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Abstract—This work quantifies the impact of microarchi-
tectural features in modern high-performance Arm CPUs. To
combat a parameter space that is too large to traverse naively,
we employ a decision tree regression machine learning model to
predict the number of execution cycles with 93.38% accuracy
compared to the simulated cycles. We build on previous work
by specializing our design to real-world HPC workloads and
modernize our approach with updated search spaces, improved
simulation frameworks, and over 180,000 simulated data points.
We find empirically that vector length typically has the largest
impact on HPC code performance at 25.91% of our performance
weighting, followed by memory performance across all levels of
the memory hierarchy, and the size of the reorder buffer and
register files. Our results motivate deeper exploration of these
parameters in both hardware design and simulation, as well as
advancing the modelling of architectural simulation through the
use of machine learning.

I. INTRODUCTION

Hardware/Software co-design has become increasingly
prevalent in an age where Moore’s law no longer guarantees
large performance gains with each processor iteration [1]. With
less performance on the table from conventional architectural
improvements, the design of high-performance CPUs must
be carefully crafted to perform well for a set of target
applications, ranging from general-purpose compute tasks to
specialized applications or benchmarks, such as SPEC CPU or
SPEChpc. Fujitsu’s A64FX is a strong example of the success
of this method, designed in collaboration with RIKEN R-CCS
to target performance for a finite set of HPC applications [2].

The prototyping undertaken to design such CPUs often
occurs in simulation at a variety of granularities. Register-
Transfer Level (RTL) simulations provide excellent modelling
at the cost of simulation speed, while many higher-level
microarchitectural simulators lack either the speed or cycle
accuracy that would be required to distinctively assess perfor-
mance differences of subtly different CPU designs.

Design-space optimisation of CPU design is not a new topic,
but previous research has typically focused on outdated ranges
of parameters [3]–[7], or narrowly focused on few parameters
in a small search space [8], limiting the scope of the research
to exclude future-generations of hardware designs. For larger
parameter spaces, we have to be more clever about modelling
performance, as brute force approaches become untenable.
Machine learning (ML) can aid this search, requiring only
a sample of the search space to accurately predict target

variables, or by guiding the parameter search towards optimal
values. This has previously been coupled with simulation tools
to assess various configurations, but again focuses on a narrow
scope of parameters with the intention of optimisation of die
size, cost, or energy to solution [9].

This work aims to provide a modernized approach to
the problem of analysing the performance impact of several
microarchitectual parameters. This provides insight into the
complex relationships between various design decisions and
guides future research towards where significant performance
improvements can be unlocked by highlighting where bottle-
necks lie. In particular, this problem is motivated by the goal
of optimizing only the features that have a large impact on the
compute performance of a CPU for the codes that it will be
used on.

This problem is difficult due to the size of the parameter
space coupled with the slow speed of simulation compared
to hardware, meaning smaller subsets of the space must be
investigated at one time. We tackle this problem through the
use of a surrogate ML model, learning a reduced representation
of our simulation framework from a sample of the data which
allows us to accurately reason about the full parameter space
without the constraint of having to simulate it all.

Using over 180,000 simulated data points across our design-
space and four HPC workloads, including a selection from
SPEChpc 2021, we train a Decision-Tree Regression model
for each application to predict the number of execution cycles
depending on the microarchitectural configuration provided.
After validating the accuracy of our model, we examine the
average weights of each parameter that define our model and
score each parameter based on an importance percentage to
quantify the predicted impact they have on performance. We
then refer back to our original dataset to provide context for
our model’s predictions.

The contributions of this work are (i) the significant col-
lection of simulated data across the CPU architecture param-
eter space for multiple HPC codes, (ii) the mapping of this
dataset to an accurate surrogate ML model to an explainable
latent-space representation, (iii) interpreting the architectural
parameters in CPUs with the largest performance impact of
HPC codes based on our representation, (iv) probing the
simulated data to provide theoretical underpinnings that reason
our findings.
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II. RELATED WORK

Previous work in the late 2000s set the scene for ML-
assisted design space analysis in microarchitectural design. In
particular, P.J.Joseph et al. [3] presented the use of Linear
Regression Models to analyse 26 microarchitectural parame-
ters and conveyed the significance of their impact on SPEC
CPU2000 codes. This study was limited in that the parameter
space searched was still small, with only two values tested for
each parameter, and the values are no longer representative of
the size of modern HPC processors that we see today.

Lee et al. expanded upon this work in 2006 [4] by con-
sidering a larger range for each parameter and used detailed
statistical analysis of each variable, as well as spline functions
to model non-linearity. This study, however, focused on the
power use and instructions per second rather than the total
cycles per application. Further, all analysis is based on the
regression model’s output without referring back to the col-
lected data to demonstrate the cause of the impact that each
parameter has. Again, many chosen ranges of the parameters
no longer represent modern chip designs, with no vectorisation
explored whatsoever.

Further work expanded on these core ideas, with İpek et al.
[5] proposing the use of Artificial Neural Networks to predict
their full defined parameter space with as little simulation
data as possible, while Dubach et al. approached the same
problem with an architecture-centric approach that allowed
unseen codes to be predicted after minimal simulations based
on a model trained on several other applications [6]. A
continuation of this work saw Dubach et al. predicting the best
microarchitectural design based on the compiler optimisations
used [7]. These works are limited in the range of values
modelled both in terms of modern relevancy, and focus on
CPU workloads that are not comparable with real-world HPC
workloads. They instead aim to tackle a different problem: the
prediction of a defined parameter space from minimal samples
rather than an analysis of the source of bottlenecks. In our case,
we are not bound by limited data due to the significant gains
in simulation frameworks and the performance of machines
since these works were published, and instead favour masses
of data that lead to deeper insight that is guided by our ML-
predicted impacts.

III. SIMULATION ENVIRONMENT

Our need for a simulation environment for this study is
obvious - though our choice for a higher-level execution-
driven simulator is motivated by the infeasibility of developing
an RTL design for each configuration, something expected
to yield more accurate results. We define our simulation
environment to be both the simulation of a single configurable
core model, supported by a simulated memory backend model.

The core model is simulated via The Simulation Engine,
also known as SimEng, developed by the University of Bristol
High Performance Computing Group [10]. SimEng provides
a fast, easy to use, and cycle-approximate open-source tool
to rapidly explore the microarchitectural design space. The
speed across each run that is required to generate significant

data would have been unachievable in other simulators of this
granularity, leading SimEng to be the obvious choice for this
research.

The memory subsystem is simulated via the Structural
Simulation Toolkit (SST), developed by Sandia National Lab-
oratories [11], which has an existing integration with SimEng.
This allows us to effectively model an L1 and L2 cache,
along with main memory. We later design our benchmarks
to cover a range of smaller L1 and L2 resident problems,
as well as larger test cases to simulate real-world problem
cases of a variety of codes. The scope of this study targets a
single core with this memory model, which, assuming a multi-
core environment in which all cores work under saturation of
the main memory controller, reflects the same performance
impact of memory-bound codes that one would see in real
world multi-core problem sets.

Where SimEng and its integration with SST particularly
shines in this study is the ability for model-driven design.
We orchestrate each run through automated generation of the
core’s configuration file as well as the SST memory model
file, followed by dispatching multiple instances of SimEng
at once and collecting the returned statistics from each run.
This allows for a rapid simulation workflow that makes the
significant amount of data required for this study achievable,
where many other alternatives are difficult to instrument in
such a broad manner.

IV. ASSUMPTIONS

A. Equivalent Code Execution

Our study analyses the performance of 4 codes: STREAM,
miniBUDE, TeaLeaf, and MiniSweep. Each of our codes
were compiled statically using the Arm Compiler for
Linux v23.04.1, based on LLVM 16.0.2, targeting the
armv8.4-a+sve instruction set. In this study, one of the
features we explore is SVE vector width, so we must ensure
that each binary is generated as vector length agnostic to
both ensure functional correctness, but to also ensure that
all lanes of the vector are fully utilized regardless of the
specified width. This is specified in our compilation with the
flag -msve-vector-bits=scalable.

The same binaries were run for each test per configuration,
meaning only vector length imposes a restriction on the
instruction stream while all other parameters must exploit
increased Instruction Level Parallelism (ILP) for improved
performance.

Given the primary objective of this paper is to identify
performance trends as a result of a change of microarchitecture
(rather than predicting the exact performance one would
achieve with a given configuration), we assume that while
the compiler cost model may have some influence on the
performance, this will be notably smaller than the wider
changes to the architecture. In particular, we aim to mitigate
the impact has through our choice to compile targeting scalable
SVE vector length, making execution more comparable even
if it comes at the cost of poorer performance for larger
vector lengths. By comparing equivalent code streams, except
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Fig. 1. Percentage of retired instructions that are SVE instructions across
multiple vector lengths.

TABLE I
SIMULATED SINGLE-CORE CYCLES COMPARED TO HARDWARE CYCLES

ON MARVELL’S THUNDERX2 FOR OUR CHOSEN APPLICATIONS IN
SIMENG WITH SST

Simulated Cycles Hardware Cycles % Difference
STREAM 25,078,088 26,665,221 5.95%
MiniBude 42,436,227 48,778,524 13.05%
TeaLeaf 19,966,725 14,607,184 36.69%
MiniSweep 6,529,912 10,374,617 37.05%

for changes induced by vector length, we allow for a like-
for-like comparison of CPU configurations that negates the
potential weakness of the compiler targeting potentially far-
fetched designs that it has not been optimised for. It remains
an open area of research to explore how compiler cost models
can be generated from processor design specifications which
would enable more accurate code generation tailored to each
processor model in an automated study such as this.

We make the observation in Fig. 1 that for two of our codes,
TeaLeaf and MiniSweep, the vectorisation of these codes
by the compiler was poor. We measured the vectorisation
percentage as the percentage of retired instructions that have
at least one Z (SVE vector) register as a source or destination
register. We also validate these findings on physical A64FX
hardware, which has an SVE vector length of 512 bits, using
perf stat and the SVE_INST_RETIRED event counter.

Due to the poor vectorisation of these codes, we focus
any analysis of the impact of vector length on the remaining
two codes, MiniBude and Stream. It is worth noting that the
poor SVE usage in TeaLeaf and Minisweep is compiler and
application dependent, so the impact of vector length may still
be negligible in several other applications where the compiler
can not effectively vectorize, regardless of how impactful it is
on highly vectorized binaries.

B. Accurate Simulation

Our analysis of simulated data to project future trends of
microarchitecture design assumes accuracy of our simulation
tools. In Table I we validate the accuracy of SimEng combined
with SST by running our benchmarks on a physical Marvell
ThunderX2 node and comparing this to a fixed ThunderX2
simulated model. We observe that STREAM and MiniBude
are simulated with relatively high accuracy, while TeaLeaf and
MiniSweep have larger discrepancies. We expect the larger
difference in some of our applications is due to a simplified
simulation of the memory backend, with our implementation
of SST using basic prefetching algorithms, as well as abstract-
ing out important features of a modern memory subsystem
such as memory banking. The absence of this granularity
of simulation is likely to behave differently depending on
memory access patterns of the program, leading to a range
of accuracy in the number of cycles observed.

Despite this, the impact on our conclusions remains min-
imal, as a model predicting accurately to the data yielded
from these simulations remains valid assuming the simulator
correctly follows the performance trends of different codes.
As the magnitude of the cycle difference remains within a
reasonable range for each code, we are confident that our
simulation framework does capture these trends, hence leading
to an insightful ML model if the model’s accuracy is also high.

The Marvell ThunderX2 microarchitectural design was used
as a baseline for our variable configurations, being an out-of-
order superscalar arm-based CPU, and supporting the armv8.4-
a ISA. It does not have support for SVE, limiting a direct
comparison of our experimental setup with real hardware.
In our generated configurations, SVE support was added by
modifying the design of the execution units.

The core model supplied in the SimEng repository was
accompanied by an SST configuration designed using a mix-
ture of known values and values acquired from online sources
empirically testing cache latencies [12].

It is a difficult problem to demonstrate the accuracy of the
simulation across the entire design space, especially given the
fact that many of the tested architectures do not exist. We
therefore rely on the validation of our baseline model in Table I
to represent the capability of our chosen simulation framework
to capture performance trends. This gives us confidence to
extrapolate these trends accurately within the context of our
simulation environment, and expect this to still provide insight
into the performance trends of real-world hardware.

V. METHODOLOGY

In this study, we develop a surrogate model that, for a given
core configuration, instruction stream, and program input,
predicts the number of execution cycles. We introspect this
model to gain understanding on the core design parameter
space and define the most important predicted parameters.
Using this understanding, we further analyse the underlying
reasons as to what causes the selected parameters to have such
importance on the performance of the core, and use our large
simulated dataset to back up these findings.
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TABLE II
SIMENG CORE PARAMETERS PRESENTED WITH THEIR RANGES AND STEPS

EXPLORED IN THIS STUDY.

Parameter Range Step
Vector Length (Bits) {128-2048} Powers of 2
Fetch-Block-Size {4-2048} Powers of 2
Loop-Buffer-Size {1-512} 1
General Purpose (GP) Registers {38-512} 8 starting from 40
Floating-Point (FP)/SVE Registers {38-512} 8 starting from 40
Predicate Registers {24-512} 8
Conditional Registers {8-512} 8
Commit Pipeline Width {1-64} 1
Frontend Pipeline Width {1-64} 1
Load-Store-Queue Completiton Pipeline Width {1-64} 1
Reorder Buffer (ROB) Size {8-512} 4
Load Queue Size {4-512} 4
Store Queue Size {4-512} 4
Load Bandwidth (Bytes) {16-1024} Powers of 2
Store Bandwidth (Bytes) {16-1024} Powers of 2
Permitted Memory Requests Per Cycle {1-32} 1
Permitted Memory Loads Per Cycle {1-32} 1
Permitted Memory Stores Per Cycle {1-32} 1

TABLE III
SST MEMORY MODEL PARAMETERS PRESENTED WITH THEIR RANGES

AND STEPS EXPLORED IN THIS STUDY.

Parameter Range Step
Cache Line Width (clw) {32-512} Powers of 2
L1 Latency (Cycles) {1-10} 1
L1 Clock Speed (GHz) {1-5} 0.5
L1 Associativity {1-16} Powers of 2
L1 Size (KiB) {16-2048} Powers of 2
L2 Latency (Cycles) {6-50} 1
L2 Clock Speed (GHz) {1-5} 0.5
L2 Associativity {1-16} Powers of 2
L2 Size (MiB) {0.25 - 64} Powers of 2
Ram Timing (ns) {40-250} 10
Ram Clock (GHz) {1-5} 0.5
Ram Size (GiB) 8 N/A

A. Parameter Space

We design a SimEng core to vary all core parameters in the
front end of the CPU and the memory subsystem that may
impact the number of cycles a code takes to execute. The
design of the execution units, ports, reservation stations, and
instruction execution latency are fixed to limit the scope of this
study. Our CPU configuration includes seven execution units
with a single unified reservation station shared between them
with a width of 60 and a dispatch rate of four instructions
per cycle. Many of the seven execution units support multiple
different instruction groups. Three of them are exclusive to
load and store instructions, two support NEON and SVE
instructions with one additional predicate-only port, and three
support a mixture of integer, floating point, and branch in-
structions. These designs were chosen to reflect a generic yet
modern CPU architecture with SVE support.

In Table II we define our ranges to explore from the
minimum viable values up to a maximum of realistic values
for current and near-future core designs in the context of
the number of execution units we model. In order to reduce
noise in our dataset, we typically use greater steps to explore
parameters with larger ranges.

Table III presents our SST-simulated memory backend,
modelling a single core design with L1 and L2 data caches,

hitting RAM on a last-level-cache miss. We do not model L1I
cache in this study, leading to a 0 cycle latency for instruction
fetch.

For each run through our set of benchmarks, a new set of pa-
rameters is generated across a continuous uniform distribution.
All parameters are independently generated, with the exception
of Load and Store Bandwidths, and L2 size and latency. These
parameters’ lower bounds are dependent on other parameters
to ensure a functional and realistic CPU design, where Load
and Store Bandwidths must be large enough to load and store
at least data as large as the vector length, and L2 cache must
be larger and higher latency than our L1D cache.

Rather than focusing on minimising the number of samples
required for an accurate model, we take advantage of the
simulation speed of these benchmarks, roughly two minutes
per benchmark for each configuration, as well as the large
compute resources available. While the collected 180,000 data
points only cover a fraction of the entire search space, we later
find that this sample is sufficient to model the performance
trends due to the high accuracy of our ML model’s predictions
for the number of cycles on unseen data points.

B. HPC codes used

We benchmark each configuration on four codes with differ-
ent performance characteristics, representative of many codes
that one would see in HPC. Two of our codes, TeaLeaf and
Minisweep, are included in SPEChpc 2021, though ran on
smaller inputs to achieve shorter simulation times. SPEChpc
2021 provides a suite of applications, designed to give realistic
and comparable performance measurements of modern HPC
systems [13]. This makes it a useful suite to represent the
performance of possible CPU designs in the context of HPC,
hence us using a subset of the applications.

TeaLeaf is a miniapp that solves linear heat conduction
equations and is typically a memory-bound application, while
Minisweep is a miniapp modelling radiation transport and is
compute or communication bound, depending on the number
of ranks used. In our case where we model a single core,
Minisweep acts as a compute bound application due to its
relatively high arithmetic intensity [14]. We also include
STREAM as a sustained memory benchmark to represent
heavily memory bound codes [15], as well as miniBUDE, a
molecular dynamics code used for drug discovery, as a further
compute bound application [16].

The four codes have been chosen for a few reasons: there
is a trade off between the number of codes we use and the
amount of data we can collect in a given timeframe; any
codes used must be supported within our chosen simulation
framework, which currently only has prototypical dynamic
linking support, ruling out MPI-reliant codes; these codes
attempt to characterise some core aspects of performance
within HPC, using a mixture of compute and memory bound
applications, each with different memory access patterns and
compute kernels. Increasing the application diversity would
potentially deepen the insights achievable by this study, though
also runs the risk of diminishing the accuracy of our findings
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TABLE IV
PARAMETERS SET FOR EACH APPLICATION RAN ACROSS ALL

CONFIGURATIONS.

Application Input options Input Values

STREAM Programming Model
Stream Array Size

OpenMP (single thread)
200000

MiniBude

Programming Model
Benchmark Name
Atoms
Poses
Iterations

OpenMP (single thread)
bm1
26
64
1

TeaLeaf

Programming Model
Dimensions
Number of cells along {X, Y}
Domain {xmin, xmax}, {ymin, ymax}
Solver Method
Initial Timestep
End Step
Max Iterations

OpenMP (single thread)
2D
{32, 32}
{0, 10}, {0, 10}
Conjugate Gradient
0.004
5
10000

MiniSweep

Programming Model
Global number of gridcells along {X, Y, Z}
Total number of energy groups
Number of angles for each octant direction
Sweep Iterations
Sweep blocks used to tile the Z dimension

OpenMP (single thread)
{4, 4, 4}
1
32
1
1

due to the increase in compute time required to collect data.
This study characterises performance based on some core
attributes generally seen across the HPC space, though in
reality workloads are dependent on machine and are hard
to fully represent within the scope of a single study. We
believe that our chosen applications provide enough coverage
to accurately portray trends on the core-level of performance.

All of our applications have been compiled statically with-
out MPI, and instead with exclusively an OpenMP backend.
As we are simulating only a single core, much of this backend
is negated, and we instead focus our analysis on the single-
core performance, as well as the memory performance of our
codes.

The input data for each application presented in Table IV
has been tuned to both be small enough to yield a short sim-
ulation (between 10-50 million retired instructions on average
per run, leading to a simulation time of between 1-5 minutes
when run with one instance per core), yet be representative of
the performance characteristics one would expect on a larger
code. For some codes, the smaller input size means that the
code becomes increasingly L1 or L2 bound rather than RAM
bound, but this is recognized in the analysis of the results and
does not significantly impact the insight we can gain from
this study. This concession must be made in order to generate
enough data at this resolution to ensure an effective ML model
that can accurately model our simulated codes across the high
dimensional parameter space, which allows us to gain insight
from each parameter.

For STREAM, an array size of 200,000, or 4.6 MiB, will
either be L2 or RAM bound depending on the configuration.
For MiniBude, we use the provided dataset bm1, with a
relatively small amount of poses at 64 and only run for a
single iteration. In the case of TeaLeaf, we simulate more
cells in each dimension at 32 instead of the default of 10
and run for 5 timesteps. For Minisweep, we run for a single
timestep on a small grid of 4x4x4 cells, but still follow the
documented guidance on what will maintain the performance

characteristics of the code. These choices of parameters pro-
vide confidence that the inputs chosen allow our runs to be
representative of the application’s performance.

All applications used by this study have built in validation
mechanisms, comparing the generated output to an expected
output. Only runs that pass this validation are considered in
our results to ensure there are not any known issues with the
binary or the simulation environment.

C. Machine Learning Model

One goal of this paper is to implement a surrogate model
for our simulation framework specifically for our chosen
binaries and datasets. Surrogate modelling is a form of model
reduction that allows us to map a higher order system into
a lower order space that is computationally less expensive to
evaluate [17]. This form of modelling has previously been
used for simulation-based optimisation to replace simulators
of complex dynamical systems [18], and more commonly used
recently in weather modelling [19].

The purpose of the study is to map our simulated model
onto an explainable surrogate, allowing us to gain insights
by interpreting an alternative representation of our model.
This approach has previously been explored in other domains
for both neural networks and traditional ML [20], though
this paper expands on the prior work implementing models
in microarchitectural design with the use of a more modern
parameter space and a more expansive search, training our
model with notably more data than what we are aware has
been done before.

We implement four decision tree Regression models, one
for each application, which are trained to predict the number
of executed cycles from the thirty variable input features. A
decision tree regressor lends itself nicely to this problem,
as (i) we want to predict the number of execution cycles
within a large, positive, and continuous range, (ii) complex
parameter relationships lead to non-linear trends that can be
modelled within the tree, (iii) they are highly interpretable as
the decision tree describes how the prediction is made which
can easily be followed, as well as providing metrics of feature
importance which is the goal of this study, and (iv) they are
significantly faster to train on large amounts of data than other
regression models such as Support Vector Regression (SVR),
as their training time complexity is O(n log n) rather than
O(n2). We train a separate model per application to allow for
a more flexible approach, making it easier to introduce a new
application without retraining the model on all previous data.
One may think that a unified model would be more robust,
though a decision tree regressor trained on multiple applica-
tions would likely branch based on a given application due to
the contrasting performance trends of each application, leading
to a larger and less interpretable model without necessarily
improving learned trends.

We implement our model using Scikit-Learn in Python [21],
using their pre-defined decision tree regressor models. Our
dataset contains 180,006 rows, which are split by a randomized
80/20 split for our training and validation sets respectively.
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Fig. 2. Percentage of cycle predictions generated by our model that are within
the specified confidence interval of the true simulated value.

Our decision tree is constructed with minimal constraints on
the creation of new leaves - there are no maximum numbers
of leaves, a single sample can be considered as a new leaf,
and there is no maximum depth to the tree. The criterion
to measure the quality of each split is based on the mean
squared error, with the split at each node chosen to be the best
found. These choices were made as they yielded the highest
performing model when judged by the metrics we defined to
be important to this problem, discussed further in our results.

We train our model by minimizing mean squared error
between our predicted cycles per application, and our sim-
ulated truth cycles per application in our training dataset. This
criterion is important in this problem as our model is learning
over a high dimensional parameter space, leading to a lot of
variation within a single choice for a single parameter. Using
mean squared error over mean absolute error avoids finding a
minima of the loss function by predicting the mean of each
parameter, and instead, we penalize the model heavily for
avoiding outliers.

VI. RESULTS

A. Model Accuracy

We assess our ML model on a metric of percentage of
predicted results within specified confidence intervals of the
true value, testing on an unseen split of 20% of the total
data. Results in this case refer to the number of cycles per
application. This metric is relevant as we care about most
predictions being in a close range to the true value, while
outliers do not penalize our results heavily as only a few vastly
incorrect results would not impact the model’s weightings, the
focus of this study.

Fig. 2 demonstrates that our model is accurate, with the
majority of predictions falling within 2% of their true values
for three applications, and nearly all predictions falling within
25%. It is notable that the model used to predict STREAM’s
cycles yielded poorer accuracy than the other applications.
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Fig. 3. Ten greatest feature importance percentages (ordered descending by
mean) presented for each application (positive implies increasing a parameter
yields fewer cycles).

Despite the poorer performance, the overwhelming majority
of predictions fall within 25% of the true cycles, suggesting
that the trends learned by our model are still correct, though
less accurate than the other applications. We also find that
between all applications, the mean accuracy of all results is
93.38%, meaning the average prediction is 6.62% away from
the simulated true result.

These results provide confidence that our models correctly
model the trends in the data, and that each the weightings
for the parameters are learned by the model accurately reflect
reality for the chosen applications.

B. Feature Importance

When interpreting our model’s learned parameters, we use
permutation feature importance to estimate the contribution
of each input variable. This method randomly shuffles the
values of each feature before predicting our output variable
and scoring the model with the mean absolute error criterion.
This method is repeated 10 times, taking the mean error as
the permutation feature importance. Finally, we contextualise
this data by expressing the importance as the percentage of the
summed error increase across all features. This metric allows
us to quantify the impact of each parameter on the number
of cycles as it represents how much prediction error increases
when randomising a feature’s values.

In Fig. 3, we present the largest mean feature importances.
We find that vector length has a significant impact, pro-
portional to the percentage of executed instructions that are
vector instructions. This is most apparent in the compute-
bound application MiniBude, where vector length has by far
the largest impact on the number of cycles executed. Despite
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Fig. 4. Ten greatest feature importance percentages (ordered descending by
mean) for each application when vector length is constrained to 128 (positive
implies increasing a parameter yields fewer cycles).

having a similar vectorisation percentage, vector length has
a dampened impact on STREAM, where the L2 cache size
has roughly an equal impact. This finding suggests that the
Data-Level-Parallelism unlocked by large vector lengths is still
bound by the memory bandwidth of the CPU. In more memory
bandwidth-bound applications, this effect will amplify and
focus more importance on the speed of the memory-subsystem.

For Tealeaf and Minisweep, the severely limited vectorisa-
tion leads to minimal impact of vector length, as expected.
Instead, greater feature importance is placed on the latency
to fetch data from the L1 cache via the parameters L1 Clock
Speed and L1 Latency. We expect that for larger inputs of
Tealeaf, the importance of cache clock and latency would shift
from L1 towards higher levels of the memory hierarchy, while
for Minisweep, which has a relatively high arithmetic intensity,
the constraint of memory speed is likely to remain in lower
levels of cache when run on a single rank.

Due to the large feature importance percentage of vector
length being specific to MiniBude and STREAM in this case,
to ensure a fair comparison of other features we also analyse
the importance of all other features when vector length is
constrained. This also provides greater insight into what other
parameters vector length relies on for these two applications
to unlock the maximum benefit of an increased vector size.

We observe in Fig. 5 that, in the case of a long vector length
of size 2048 bits, MiniBude becomes increasingly constrained
by L1 cache speeds compared to a short vector length of 128
bits presented in Fig. 4, while the Reorder Buffer (ROB) and
Floating-Point/SVE Registers are relieved of pressure as fewer
SVE instructions are in flight at any one time. The increase
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Fig. 5. The same ten feature importance percentages as Fig. 4 for each
application when vector length is constrained to 2048 (positive implies
increasing a parameter yields fewer cycles).

in impact of the number of General-Purpose Registers and
Fetch-Block-Size suggests that compute-bound codes where
the compute kernel has high levels of ILP start to have a
loose bottleneck of both fetching more instructions, but also
during register renaming when many instructions are in flight.
This impact is also visible in Minisweep, where parameters
impacting the ability to push instructions through the front
end have a notable effect on our results.

The Cache-Line-Width is also predicted to have a large
impact in all applications where increased memory-bandwidth
yields fewer cycles. This result is slightly misleading, as
increasing the Cache-Line-Width in this case also increases the
L1-L2 and L2-RAM bandwidth by the same amount; L1-core
bandwidth is defined by the Load/Store Bandwidth parameters.
The bandwidth is impacted because each memory request has
the same latency, yet yields more data, thus representing the
impact of increasing our memory bandwidth. It is interesting
to note that a vector length of 2048 dampens the impact of this
parameter in highly vectorised codes, as memory requests for
vector instructions are accessed in parallel from different banks
if the vector length is larger than a single cache-line. SST
models an infinite number of memory banks unless explicitly
specified, meaning that a shorter cache-line has little impact
on the latency of SVE loads/stores, reducing the visible impact
in this study. This is different to what we’d expect to see in
hardware design, where the increase of Cache-Line-Width is
expected to come at the expense of inter-cache latency, and
there are only finite memory banks which the loaded data may
not be distributed across.

Using the ML guided approach in selecting the most im-
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Fig. 6. Mean speedup observed of varying vector length compared to the
mean number of cycles a vector length of 128 yields. Only results with a
Load-Bandwidth greater than 256 are presented to ensure a fair comparison,
given this is the minimum a result with vector length 2048 has.

pactful parameters, we analyse the large quantity of simulated
data collected to provide insight into the cause of a high
performance weighting.

When exclusively investigating vector length in Fig. 6, it
is clear that it can have a large impact on performance.
Our results show that we yield a speedup of 7-9x when
increasing our vector length by a factor of 16, with the larger
speedup in the case of STREAM. We expect this is due
to the increased Data-Level-Parallelism, as although we only
compare configurations with the same Load/Store Bandwidth,
we are bound by at least one request per vector. As our
constraints ensure we can always load a full vector, we load
more data per memory request in larger vector lengths which
saturates more of our memory bandwidth. We also reduce
pressure on the front-end of the CPU, allowing for increased
ILP.

Fig. 7 shows that varying the ROB size only effects perfor-
mance up to a certain threshold, depending on the application
and the remaining configuration. A larger ROB allows for
more ILP, assuming our execution units are not fully saturated.
Once these are saturated, no performance improvement is
realized and the additional power and die space would be
better utilized in memory improvements. We find the largest
impact in STREAM, predominantly made up of SVE load
instructions, as instructions will remain uncommitted in the
pipeline for longer in memory-bound applications due to
memory latency, thus requiring a larger ROB to hold instruc-
tions and micro-operations to fully saturate both execution
units and memory bandwidth. We find that for this layout of
execution units, a ROB size greater than 152 yielded minimal
improvements in any of our applications.

The number of Floating-Point/SVE Registers presented in
Fig. 8 paints a similar picture; in HPC codes which are
typically vectorized and contain a large number of floating-
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Fig. 7. Mean speedup observed of varying ROB size compared to the mean
number of cycles a ROB size of the minimum of 8 yields.
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Fig. 8. Mean speedup observed of varying the number of Floating-Point/SVE
Registers compared to the mean number of cycles a Floating-Point/SVE
Registers count of the minimum of 38 yields.

point instructions, we require a large number of registers to not
be bottlenecked by the register-rename part of the instruction
pipeline. We find that a count less than 144 can lead to
this bottleneck, meaning that new instructions must wait for
commits in order to continue processing. Again, more than
this yields minimal speedup as our bottleneck likely shifts to
the backend of the CPU.

VII. CONCLUSION

This paper presents an updated approach to a previous
method of exploring the parameter space of architecture
through the use of an explainable surrogate ML model. We
gain insight into the single-core design of a CPU for a range
of commonly used applications, and successfully learn the
performance trends in a high-dimensional simulated dataset.
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Our machine learning model permits us to more accurately
extrapolate across the large search space, allowing us to
model the space with a fraction of the data requirements. Our
chosen simulation framework SimEng, as an execution-driven
simulator modelling the core design, and SST, modelling our
memory backend, allows us to quickly and accurately gather
our initial data of over 180,000 configurations tested. This
approach is still limited to applications the model has been
trained on, and cannot yet adapt to unseen codes as the model
must learn the characteristics of each code to accurately predict
otherwise.

Our use of a decision tree regression model enables quan-
tifying the impact of each parameter as a feature importance
score. These scores allowed us to identify that vector length
is predicted to have the most significant positive impact on
code performance, continuing for large vector lengths up to
2048, but is highly dependent on how vectorized the code
is. If the code is highly vectorized, this can have a large
speedup of up to 9x in some cases due to the increased Data-
Level-Parallelism saturating more memory-bandwidth as well
as the relieved pressure on the core’s front-end, while there
is a negligible impact of vector length on poorly vectorized
codes. In cases with limited memory-bandwidth, we do not
expect to see as strong scaling.

Bottlenecks in the front-end of the CPU are often caused by
the lack of space in the Reorder Buffer, Floating-Point/SVE
Registers, or General-Purpose Registers. We find that these can
limit performance by up to a factor of five in memory-bound
applications due to limiting ILP, specifically on high-latency
instructions such as loads and stores that hit higher levels
of cache or RAM. If the front end is designed sufficiently
large however, no further performance gain is realized as the
bottleneck shifts to the backend, either to the execution units
or the memory. While the quantity needed to fully saturate
the backend is specific to the layout of the execution units,
we found that the number of Floating-Point/SVE Registers
should be roughly equal to the size of the Reorder Buffer, and
a value of 152 was enough in this case.

It can not be understated how much impact the memory
makes to the performance of the CPU. While the vector
length and front-end parameters certainly contribute to the
performance of the chip, they simply shift these bottlenecks
to the memory backend if the code was not already highly
memory-bound. We find that the latency of L1 cache and RAM
have a large impact on performance depending on the size of
the memory footprint of our code. The size of our L2 cache
had a stark impact on STREAM, as this size can be large
enough to turn codes which are loosely RAM bound into L2
bound, drastically reducing memory latencies, regardless of
subtle differences to the latency of L2 cache. Any way to
improve memory bandwidths, whether this is through clock
speed, latency in cycles, or the cache line width, will improve
the performance of the code. In a world which is already
dominated by memory-bound codes, this study proves that
despite having performance gains available to unlock in other
areas of CPU design, the unavoidable problem of memory

latencies and bandwidths must be faced, else the performance
bottleneck will continuously shift onto our memory subsystem;
it always comes back to memory [22].

While performance-per-core is important and is the focus of
this study, the reality is that HPC relies on parallel execution
across multiple cores and nodes. Even on a node level,
this study abstracts away the memory contention behaviour
exhibited in multi-core systems. For multi-node systems, one
must also consider the cost of communication between ranks,
as well as the potentially different memory footprint of a
code supporting MPI communication. The results gained from
this study must therefore be taken in the context of only a
single core. While we expect many of the uncovered trends
to remain, this work lays the foundation for future work into
the impacts of parallel execution. Our ML modelling approach
would support this work, simply relying on the mass collection
of data that accurately represents the behaviour of multi-core
or multi-node systems on a benchmark suite.

The output of this work is primarily three-fold: (i) our
ML modelling framework reinforces many of the relationships
between code performance and architecture features for sim-
pler kernels such as STREAM, while providing deeper insight
into less transparent relationships in the cases of MiniBUDE,
TeaLeaf, and Minisweep, (ii) these uncovered relationships
guide hardware designers and researchers to where maximal
performance gains can be unlocked in HPC codes, through
empirical evidence over an incredibly large search space, and
(iii) we have demonstrated an updated modelling approach
to learn and interpret our data, providing a decision-tree
regression model to accurately predict HPC code performance
based on a modern CPU configuration, thus mapping an
expensive modelling problem onto a reduced representation.
This modelling approach can be easily applied to new codes,
or a new system design which takes into account multi-core
or multi-node performance.

This work could be further explored by going further to
also experiment with the design of the execution units and
investigating how large the CPU backend needs to be to
resolve compute-bound bottlenecks. With Arm ISA extensions
such as SME and SME2, the impact of these could also
be explored to realize the impact that these have on both
compute and memory bound codes in the context of the
remainder of the CPU configuration. Future research could
also explore the avenue of creating a more complex surrogate
model to map more aspects of our simulation framework to
an advanced machine learning model. We envision this as an
extension to the model that we discover that can interpret
new binaries and datasets, to allow for accurate modelling
of unseen codes at a fraction of the computational cost or
time that execution-driven simulations require. Finally, more
work is needed on the topic of compiler cost-modelling to
ensure that compilers can always generate code for specific
microarchitectural parameters, rather than pre-defined models
for few architectures.

1456



ACKNOWLEDGMENT

The authors would like to thank Jack Jones, Finn Wilkinson,
and the remainder of the SimEng development team for
support in supporting SimEng throughout this study and any
proofreading efforts. Thanks to James Cussens for guidance
on the machine learning front. This work used the Isambard 2
UK National Tier-2 HPC Service (http://gw4.ac.uk/isambard/)
operated by GW4 and the UK Met Office, and funded by
EPSRC (EP/T022078/1).

REFERENCES

[1] Waldrop, M.M., 2016. The chips are down for Moore’s law. Nature
News, 530(7589), p.144.

[2] Sato, M., Ishikawa, Y., Tomita, H., Kodama, Y., Odajima, T., Tsuji,
M., Yashiro, H., Aoki, M., Shida, N., Miyoshi, I. and Hirai, K., 2020,
November. Co-design for a64fx manycore processor and” fugaku”.
In SC20: International Conference for High Performance Computing,
Networking, Storage and Analysis (pp. 1-15). IEEE.

[3] Joseph, P.J., Vaswani, K. and Thazhuthaveetil, M.J., 2006, February.
Construction and use of linear regression models for processor per-
formance analysis. In The Twelfth International Symposium on High-
Performance Computer Architecture, 2006. (pp. 99-108). IEEE.

[4] Lee, B.C. and Brooks, D.M., 2006. Accurate and efficient regression
modeling for microarchitectural performance and power prediction.
ACM SIGOPS operating systems review, 40(5), pp.185-194.
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

The main contributions of this paper are as follows:
C1 Orchestration of the SimEng architecture simulator to

collect results of a HPC benchmark suite on 180,000
unique and modern CPU configurations.

C2 The creation of a decision-tree regressor surrogate
model for our simulation framework on the chosen
codes, allowing for accurate prediction of cycles
across our architecture search space.

C3 The analysis of the architectural parameters deliver-
ing the most impact, observed via the introspection
of our learned surrogate model.

B. Computational Artifacts

We provide two artifacts for this paper, A1 for SimEng, our
architectural simulator of choice, and A2 for the remaining
infrastructure, including the Machine Learning model, code
binaries and build scripts, and result analysis and graphing
code.

A1 https://github.com/UoB-HPC/SimEng/tree/
1c394e791a37e83ad97c48d9ad0009ec9635815d

A2 https://doi.org/10.5281/zenodo.13852699

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Tables 1-3

A2 C2, C3 Table 4
Figures 1-8

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

This artifact is for SimEng, the simulation framework used
in this study. All CPU configurations tested were ran through
SimEng using the binaries of the codes chosen, all of which
were compiled with Arm Compiler for Linux 23.04.1. The
results of the SimEng runs were used to learn the architectural
parameter space through our ML model in A2. Note that while
the version of SimEng provided in this artifact will work for
several other binaries, to reproduce this study a patch file
provided in A1 must be applied.

Expected Results

SimEng will run a provided binary given a CPU configura-
tion file, and return statistics such as cycles executed, number
of instructions, and more upon completion of the simulation.
This allows us to define new configurations seen in Tables
2-3, as well as counting the number of SVE instructions
passed through SimEng for Table 1 by adding additional code

to count this statistic. This additional code is not provided
in the artifact, though SimEng documentation provides good
explanation of where to begin with this. Using the additional
infrastructure in A2, SimEng can be orchestrated to run
different configurations on the defined workflow in parallel,
along with the collection of the statistics output by SimEng.

You should find that altering the configuration provided
to SimEng will alter the number of cycles simulated on a
given binary. In particular, this study finds that changing vector
length will typically have the largest impact compared to other
parameters on the number of simulated cycles.

Expected Reproduction Time (in Minutes)

Artifact Setup time: The expected setup time for SimEng
with SST support is 30 minutes, and a further 1 minute to edit
the CPU or SST configuration.

Artifact Execution: The expected time to run a simulation in
SimEng depends on the binary and your hardware, though in
this study most runs would take around 1 minute of compute
time each on a single core, simulating at a speed typically
around 1 MIPS.

Artifact Analysis: SimEng prints statistics immediately after
completion, leading to instant analysis. In this study, it is A2

that collects these statistics for further analysis that takes time.

Artifact Setup (incl. Inputs)

Hardware: SimEng runs on a single core of a CPU, though
this study can utilise multiple cores and multiple nodes by
running many instances of SimEng. While no fixed number is
required, this study used ten Marvell Thunder-X2 nodes on the
Isambard 2 supercomputer, each with 64 cores. Each process
can use up to a few GB of RAM (depending on the binary),
so to ensure no Out-Of-Memory issues, we would recommend
allowing 8GB per process, though this is likely overkill.

Software: SimEng supports multiple compilers, though in
this study we used GCC 9.3.0 to compile SimEng, available
at: https://ftp.gnu.org/gnu/gcc/gcc-9.3.0/.

We use a modified version of SimEng, using commit
1c394e7 on branch dev as the base, and a patch file
for any further changes included in A2. This branch is
also available at: https://github.com/UoB-HPC/SimEng/tree/
1c394e791a37e83ad97c48d9ad0009ec9635815d

Datasets / Inputs: SimEng relies on a CPU configuration
defined in YAML, an SST configuration defined in Python,
and a statically compiled binary (plus any arguments or input
data) to be ran. All of these used in this study are described
or provided in A2.

Installation and Deployment: In order to install SimEng
with SST, you must install version 12.0.x of SST-Core and
SST-Elements as well as SimEng itself. Full guidance is given
in the SimEng documentation, available at https://uob-hpc.
github.io/SimEng/sst/building simeng with sst.html.
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To compile each of these, we used GCC 9.3.0 and CMake
3.24.2, though other compilers that support C++17 should also
work.

Artifact Execution
The bulk of the workflow is contained in A2, which orches-

trates our simulation framework in A1. In particular, T1 is the
generation of a CPU and SST configuration (generated in A2)
to be passed to SimEng, where T2 runs our benchmark suite
(contained also in A2) through SimEng, providing statistics
for these runs specific to our configuration generated in T1.
T3 is the collection of this data, initially stored by each process
in a buffer file, but extracted and placed into a dataset. This
collection and further analysis (T4) is also contained in A2.
This leads to many T2 tasks requiring one T1 task each, with
all T2 tasks leading to a single T3 and T4.

The configuration provided to SimEng and SST is uniformly
randomly generated between ranges defined in A2. In our data
collection, we used 180,000 unique T1 and T2 tasks, though
this value was chosen based on compute time rather than
an optimal or minimal value for successful results. It may
be possible to effectively map the design space with only a
few thousand results, or one may wish to redefine the design
space’s boundaries.

B. Computational Artifact A2

Relation To Contributions
This artifact is for the infrastructure code that orchestrates

thousands of SimEng runs. Not only does this generate CPU
and SST configurations, but it also contains the binaries ran,
some helpers to build binaries if used with their sources, the
code to generate a decision-tree regressor model from the
generated dataset, and code to analyse results gained from
this model.

Expected Results
The script ”run xci.sh” allows one to continuously run

SimEng on a given number of nodes and cores. This script
will generate CPU configurations given design constraints
set in the file config generator.py, before running this con-
figuration on SimEng for each benchmark specified, storing
the outputted statistics temporarily until ”collect data.py” is
invoked to scrape the useful statistics and append this entry to
a database. Finally, ”analysis .py” contains the code to create,
train, and analyse results for our machine learning model.
”graph-generation.py” is a supplementary script to plot graphs
used in the paper.

Expected Reproduction Time (in Minutes)
Artifact Setup time: The expected setup time to start running

the workflow (collecting results) is 2 hours. This is as SimEng
needs to be modified with the supplied patch file, and multiple
scripts are system-specific so would need to be minorly
changed. A further 30 minutes would be required to modify
all remaining scripts to be system-specific. If one wanted to
recompile the codes provided, an additional 1-2 hours would
be required.

Artifact Execution: To generate a dataset of 180,000 entries
using the same four binaries and inputs used in the paper, we
expect this to take 24-48 hours of compute time on across 10
nodes of Marvell Thunder-X2 CPUs, each with 64 cores each.
On a single node, this would be roughly 10-20 days.

Once the dataset has been generated, training the machine
learning model is extremely fast, taking less than 1 minute on
a standard laptop CPU.

Artifact Analysis: Anaylsis of results should take less than
1 hour. One can introspect the learned machine learning model
within seconds, and the bottleneck is writing the code to
extract interesting statistics which typically requires no more
than Pandas and Matplotlib code. To simply use the existing
infrastructure, less than 30 minutes is required.

Artifact Setup (incl. Inputs)

Hardware: While there are minimal strict requirements for
hardware, the more CPU cores and RAM one can supply, the
more/faster the data can be collected. We ran our experiments
with a total of 640 cores and 5TB RAM for 1-2 days. In
particular, this study made use out of ten XCI nodes on the
Isambard 2 supercomputer hosted at the University of Bristol,
hence scripts are currently targeted towards running on these.
These should be easily modifiable to work on most hardware.

Software: All benchmark codes were compiled
using Arm Compiler for Linux 23.04.1 (https:
//developer.arm.com/Tools%20and%20Software/Arm%
20Compiler%20for%20Linux#Downloads), compiled
statically, without MPI, SVE vector length agnostic,
and with O3 optimisations. Isambard 2 also made use of
the Cray ALPS scheduler, hence scripts are currently tuned
to use this. The artifact also requires Pandas, Scikit Learn,
Matplotlib, and Seaborn Python packages to be installed for
the machine learning model and further data analysis to work.

Datasets / Inputs: This artifact allows one to generate a
dataset through the ”collect data.py” script. This is coupled
with other scripts through the ”xci launcher.sh” to dispatch
runs of SimEng, before recording every configuration option
and all the statistics for each benchmark named accordingly.

Installation and Deployment: Python 3 as well as the
required modules (Numpy, Pandas, Scikit Learn, Matplotlib,
Seaborn) is needed to run this artifact. Any modules can be
installed via pip.

Artifact Execution

Most of this artifact is Python or bash scripts, meaning
no additional compiler is required unless wanting to recom-
pile benchmarks, in which case Arm Compiler for Linux
23.04.1 was used. In order to execute the experiments, first
”xci launcher.sh”, or T1, must run for a fixed period of time.
T1 continuously creates new architectural configurations, tests
them in SimEng against our chosen benchmarks, and collects
them into a database. This is done through the single script. T2

trains the machine learning model by running ”analysis.py”.
This will create a new database detailing the impact scores of
each parameter for each code, as well as the model accuracy.
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Finally, T3, or ”graph-generation.py”, will produce graphs
similar to those in the paper. This leads to a simple workflow
of T1 → T2 → T3.
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