half as many FP64 operations per second.
The Neon BF16 matrix-matrix instruction BFMMLA has low
floating-point throughput, making it an imperfect candidate for
upstream kernels.

C. Scalable Matrix Extension: Outer Product Instructions

We use the FMOPA (non-widening) instruction to bench-
mark the FP32 performance of M4’s matrix acceleration. As
discussed in Sec. II-B, FMOPA computes the outer product
of two vectors and adds the product to a matrix tile. The
corresponding assembly kernel is outlined in Lst. 2.

1 / / b o i l e r p l a t e code
2 p t r u e p0 . b
3 p t r u e p1 . b
4 r e p e a t l o o p :
5 sub x0 , x0 , #1
6 fmopa za0 . s , p0 /m, p1 /m, z0 . s , z1 . s
7 fmopa za1 . s , p0 /m, p1 /m, z2 . s , z3 . s
8 fmopa za2 . s , p0 /m, p1 /m, z4 . s , z5 . s
9 fmopa za3 . s , p0 /m, p1 /m, z6 . s , z7 . s
10 / / 24 a d d i t i o n a l fmopa i n s t r u c t i o n s
11 fmopa za0 . s , p0 /m, p1 /m, z24 . s , z25 . s
12 fmopa za1 . s , p0 /m, p1 /m, z26 . s , z27 . s
13 fmopa za2 . s , p0 /m, p1 /m, z28 . s , z29 . s
14 fmopa za3 . s , p0 /m, p1 /m, z30 . s , z31 . s
15 cbnz x0 , r e p e a t l o o p
16 / / b o i l e r p l a t e code
17 mov x0 , 32*512
18 r e t

Listing 2: Assembly kernel for determining the maximum
SME floating-point throughput using the FMOPA (non-
widening) instruction and FP32 arithmetic.

We see that the structure of the kernel is similar to that of
the Neon kernel in Lst. 1. Again, we execute a series of data
processing instructions in a repeat loop. Specifically, the loop
body (lines 6-14) contains 32 FMOPA instructions, each of
which performs 512 FP32 operations. The 4096 byte ZA array
is divided into four tiles, ZA0-ZA3, each of which holds 16×
16 FP32 values. We use all four tiles repeatedly in the kernel

Instruction Datatype GOPS
In Out P-Core E-Core

FMLA (Neon) FP64 FP64 56 23
FMLA (Neon) FP32 FP32 113 46
FMLA (Neon) FP16 FP16 220 91

BFMMLA (Neon) BF16 FP32 67 31
FMOPA (SME) FP64 FP64 503 89
FMOPA (SME) FP32 FP32 2009 357

BFMOPA (SME) BF16 FP32 2010 357
FMOPA (SME) FP16 FP32 2010 357
SMOPA (SME) I16 I32 2010 357
SMOPA (SME) I8 I32 4017 715
FMLA (SME2) FP64 FP64 251 89
FMLA (SSVE) FP64 FP64 16 11
FMLA (SME2) FP32 FP32 501 179
FMLA (SSVE) FP32 FP32 31 22

TABLE I: Apple M4 performance when running different
Neon, SSVE and SME(2) instructions on a single performance
(P) or a single efficiency (E) core.
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to maximize the reuse distance. In addition, FMOPA allows
masking of the source vector registers by setting appropriate
predicate registers. The kernel uses the two predicate registers
P0 and P1, and initializes all bits of both registers to 1 (lines
2 and 3) which effectively results in full outer products (no
masking).

As also shown in Tab. I, we observe a performance of
2009 FP32 GFLOPS when running the microbenchmark on a
single performance core. The performance drops to 502 FP32
GFLOPS when we adjust the microbenchmark to use only tile
ZA0 for accumulation. This indicates a four-cycle latency of
FMOPA (non-widening) for FP32 arithmetic.

When the precision is increased to FP64, FMOPA (non-
widening) computes the outer product of two 8-element vec-
tors and adds the product to a ZA tile of 8× 8 FP64 values.
Thus, each FP64 FMOPA instruction performs 128 floating-
point operations. We measured a performance of 503 FP64
GFLOPS for a corresponding microbenchmark. In the FP64
case, it is sufficient to use four of the eight available matrix
tiles for maximum performance on a single core, which again
implies an instruction latency of four cycles. If we were to
lower the precision and use FP16 FMOPA (non-widening)
instructions instead, we would compute the outer product of
32-element vectors. In this case, we would have only two
matrix tiles available for accumulation, but this instruction is
not supported by the M4 chip.

D. Scalable Matrix Extension: Matrix-Matrix Instructions

Another notable class of SME instructions performs matrix-
matrix multiplications, where the source vector registers are
interpreted as matrices. The 8-bit integer variant of SMOPA
(4-way) is such an instruction, operating on a single ZA
tile, two predicate registers, and two scalable vector registers.
The instruction is widening, meaning that the datatype of the
inputs has fewer bits than that of the output. The instruction
interprets the first vector register as a 16 × 4 matrix and the
second vector register as a 4 × 16 matrix of signed 8-bit
integers. The instruction multiplies the two matrices and adds
the product to a matrix tile of 16 × 16 32-bit integers. This
results in a total of 2048 integer operations per instruction.
Benchmarking SMOPA (4-way) on a performance core, we
measured a performance of 4017 I8 GOPS which is only a
2× throughput increase over FP32.

Similarly, BFMOPA (widening) multiplies a 16 × 2 BF16
matrix with a 2 × 16 BF16 matrix and accumulates in a
matrix tile with 16×16 FP32 values. In this case, 1024 BF16
operations are performed for each instruction. We measured a
performance of 2010 BF16 GFLOPS using BFMOPA (widen-
ing), which is on par with the FP32 FMOPA (non-widening)
performance. FMOPA (widening) with FP16 inputs and FP32
output shows the same behavior as BFMOPA (widening).

E. Scalable Matrix Extension: Multi-Vector Groups

SME2 also adds the ability to execute vector instructions
that operate on groups of vector registers. As introduced in
Sec. III-B, an important class of vector instructions performs
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Fig. 1: Comparison of multi-core performance for the FP32
Neon FMLA (vector) instruction and the FP32 FMOPA (non-
widening instruction). Performance is shown as the number of
user-interactive threads increases.

fused multiply-adds. In AArch64 fused multiply-add instruc-
tions exist for Neon, SVE and SSVE under the name FMLA.
A typical FMLA instruction multiplies the values of two vector
registers element-wise and adds the product to the values of a
third vector register.

In contrast, SME2 supports vector instructions with two
multi-vector groups, which hold up to four scalable vector
registers per group. For example, the FMLA (multiple and
single vector) instruction in the FP32 variant performs four
element-wise vector-vector multiplications and adds the result
to a ZA single-vector group. Thus, in FP32 arithmetic, a single
instruction on M4 performs a total of 4×32 = 128 operations.

As can be seen in Tab. I, the FP32 variant of the FMLA
(multiple and single vector) instruction achieves a performance
of 501 GFLOPS on a performance core, while the SSVE
single-vector instruction achieves only 31 GFLOPS. We ob-
serve the same 16× performance uplift when comparing the
FP64 SME2 FMLA operating on multi-vector groups to the
SSVE single-vector variant.

F. Multi-Core Performance

We have seen that a single performance core can achieve
an FP32 throughput of 113 GFLOPS when executing Neon
FMLA (vector) instructions and 2009 GFLOPS for SME
FMOPA (non-widening) instructions. This section examines
the multi-core performance of M4 by running the respective
microbenchmarks introduced in Sec. III-B and Sec III-C on 1-
10 user-interactive threads.

As shown in Fig. 1, we observe a Neon scaling behavior
that is consistent with the four available performance and
six efficiency cores. From one to four threads, we observe
an almost linear scaling with a measured performance of
395 GFLOPS when using four threads. After that, each new
thread adds an average of 44 GFLOPS, which is close to the
standalone performance of an efficiency core (see Tab. I).
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The scaling behavior of the FMOPA benchmark indicates
that M4 has two shared SME units. Initially, as the number
of threads increases from 1-4, the performance drops slightly
from 2010 to 1983 GFLOPS. As soon as a fifth user-interactive
thread is used, we see an increase to 2338 GFLOPS. The
difference is close to the 357 GFLOPS SME performance of a
single efficiency core (see Tab. I). Using more than five threads
does not increase SME performance further.

We ran some additional benchmarks to test our theory of
two SME units in M4. Specifically, we ran the FMOPA mi-
crobenchmark with a single user-interactive thread and a single
utility thread. However, we reduced the number of repetitions
running on the utility thread to 17.8% to match the difference
observed in Tab. I. Together, the two threads achieved an FP32
performance of 2371 GFLOPS, which is very close to the sum
of the individual results in Tab. I: 2009+357=2366 GFLOPS.
Adding more threads to either thread group did not improve
performance.

In summary, we measured a maximum Neon performance
of 656 FP32 GFLOPS when using 10 user-interactive threads.
A single thread running SME can outperform this by up to
3.1×. With both assumed SME units, an improvement of up
to 3.6× is possible.

G. Bandwidth

This section examines the bandwidth with which we can
transfer data to and from the ZA array. We measured band-
width with simple load and store benchmarks using a single
user-interactive thread. The benchmarks load data from an
FP32 array in memory to the ZA array or store data from the
ZA array to memory. We increase the size of the transferred
data from 2 KiB to 2 GiB. Smaller settings use the same data
repeatedly, so the measured bandwidth reflects the movement
of hot data without kernel startup overheads. Note that iOS
limits the amount of memory available to an application. In
our case, iOS returned about 5 GiB of available memory to
the benchmarking application.

Our first set of tests issues 512-bit LDR (array vector) or
STR (array vector) instructions to load directly from memory
into a ZA array vector, or to store data from a ZA array vector
to memory. As shown in Fig. 2, we measured a bandwidth
of about 375 GiB/s for repeatedly loading up to 8 MiB of
data using the LDR (array vector) instruction. On M4, the
instruction transfers 64 bytes from memory to the ZA array.

Fig. 3 shows the respective bandwidths for storing data from
the ZA array to memory. We realized direct ZA array to
memory transfers using the STR (array vector) instruction,
which writes 64 bytes. We observe the highest write bandwidth
in the 4 KiB to 4 MiB range at about 233 GiB/s.

1 ld1w { z0 . s − z3 . s } , pn8 / z , [ x0 ]
2 mov za0h . s [ w12 , 0 : 3 ] , { z0 . s − z3 . s }
Listing 3: Example code for loading data from memory into
the ZA array. The code first loads the 256 bytes of data into
four vector registers and then copies them into the ZA array.
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Fig. 2: Bandwidth of different strategies for loading data from
memory into the ZA array. The LDR variant loads directly
from memory into the ZA array, while the other strategies
first load into one, two, or four vector registers (VR) and then
copy the data into the ZA array. The loaded data is 128-byte
aligned.
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Fig. 3: Bandwidth of different strategies for storing data from
the ZA array to memory. The STR variant stores directly from
the ZA array to memory, while the other strategies first copy
to one, two, or four vector registers (VR) and then store the
data from the vector register(s) to memory. The stored data is
128-byte aligned.

As an alternative to using direct ZA loads, we can perform
a load by first loading the data into scalable vector registers
and then copying it from the vector registers into the ZA array.

An example code snippet is given in Lst. 3. First, in line
1, the snippet loads 4×64 bytes from memory into the four
consecutive registers Z0-Z3. The memory address is stored in
the general purpose register X0 and the load can be masked by
the bits of the predicate register PN8. Next, the MOV (vector
to array, four registers) instruction (line 2) copies the data
from the vector register to the ZA array. Similarly, to store
the data, we can first copy it from the ZA array to vector
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(c) LD1W 2VR
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Fig. 4: Bandwidth of different strategies for loading data from
memory into the ZA array, considering memory alignment.
Subfigures (a) - (d) show the different load variants, where
the colors denote 16-byte, 32-byte, 64-byte, and 128-byte
alignment of the data.

registers and then issue the appropriate store instructions on
the vector registers.

Implementing this approach with indirect ZA loads gives a
bandwidth of 925 GiB/s for up to 8 MiB of data when using
256-byte load and copy instructions (LD1W 4R). As shown in
Fig. 2, the bandwidth of the 128-byte (LD1W 2VR) and 64-
byte (LD1W 1VR) variants is significantly lower. In contrast,
Fig. 3 shows that using the indirect approach to store data
from the ZA array into memory (ST1W 1VR, ST1W 2VR
and ST1W 4VR) does not significantly improve bandwidth.

Fig. 4 illustrates the studied load variants considering differ-
ent memory alignments of the data. We see that the LDR (array
vector) instruction depends on the alignment. For full read
bandwidth, at least a 64-byte alignment is required. The LD1W
4VR instruction shows a significant increase in throughput
when using 128-byte alignment. However, we do not observe
any alignment impact for the indirect one-vector (LD1W 1VR)
and two-vector (LD1W 2VR) variants.

As shown in Fig. 5, alignment has a different impact on
bandwidth for the store strategies studied than for the load
strategies. Most notable is an increase in bandwidth for 64-byte
and 128-byte alignment when less than 8 KiB is transferred to
memory.

IV. JUST-IN-TIME CODE GENERATION

The microbenchmarks in Sec. III give us the information
we need to write fast SME kernels for M4. This section
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Fig. 5: Bandwidth of different strategies for storing data from
the ZA array into memory, considering memory alignment.
Subfigures (a) - (d) show the different store variants, where
the colors denote 16-byte, 32-byte, 64-byte, and 128-byte
alignment of the data.

describes the extension of the LIBXSMM1 library with SME-
based small GEMMs. LIBXSMM implements a set of tensor
processing primitives for all common datatypes and processors
[21]. Small GEMMs are among the most important primitives,
and the library tailors them to the respective microarchitec-
tures and exploits kernel metadata through just-in-time code
generation. Specifically, a LIBXSMM code generator hard-
wires matrix sizes, datatypes, and leading dimensions when
generating a matrix kernel. In addition, the resulting kernel
can use one of many supported SIMD extensions, such as
Neon or SVE for an AArch64 processor.

We describe our LIBXSMM extension in four parts. First,
Sec. IV-A describes the SME implementation of a GEMM
that computes C += ABT . This is the simpler case, since
the transposed storage of B allows us to use SME’s outer
product instructions directly. Second, Sec. IV-B discusses our
register blocking strategies. Third, Sec. IV-C discusses the
implementation of an SME-based GEMM C += AB, i.e.,
the transposition of B is handled by the generated matrix
kernel. Finally, in Sec. IV-D we evaluate the performance of
our code generation approach and compare it to the BLAS
implementation of the vendor-optimized Accelerate library.

A. Microkernel

Motivated by the results in Sec. III-C we limit the discussion
in this section to FP32 FMOPA (non-widening) instructions.
Fig. 6 compares a typical Neon microkernel in LIBXSMM

1LIBXSMM is available from https://github.com/libxsmm/libxsmm.
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Fig. 6: Comparison of an FP32 Neon microkernel (left) and an
FP32 SME microkernel (right). The Neon kernel uses 24 128-
bit accumulation registers to hold a 16×6 submatrix of C. The
SME microkernel uses the four matrix tiles to store a 32× 32
submatrix. Two example FMLA (by element) instructions for
the Neon microkernel and a single FMOPA (non-widening)
instruction for the SME kernel are highlighted in red.

with an SME microkernel. The Neon kernel uses 24 of the
32 available 128-bit vector registers to hold a 16× 6 block of
C. In contrast, the SME microkernel uses the entire ZA array
to hold an accumulator block of 32×32 elements. Considering
the required instructions, we see that the Neon code must
execute an average of 64 FMLA instructions for every FMOPA
instruction in the SME kernel.

1 / / s e t p r e d i c a t e r e g i s t e r s
2 / / s e t r e g i s t e r o f f s e t
3 k loop :
4 sub x8 , x8 #0 x1
5 ld1w{ z0 . s , z1 . s } , pn8 / z , [ x0 ]
6 ld1w{ z2 . s , z3 . s } , pn9 / z , [ x1 ]
7 add x0 , x0 , x9
8 add x1 , x1 , x10
9 fmopa za0 . s , p1 /m, p0 /m, z2 . s , z0 . s
10 fmopa za1 . s , p1 /m, p2 /m, z2 . s , z1 . s
11 fmopa za2 . s , p3 /m, p0 /m, z3 . s , z0 . s
12 fmopa za3 . s , p3 /m, p2 /m, z3 . s , z1 . s
13 cbnz x8 , k loop

Listing 4: SME microkernel that uses FMOPA (non-
widerning) instructions to compute a block of GEMM C +=
ABT .

Assuming column-major storage for A and C, and row-major
storage for B, we can generate machine code similar to that
in Lst. 4 for an SME kernel. The code snippet assumes that
a 32 × 32 element block of C has been loaded into the ZA
array and shows the inner loop for the contraction dimension
K.

The loop body first loads up to 32 consecutive values from
a column of A (line 5). We mask the loads with the predicate
register PN8 if less than 32 values are needed. Next, we load
up to 32 consecutive values from a row of B (line 6). Again,
we use predication for less than 32 values. The two instructions
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Fig. 7: Comparison of a homogeneous kernel using a single
blocking strategy (left) and our heterogeneous kernel with
three blocking strategies (right) for a matrix C with dimensions
M = 80 and N = 80. The homogeneous kernel requires
ten microkernel executions, while the heterogeneous kernel
requires seven microkernel executions.

in lines 7 and 8 increment the addresses in X0 and X1 to point
to the next column of A and the next row of B. The FMOPA
instructions in lines 9-12 compute the four corresponding outer
products and update the ZA matrix tiles. When the K loop
(lines 3, 4, and 13) is complete, we have finished computing
a block of C. So we write the data in the ZA array back to
memory, load the next block, and start over.

B. Register Blocking

The four 16 × 16 element ZA matrix tiles can be used
for different register blocking strategies. In Sec. IV-A we
discussed a microkernel that uses a 32×32 element blocking
of the output matrix. The advantage of this strategy is that it
only needs to load 32 column values of A into two Z registers
and 32 row values of B into two Z registers for a complete
update of the accumulator block. This means that the kernel
loads a total of 32 + 32 = 64 values of A and B for each
update of the ZA matrix array. This strategy is also shown in
Fig. 6, where Z0 and Z1 are used for the values of A and Z2
and Z3 for those of B.

Our code generator supports two additional blocking
schemes. Specifically, the generator supports 16× 64 register
blocking and 64×16 register blocking. Both blocking schemes
require loading 16+64 = 64+16 = 80 values of A and B for a
complete accumulator block update. However, the advantage
of having different blocking schemes is that we can choose
and mix them according to the sizes of the matrices in the
small GEMM. For example, assume M = 80, N = 80, i.e.
C ∈ R80×80. In this case, we generate code that uses all three
of our blocking strategies.

The resulting heterogeneous kernel performs seven micro-
kernel executions to compute the corresponding small GEMM.
As shown on the right side of Fig. 7, the first 64 columns of
C are computed by four executions of a microkernel with
32× 32 register blocking and one execution of a microkernel
that uses 16×64 register blocking. The sixth kernel execution
uses a 64× 16 register blocking to compute the first 64 rows
of the last 16 columns of C. Finally, the seventh microkernel
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execution computes the remaining 16×16 values of the matrix
C. Here we use a heavily masked 64× 16 blocking.

C. Transposing B

The matrix kernels described in Sec. IV-A and Sec. IV-B
compute GEMMs of the form C += ABT . This means that
A and C are assumed to be column-major, while B is assumed
to be row-major. In line 6 of Lst. 4, the row-major storage of
B allows us to simply load up to 32 consecutive row values
of B. These values can then be used directly for the outer
products in lines 9 -12.

For a column-major B, we have to solve the problem that
two consecutive row values have a stride determined by the
leading dimension of B. We have not found an elegant way to
perform efficient transpositions using only registers. Instead,
we allocate scratch memory on the stack and use it to store a
transposed panel of B. A similar strategy is used in the SME
Programmer’s Guide [22].

Assuming that K is the number of rows in B and that
our kernel operates on entire 32 × 32 blocks of elements,
we transpose a K×32 panel of B. To do this, we block the
panel into 16× 16 blocks. We copy each block by horizontal
MOV (tile to vector, four registers) instructions from the vector
registers to a ZA tile and back by vertical MOV (vector to tile,
four registers) instructions.

1 mov w12 , #0
2 mov za0h . s [ w12 , 0 : 3 ] , {z0 . s − z3 . s}
3 add w12 , w12 , #4
4 mov za0h . s [ w12 , 0 : 3 ] , {z4 . s − z7 . s}
5 add w12 , w12 , #4
6 mov za0h . s [ w12 , 0 : 3 ] , {z8 . s − z11 . s}
7 add w12 , w12 , #4
8 mov za0h . s [ w12 , 0 : 3 ] , {z12 . s − z15 . s}
9 mov w12 , #0
10 mov { z0 . s − z3 . s } , za0v . s [ w12 , 0 : 3 ]
11 add w12 , w12 , #4
12 mov { z4 . s − z7 . s } , za0v . s [ w12 , 0 : 3 ]
13 add w12 , w12 , #4
14 mov { z8 . s − z11 . s } , za0v . s [ w12 , 0 : 3 ]
15 add w12 , w12 , #4
16 mov { z12 . s − z15 . s } , za0v . s [ w12 , 0 : 3 ]

Listing 5: Assembly kernel transposing a 16×16 block using
the ZA array. First, the data is copied from vector registers
Z0-Z15 to tile ZA0 using the horizontal view. Then the data
is copied back to the same vector registers using the vertical
view.

Lst. 5 shows a code snippet that transposes a 16 × 16 block.
Lines 1-8 copy a column-major block from vector registers
Z0-Z15 to ZA0 using the horizontal view. Next, we copy the
data in the matrix tile ZA0 back to Z0-Z15, but using the
vertical view (lines 9-16). In effect, using both the horizontal
and vertical copy transposes the block, which we then store
in our scratch memory.

We align the blocks in the scratch memory to 64-byte
boundaries. Once an entire 32×K panel of B is transposed, we
multiply it by A using the procedure described in Sec. IV-A.
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Fig. 8: FP32 performance comparison of our code generator
with Accelerate BLAS for small GEMMs. The sizes of the
output matrices are given on the x-axis (M=N). The contrac-
tion dimension K has a fixed size of K=512. Matrices A and
C are assumed to be column-major and matrix B is assumed
to be row-major.
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Fig. 9: FP32 performance comparison of our code generator
with Accelerate BLAS for small GEMMs. The sizes of the
output matrices are given on the x-axis (M=N). The contrac-
tion dimension K has a fixed size of K=512. All matrices are
assumed to be column-major.

D. Performance Evaluation

Fig. 8 compares the performance of our generated kernels
with the SGEMM implementation in Accelerate BLAS. Shown
are the GEMMs C += ABT with M,N ∈ [1, 2, . . . , 512] and
K = 512. We see that our approach outperforms the vendor
library in almost all tested settings.

Fig. 9 shows the performance of the same settings for a
column-major matrix B, i.e. the GEMM C += AB with
M,N ∈ [1, 2, . . . , 512] and K = 512. As described in
Sec. IV-C, the kernel must now transpose the matrix B in
order to use outer product FMOPA instructions. In this case,
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our implementation outperforms Accelerate BLAS in all tested
settings.

V. DISCUSSION AND OUTLOOK

We have presented a thorough performance analysis of M4’s
CPU, in particular the matrix acceleration enabled by the Scal-
able Matrix Extension (SME) of the Arm Architecture. The
microbenchmarks conducted allow us to outline the strengths
and weaknesses of the SME implementation in M4, and guided
the design of a code generator for fast SME-enabled tensor
processing primitives.

In FP32 arithmetic, throughput of over 2.3 TFLOPS can be
achieved using outer product SME instructions. This is a 3.6×
improvement over the multi-core Neon performance of the
CPU. The SME performance of other datatypes (FP64, FP16,
BF16, I8) on M4 is comparatively low. Only for I8 inputs
a moderate twofold speedup is possible, making M4’s SME
acceleration FP32-centric.

Our bandwidth benchmarks show that it is advantageous to
first load data into the scalable vector registers and then copy
it into the matrix array, instead of loading directly into the
matrix array. Using this two-step method we obtained a 2.6×
improvement in read bandwidth over direct loads from the L2
cache.

The results of the benchmarks performed guided our exten-
sion of the LIBXSMM library with a code generator for SME-
based small GEMMs. By benchmarking our code generator
for a variety of matrix sizes, we were able to demonstrate
competitive performance results. In the case where A and
C are stored in column-major format and B in row-major
format, our implementation is faster than the vendor-optimized
BLAS routines in Accelerate in almost all tested settings.
When all matrices are stored in column-major format, our
implementation outperforms Accelerate BLAS in all tested
settings.

Apple M4 is the first chip to support SME. This is not
surprising since the design of SME is similar to Apple AMX.
We expect to see SME support in all upcoming Apple silicon,
especially in upcoming M-series SoCs. Higher throughput of
reduced-precision SME instructions (FP16, BF16, I8) could
further accelerate CPU-native machine learning inference. At
the same time, we expect other vendors to support SME in
the near future. For example, the benefits of SME become
apparent when considering that Nvidia’s 72-core Grace CPU
has only 3.5× higher FP32 performance than M4’s SME
unit associated with the performance cores. In particular, low-
latency HPC workloads that require dense linear algebra would
benefit greatly from matrix acceleration.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Main Contributions

C1 Extensive benchmarking of M4’s performance
cores, efficiency cores, matrix acceleration, and
memory subsystem.

C2 Implementation of a just-in-time SME(2) code
generator for small matrix-matrix multiplications.

C3 Detailed performance analysis of the code gener-
ator and comparison with the vendor-optimized
BLAS implementation in Accelerate.

B. Computational Artifacts

A1 https://github.com/scalable-analyses/sme.git
(73e9eea)

A2 https://github.com/stefan0re/libxsmm.git (c83378a)

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Table 1
(MicrobenchmarkApp) Figures 1-5

Listing 1-3

A1 C3 Figures 8-9
(GemmApp)

A2 C2 Listings 4-5
Figures 6-7

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The code features two applications designed for execution
on a 2024 11-inch iPad Pro Wi-Fi 1 TB. We used them to
execute all microbenchmarks on the device (Microbench-
markApp) and to compare the two GEMM libraries
(GemmApp).

Expected Results

Benchmarked data is displayed in the Xcode terminal.
Example output:

Running benchmarks . . .
Th reads : 1
QoS : User I n t e r a c t i v e

Expected Reproduction Time (in Minutes)

Running the microbenchmarks for the different data process-
ing instructions takes 2-3 minutes. Bandwidth benchmarking
takes 25-30 minutes per setting. Benchmarking GEMM
performance takes two hours for all settings in figures 8 and
9.

Artifact Setup

Hardware:
• 2024 11-inch iPad Pro Wi-Fi 1 TB
• 2020 Mac mini

Software:
• https://github.com/scalable-analyses/sme.git (e6db4a0)
• https://github.com/stefan0re/libxsmm.git (c83378a)
• Xcode Version 15.4 (15F31d)
• Command Line Tools for Xcode 15.3
• OS (iPad Pro): iPadOS 17.6
• OS (Mac mini): Sonoma 14.5
• Apple clang Version 15.0.0

Artifact Execution

MicrobenchmarkApp: Create a new project in Xcode. Add
the files from the MicrobenchmarkApp to the project. Set
SME2 compiler flags. Build the project and deploy the App.
Execute desired benchmarks by using the interface on the
iPad.
GemmApp: Create a new project in Xcode. Add the files
from the GemmApp to the project. Add LIBXSMM (A2)
to the projects build phases. Build the project and deploy
the App. Select desired matrix sizes on the iPad and run the
benchmarks.

Artifact Analysis

The Neon data processing instruction benchmarks vary by
up to 3%. The SME compute performance has run-to-run
variation of less than 1%. We observed large bandwidth
variations when testing arrays with sizes in the transition
zone between L2 cache and memory.

B. Computational Artifact A2

Relation To Contributions

The artifact is our implementation for fast small GEMMs
on Arm processors supporting SME(2). It is an extension
of the LIBXSMM library. For performance evaluation, we
compared the extension to the BLAS implementation in the
Accelerate library.

Expected Results

The library generates machine code that is written to
memory and then made executable.

Expected Reproduction Time (in Minutes)

Applying the patch and building the library takes 2 minutes.

Artifact Setup

Hardware and Software: see A1

Artifact Execution

Clone LIBXSMM (c83378a) and checkout the SME branch.
Apply the provided patch to the code. Build a static library
and link it in Xcode to use the library.
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Artifact Analysis

The workaround with the provided patch is necessary
to compile LIBXSMM for iOS. To execute the just-in-
time generated code, the iPad must be connected to the
Mac mini, otherwise the app will crash. This is because
the operating system does not allow memory to be made
executable without a connection to an authorized Apple
device.

Artifact Evaluation (AE)

A. Computational Artifact A2

Artifact Setup

• git clone https://github.com/stefan0re/libxsmm.git
(c83378a)

• cd libxsmm
• git checkout c83378a
• Copy two files from GemmApp to the LIBXSMM root

directory
– iOS.cmake
– patchIOS

• set the CMAKE IOS SDK ROOT variable in the
iOS.cmake file to your SDK path

• git apply patchIOS
• cmake . -B build ios
• cd build ios
• make -j BLAS=0

Artifact Execution

The library and headers can be added to the desired Xcode
project.

B. Computational Artifact A1

Artifact Setup

MicrobenchmarkApp:

• git clone https://github.com/scalable-analyses/sme.git
• Open Xcode
• Create New Project
• Choose App
• Select Product Name: Microbenchmark
• Select Project Location
• Delete default .swift files
• Add files from MicrobenchmarkApp to the project,

except the Bridging-Header
• Use the Xcode generated Bridging-Header and copy the

Code of the provided Bridging-Header into it
• Add Apple Clang Custom Compiler Flags:

-march=v9-a+sme2+sme2p1+sme-f16f16+b16b16+sme-
f64f64

• Click on build and run

GemmApp:

• git clone https://github.com/scalable-analyses/sme.git
• Open Xcode

• Create New Project
• Choose App
• Select Product Name: GemmApp
• Select Project Location
• Delete default .swift files
• Add files from the GemmApp to the project, except the

Bridging-Header
• Use the Xcode generated Bridging-Header and copy the

Code of the provided Bridging-Header into it
• Build LIBXSMM (see A2)
• Set Build Setting:

– Header Search Path: /path/to/libxsmm/inlcude/
– Library Search Path: /path/to/libxsmm/build ios

• Set Build Phases:
– Link Binary With Libraries: Add libxmm.a

• Click build and run

Artifact Execution

Select desired benchmarks. The output of the selected
benchmark is printed in the Xcode terminal.
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