
Assessing the GPU Offload Threshold of GEMM
and GEMV Kernels on Modern Heterogeneous

HPC Systems
Finn Wilkinson

High-Performance Computing Group
University of Bristol

Bristol, United Kingdom
fw17231@bristol.ac.uk

Alex Cockrean
High-Performance Computing Group

University of Bristol
Bristol, United Kingdom

no22498@bristol.ac.uk

Wei-Chen Lin
High-Performance Computing Group

University of Bristol
Bristol, United Kingdom

wl14928@bristol.ac.uk

Simon McIntosh-Smith
High-Performance Computing Group

University of Bristol
Bristol, United Kingdom

s.mcintosh-smith@bristol.ac.uk

Tom Deakin
High-Performance Computing Group

University of Bristol
Bristol, United Kingdom
tom.deakin@bristol.ac.uk

Abstract—With an ever-growing compute advantage over
CPUs, GPUs are often used in workloads with ample BLAS
computation to improve performance. However, several factors
including data-to-compute ratio, amount of data re-use, and data
structure shape can all impact performance. Hence, using a
GPU is not a guarantee of better BLAS performance. In this
work, we introduce the GPU BLAS Offload Benchmark (GPU-
BLOB), a novel and portable benchmark that measures CPU
and GPU compute performance of different BLAS kernels and
problem configurations. From the GPU offload threshold (a BLAS
kernel’s minimum dimensions for a certain configuration where
using a GPU is guaranteed to yield improved performance), we
evaluate the per-node performance of three, in-production, HPC
systems. We show that the offload threshold for GEMM is highly
dependant on problem shape and number of consecutive BLAS
calls, and that, contrary to conventional wisdom, GEMV can
benefit from GPU acceleration, especially on SoC-based systems.

Index Terms—BLAS, Performance, Heterogeneous, High-
Performance Computing, Nvidia Grace-Hopper, AMD MI250X,
Intel Ponte Vecchio

I. INTRODUCTION & MOTIVATION

Formally introduced as a Fortran library in 1979 by Lawson
et al. [1], Basic Linear Algebra Subprograms (BLAS) are
a set of low-level kernels used to compute common linear
algebra operations. On top of the original library of vector-
vector operations (Level 1), there have been two subsequent
additions: matrix-vector operations (Level 2) [2]; and matrix-
matrix operations (Level 3) [3]. Matrix-matrix multiplication
(GEMM) and matrix-vector multiplication (GEMV) are ar-
guably the most important of these BLAS kernels; used by

CC-BY. This work was supported by the Engineering and Physical Sciences
Research Council and Arm Ltd.

a wide range of applications from scientific modelling1 to
Artificial Intelligence, and form the basis of many other BLAS
kernels. As such, efficiently computing these operations can
be paramount to good application performance.

Computing techniques such as Single Instruction Multiple
Data (SIMD) lend themselves well to accelerating GEMM and
GEMV computations given the inherent presence of (mathe-
matical) vectors throughout. Being able to calculate multiple
results concurrently improves computation throughput, and is
why all modern processors have some form of vectorization
capability. In x86 processors, instruction sets such as SSE,
AVX(2), and AVX-512 bring extensive support for many
different vector operations. Likewise, Arm processors have the
NEON and SVE(2) vector instruction sets.

Over the last decade, it has become common to see the
use of GPUs to improve application performance, largely due
to their immense parallel compute capabilities. Looking at
the Top500 over a seven year period, it is clear that we are
in an increasingly heterogeneous world, where the number
of high-performance computing systems with accelerators in
the Top500 has risen from 91 in June 2017 to 193 in June
20242 [7]. Whilst many different types of applications benefit
from offloading computation to the GPU, the resurgence of AI-
type workloads and their reliance on GEMM computations [8]
has led to the production of dedicated matrix engines on GPU
devices. Examples include NVIDIA’s Tensor cores [9], Intel’s

1Whilst Level 2 and 3 BLAS operations are commonly used in scientific
applications, it should be noted that the time spent executing them is often
not the dominating factor when executing at scale [4], [5].

2Although Deakin et al. noted that whilst this is a slowly growing fraction in
terms of the number of GPU-accelerated machines in the list [6], the majority
of the aggregated compute power on the list comes from the extremely large
GPU-enabled machines.

1474979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00188

XMX matrix engines [10], and AMD’s Matrix Cores [11],
each promising substantial FLOP/s improvements over tradi-
tional GPU processing cores. This trend has continued onto
the CPU, with new instruction set extensions such as Intel’s
AMX [10], IBM’s MMA [12], Apple’s AMX [13], and Arm’s
SME [14] providing ways to significantly improve GEMM and
GEMV performance compared to traditional SIMD techniques
without using an external GPU.

Common bottlenecks present across the majority of work-
load types are memory bandwidth/latency and CPU-GPU
interconnect latency, caused by the increasing amount of data
moved and used by modern applications. As such, another
recent hardware trend is the production of System on Chip
(SoC) designs; with CPUs, main memory, GPUs, etc. all
present on the same chip, or tightly-integrated designs in
a similar manner. Such SoCs generally yield much lower
interconnect latencies due to the reduced physical distance
between components. Recent examples of SoC designs in-
clude NVIDIA’s Grace-Hopper Superchips, boasting a be-
spoke CPU-GPU interconnect (NVLink C2C) that is capable
of 900 GB/s of bi-directional bandwidth [15]; and AMD’s
MI300A, with a single, unified address space allowing the
CPU and GPU both to access all available memory at a peak
bandwidth of 5.3 TB/s [16].

Thus, given the rapidly changing hardware landscape, we
believe it critical to re-assess the GEMM and GEMV per-
formance profiles for a range of systems with the latest
hardware. Throughout this work, we test a variety of problem
configurations to assess a) whether the common mantra of
performing GEMM on GPU and GEMV on CPU still holds
true, and b) if SoC style devices change the way we should
approach GPU utilization for GEMM and GEMV kernels.

II. RELATED WORK

There has been previous work to understand and optimize
the behaviors of BLAS on CPUs and GPUs in heterogeneous
systems, exploring how best to exploit both the CPU and
the GPU in order to run BLAS kernels most efficiently. The
MAGMA project [17] provides a collection of linear algebra
libraries that combines the strength of the multi-core CPU and
GPU architectures of heterogeneous systems to outperform
libraries for the individual components of the systems taken
separately [18], [19]. Dongarra et al. investigated the utility of
the proposed batched BLAS extension to BLAS [20], compar-
ing the compute performance of GPUs and CPUs for batched
GEMM kernels, and show that using an interleaved memory
layout results in batched BLAS running approximately twice
as fast on a heterogeneous system.

There is also a body of work investigating which problems
are better suited to a CPU and which are better suited to
a GPU. For instance, Chikin et al. [21] build a selector to
determine whether a program containing BLAS operations
should be run on the CPU or the GPU. This selector is based
on analytical models for both CPU and GPU performance, and
indicates whether a significant performance gain is possible
by analytically modelling the specific architecture of a given

system. However, as an analytical model, this selector does
not quantify differences between systems and would require
a new model for each new architecture. Whilst an empirical
benchmark, such as GPU-BLOB, allows for the quantification
of such inter-system differences and can more easily measure
the performance of new architectures due to its portability.

Beaumont et al. looked into offloading strategies specifically
for computing forward activations in neural network training.
Although determining exactly which calls should be offloaded
to a GPU is an NP-complete problem, they were able to
identify two heuristics by relaxing the problem [22].

Li et al. detail a performance comparison between CPUs
and GPUs for BLAS of varying problem sizes [23]. This
comparison showed that for each of DOT, GEMV, GEMM and
TRSV, the GPUs achieved higher performance. For TRSM, the
picture is more complex as for small vector sizes the CPUs
were quicker than the GPUs (for larger vector sizes, the GPUs
were again faster than the CPUs). However, these results are
based on computation times and so do not include the critically
important data transfer time for GPU measurements.

A runtime and energy efficiency comparison of a CPU and
FPGAs for GEMV, GEMM, and SpMV was conducted by
Favaro et al. [24]. Here, they showed that even when FPGAs
had a longer runtime, they were more energy efficient.

Torres et al. investigated the runtime and energy con-
sumption performance differences in the algorithms used for
square SGEMMs in a range of BLAS libraries focusing on
MKL, cuBLAS, and SYCL; across a number of heterogeneous
systems using Intel CPUs and Nvidia GPUs [25]. They found
that Intel Xeon Platinum 8489+ CPUs with MKL showed
better time results than the NVIDIA A100 GPU with cuBLAS,
though there was a greater loss of accuracy. However, unlike
the benchmark presented here, Torres et al. did not investigate
non-square matrices, and did not explore changes to this
behaviour as problem size is varied.

Castelló et al. conducted a performance comparison between
different GEMM algorithms based on the GEMM implemen-
tation in the BLIS library [26]. These algorithms place each
of the operation’s matrices into different levels of the memory
hierarchy. Analyzing square and non-square GEMM problems,
the authors found that some algorithms favored the square
problem whilst others the non-square problems; highlighting
the importance of using non-square GEMM problems when
evaluating BLAS library performance. However, the non-
square problems evaluated were limited to those with two
dimensions fixed to 3000 or 100 in different combinations.

In view of related work in the literature; there remains a
need for tools to determine, for a given heterogeneous system,
at what shape and size a BLAS kernel is better handled by
the GPU than the CPU. Hence, the work presented here.

III. BENCHMARK OVERVIEW

For this work we develop a new benchmark: the GPU
BLAS Offload Benchmark, or GPU-BLOB [27]. The main
design goals of GPU-BLOB are portability, such that it can
be run easily on a wide range of systems; diversity, such

1475

TABLE I
SGEMM RUN-TIMES (100 ITERATIONS) FOR DIFFERENT DEVICES AND BLAS LIBRARIES, VARYING THE VALUES OF Alpha (α) AND Beta (β). ALL

RUN-TIMES ARE AN AVERAGE OF THREE RUNS. CPU RUNS ARE SINGLE THREADED.

BLAS Library Device M N K α = 1 β = 0 α = 4 β = 0 α = 1 β = 2

cuBLAS 24.3 NVIDIA® A100 40GB SXM 8,192 8,192 4 39.53 ms 39.23 ms 62.02 ms
rocBLAS 5.2.3 AMD® MI250X 8,192 8,192 4 188.64 ms 188.35 ms 210.46 ms
oneMKL 2024.1.0 Intel® Data Center GPU Max 1550 8,192 8,192 4 33.34 ms 32.99 ms 57.78 ms
oneMKL 2024.1.0 Intel Xeon Platinum 8468 8,192 8,192 4 2,307.38 ms 2,350.17 ms 3,137.10 ms
AOCL 4.2 AMD EPYC 7543P 8,192 8,192 4 6,833.02 ms 6,756.72 ms 9,175.32 ms

that it collects a large amount of performance data for a
wide range of problem types; and completeness, such that
it produces a GPU offload threshold for each BLAS kernel
and problem type pairing. For each problem type (outlined
in Section III-C), every possible combination of the given
BLAS kernel’s dimensions that adhere to the problem type’s
definition is executed iteratively. This allows GPU-BLOB to
systematically measure the performance of all problem sizes
between an upper and lower limit and accurately determine the
offload threshold. These upper and lower limits are controlled
through minimum and maximum dimension values provided
by the user through the runtime arguments s and d respectively.

Whilst GPU-BLOB is typically built with both a CPU and
GPU BLAS library, where each problem type and size is
executed on the CPU then the GPU in an interleaved manner,
it can also be built with either a CPU or a GPU library
exclusively. This allows for individual component performance
analysis, and is useful in situations where the two targeted
BLAS libraries are incompatible or require different compilers.

A. BLAS Kernels

Whilst GPU-BLOB can support all BLAS kernels, this
study focuses on GEMM and GEMV given that they form the
basis of many other BLAS kernels and applications. For both,
single and double-precision variants have been supported.
All matrices and vectors are stored in column major format,
with no transpositions performed. This gives GEMM leading
dimensions of lda=M , ldb=K, and ldc=M , and GEMV vector
increment values of incx=1 and incy=1.

Although for a study such as this one that assesses when
offloading BLAS to a GPU is worthwhile, comparing the
elapsed time would have been sufficient, GPU-BLOB calcu-
lates the GFLOP/s achieved by the CPU and GPU to allow it
to also be used as a performance benchmark. As such, it is
important to calculate the GFLOP/s accurately. For a GEMM
of C = Alpha · A · B + Beta · C, calculating the number of
FLOPs can be broken into the following steps:

• A·B = MxNxK Fused Multiply-Adds = 2MNK FLOPs
• Alpha ·AB = MxN Multiplications = MN FLOPs
• Beta · C = MxN Multiplications = MN FLOPs
• AB + C = MxN Additions = MN FLOPs

Giving a total FLOPs count of 2MNK + 3MN . A similar
situation for a GEMV of y = Alpha · A · x + Beta · y
yields a total FLOPs count of 2MN + 3M . Although the
number of FLOPs performed for GEMM and GEMV can be

approximated to 2MNK and 2MN [20], [28] so long as
dimensions K or N are sufficiently large respectively, we do
not make this approximation due to some of the evaluated
problems not meeting this requirement.

When Alpha=1 and Beta=0, there are certain optimizations
that could be made to the GEMM FLOPs calculation. When
Beta=0, Beta · C and AB + C can be omitted. Likewise,
when Alpha=1 there is no need to perform Alpha · AB.
Whilst there is some evidence to suggest these optimizations
are made by some libraries [29], there is no concrete, recent
evidence to support this. Hence, to see if these optimizations
are commonly made in modern BLAS libraries we evaluated
the SGEMM runtime for five different libraries. Table I shows
the results of these SGEMM runs. First, with Alpha=1 we
see that the value of Beta can make a significant difference
to the runtime of GEMM. When Beta=0, there is a 1.2x
to 1.7x speedup compared to when Beta=2. This suggests
that Beta · C and AB + C are not performed. Second, when
Beta=0, the value of Alpha makes little difference to the total
SGEMM runtime, suggesting no optimizations are made based
on its value. With an average runtime difference across devices
and BLAS libraries of 1.0% when Alpha=1 and Alpha=4, we
can safely attribute this variance to noise.

Based on these results, we see that the Beta=0 optimization
does seem to be implemented in modern BLAS libraries. As
such, GPU-BLOB calculates FLOPs for GEMM and GEMV
as 2MNK+MN+qMN and 2MN+M+qM respectively;
where q=0 if Beta=0, or q=2 otherwise. When calculating
GFLOP/s, the total execution time is measured as the time
taken to perform i iterations of the given BLAS kernel and
problem type to completion, where i is an argument passed
in at runtime. GPU time measurements also include the time
taken to move data to and from the GPU.

B. BLAS Library Support

In order to make GPU-BLOB as portable as possible, all
major vendor and open-source BLAS libraries are supported.
To improve portability further, there is native support for
six C++ compilers, motivated by their widespread use or
requirement to use them when compiling GPU-BLOB with
one of the supported BLAS libraries. These compilers are:
GNU g++, LLVM clang++, Intel icpx, Arm armclang++,
NVIDIA nvc++, and AMD hipcc.

For both CPU and GPU library implementations, the input
data structures are initialised using rand after calling srand

1476

with a constant seed. Using a constant seed ensures that, during
each individual execution of GPU-BLOB, the CPU and GPU
data structures of the same dimensions are always initialized
with identical contents. This allows a simple checksum to be
calculated to validate that the CPU and GPU BLAS libraries
are producing the same solutions for any problem type or
size. To account for any floating-point rounding error, a 0.1%
margin of error is permitted in the checksum. The output data
structure is initialised to 0 throughout.

1) CPU BLAS Libraries:
GPU-BLOB currently supports the following CPU libraries:

• AMD Optimized Compute Libraries (AOCL)
• Arm Performance Libraries (ArmPL)
• NVIDIA Performance Libraries (NVPL)
• OpenBLAS
• Intel oneAPI Math Kernel Library (oneMKL)

Each library has been implemented with the common Cblas
interface, with the exception of AOCL, which, given it is based
on BLIS [30], uses the non-standard BLIS interface.

All data structures are created using malloc, excepting
oneMKL which uses Intel’s bespoke mkl_malloc function
with an alignment value of 64 in order to achieve better
performance [31]. To ensure the compiler does not optimize
away any library calls where the output data structures are
not used after-the-fact, an external function with empty body,
consume(void* a, void* b, void* c), is defined
and built at compile time as a separate shared object.

2) GPU BLAS Libraries:
The GPU BLAS libraries that are currently supported are:

• Intel oneAPI Math Kernel Library (oneMKL)
• NVIDIA cuBLAS
• AMD rocBLAS

For each GPU library, there are three different implemen-
tations: Transfer-Once, Transfer-Always, and Unified Shared
Memory (USM). Transfer-Once attempts to characterise situ-
ations where there is high data re-use, copying the input data
structures (matrices A, B, and C for GEMM; matrix A and
vectors x and y for GEMV) to the GPU before all i iterations
of the BLAS kernel, then copying the output data structure
(matrix C for GEMM; vector y for GEMV) back from the
GPU to the host after all i iterations have been performed.
Transfer-Always is the opposite: the appropriate data structures
are transferred to and from the GPU before and after each
and every iteration, mimicking an application with accelerated
BLAS interleaved with some other host-based compute phase.

For the cuBLAS and rocBLAS implementations of these
offload types, cudaMallocHost and hipHostMalloc
are used to take advantage of pinned memory and op-
timize data transfers to the GPU [32]. For oneMKL,
sycl::malloc_host is used for non-USM implementa-
tions as it has the same properties as cudaHostAlloc.
Whilst this is technically a USM construct that establishes
a device accessible pointer on the host, we manually copy the
data to and from the device via sycl::queue::memcpy
and force queue synchronisation before proceeding fur-

Fig. 1. GPU-BLOB non-square GEMM and GEMV problems.

ther to ensure intended behavior. All USM implementa-
tions operate in a similar manner to Transfer-Once, but in-
stead use cudaMallocManaged, hipMallocManaged,
or sycl::malloc_shared directives and remove the need
for manual data movement.

C. Problem Types

In this work, we define a problem type as the fixed relation-
ship between each of a BLAS kernel’s specific dimensions. For
example, a square problem type for GEMM would have the
problem type definition of M=N=K. Whilst we commonly
see only square GEMM and GEMV problems evaluated in
the literature [18], [19], [23]–[25], when it comes to real
applications and problems such as K-means clustering [33],
LU factorization [34], and neural networks [35], [36], matrices
of all shapes and sizes are used. Therefore, alongside the
square problem type we have defined a varied set of non-
square problems for GEMM and GEMV where (at least) one
of the input matrices is rectangular. This provides a larger
coverage of potential application domains and the rectangular
shapes will help to highlight any irregular performance trends
present within a BLAS library, especially in cases where one
or more of the dimensions is very small or very large in
comparison to the others. Fig. 1 provides an overview of the
non-square GEMM and GEMV problem types evaluated by
GPU-BLOB.

D. GPU Offload Threshold

The GPU offload threshold pinpoints the minimum dimen-
sion values for a given problem type and iteration count at
which it becomes worthwhile to offload the BLAS compu-
tation to the GPU. This includes any overhead incurred by
moving data to and from the GPU. For problem sizes greater
than or equal to the identified offload threshold, the GPU is
ensured to perform better than the CPU. By monitoring the
performance of each problem size, GPU-BLOB is able to
detect when the GPU begins to outperform the CPU for each
data transfer type. To account for any momentary drops in
GPU performance that are due to abnormal system behaviour

1477

TABLE II
HARDWARE DETAILS FOR EACH NODE OF THE SYSTEMS USED IN THIS STUDY, ALONG WITH THE COMPILER AND BLAS LIBRARIES USED.

System CPU GPU Compiler CPU Library GPU Library
DAWN 2x Intel Xeon Platinum 8468 4x Intel Data Center GPU Max 1550 icpx 2024.1.0 OneMKL 2024.1 OneMKL 2024.1
LUMI 1x AMD EPYC 7A53 4x AMD MI250X g++ 7.5/hipcc 5.2.3 AOCL 4.1 rocBLAS 5.2.3

Isambard-AI 4x NVIDIA Grace-Hopper GH200 Superchip nvc++ 24.5 NVPL 24.7 cuBLAS 24.5

or noise, the previous and current problem size’s performance
is taken into consideration. GPU-BLOB then monitors the
performance for all subsequent problem sizes to ensure that
the correct threshold has been identified.

The offload threshold provides a basis to help character-
ize which applications may benefit from offloading BLAS
operations to the GPU on a specific system. By relating an
application’s matrix / vector shape and size to those evaluated
by GPU-BLOB, configuring the iteration count to approximate
the number of BLAS kernel computations, and relating the
data movement characteristics to one of the data transfer types,
a user can assess whether it would be worth porting their
application to use a GPU for BLAS computations. Knowing
this in advance can save the considerable amount of time and
effort that porting an application requires in cases where a
GPU provides no benefit. Throughout this study, we present
an offload threshold as {m, n, k} for GEMM and {m, n} for
GEMV; where m, n, and k are integers representing the value
of dimensions M , N , and K respectively.

IV. EVALUATION

For this study, we ran GPU-BLOB across three systems: The
University of Cambridge’s DAWN [37], EuroHPC’s LUMI
[38], and The University of Bristol’s Isambard-AI3 [39].
Table II gives an overview of the node configuration,
compiler(s) used, and the BLAS libraries targeted for
each system. All builds of GPU-BLOB used optimization
flags -Ofast and -march=native and each run used
environment variables OMP_PROC_BIND=close (spread
on LUMI due to multiple NUMA domains in a single
CPU socket) and OMP_PLACES=cores. DAWN also
used the environment variable OMP_NUM_THREADS=48,
Isambard-AI OMP_NUM_THREADS=72, and LUMI
BLIS_NUM_THREADS=564; which ensured that on each
system a full CPU socket was targeted5. Additionally, only
a single GPU device was targeted on each system (on
Isambard-AI this culminates in a single, whole, GH200
Superchip being used). Not using all available resources
in each node is motivated by individual BLAS operations
typically not being solved across sockets or devices, giving
us a better representation of how BLAS is computed in real
applications.

3Results for Isambard-AI were collected through an early access program
and before full system acceptance.

4Despite differing recommendations from the AOCL user guide [30], we
found these variables yielded the best performance on LUMI.

5Although each node of LUMI contains 64 physical cores, currently only
56 are available for use [40].

When targeting the GPU on DAWN and LUMI, special con-
siderations were taken into account to ensure maximum per-
formance. On DAWN, although each of the Intel 1550 GPU’s
contains two tiles [41], we target only one by enabling Explicit
Scaling, as recommended, to avoid cross-tile communication
costs [42]. On LUMI, each of the MI250X’s is seen in software
as two separate devices [43]. Again, GPU-BLOB only targets
a single die and #SBATCH --gpu-bind=closest was
used to pin the process to the NUMA node the target GPU
is connected to, ensuring ideal host-device communication.
To ensure USM can operate properly on LUMI, we use
the HSA_XNACK=1 environment variable to allow the GPU
to signal page faults to the host. Not doing so forces all
device accesses to host-resident memory to cross the host-
device interconnect as no page migration occurs. Not using
HSA_XNACK=1 has been seen to cause a data-transfer perfor-
mance penalty of up to 40x on an AMD MI100 [44].

Throughout this section, all runs, except those on LUMI,
collect CPU and GPU data in an interleaved manner (GPU-
BLOB’s default execution style). This exception is due to the
rocBLAS implementation of GPU-BLOB only being compat-
ible with the hipcc compiler, as part of the library requires
HIP constructs. When AOCL is used with this compiler, the
CPU performance is extremely poor despite both being AMD
products. Whilst surprising, AMD does not claim AOCL to be
compatible with hipcc [30], and so GNU g++ 7.5 was used to
compile LUMI’s CPU version of GPU-BLOB instead.

On each system, GPU-BLOB uses a dimension size range of
s=1 and d=4, 096, ensuring a wide range of problem sizes are
run for each BLAS kernel and problem type. Additionally, five
iteration counts of varying sizes are used to mimic a concise
range of data re-use patterns: 1, 8, 32, 64, 128.

A. Square GEMM

Table III shows that each system presents its own unique
offload threshold characteristics for square GEMMs. Whilst
DAWN sees very similar, moderate offload threshold values
for all transfer types at one iteration, looking at Fig. 2 we can
see a sharp CPU performance drop at {629, 629, 629} that
is gradually recovered from as the problem size increases. A
similar performance drop also occurs for DGEMM. Without
this drop, the one iteration square GEMM offload thresholds
on DAWN would have likely been much higher; showcasing
how large an impact BLAS library heuristics can have on
performance. As the iteration count increases, this CPU per-
formance drop has much less impact on the offload threshold
due to much steeper Transfer-Once and USM performance
curves. This leads to the marginally lower offload thresholds

1478

TABLE III
SQUARE SGEMM:DGEMM (M=N=K) GPU OFFLOAD THRESHOLDS FOR EACH DATA TRANSFER TYPE AND HPC SYSTEM.

Iterations DAWN LUMI Isambard-AI
Once Always USM Once Always USM Once Always USM

1 629 : 582 629 : 582 657 : 626 502 : 237 441 : 234 — : — 26 : 26 26 : 26 196 : 411
8 572 : 485 629 : 603 596 : 529 153 : 125 512 : 256 606 : 539 26 : 26 26 : 26 26 : 26
32 514 : 377 1018 : 833 509 : 389 2 : 2 512 : 461 442 : 256 26 : 26 26 : 26 26 : 26
64 514 : 361 1153 : 1153 465 : 436 2 : 2 589 : 961 381 : 239 26 : 26 26 : 26 26 : 26

128 514 : 361 1265 : 1153 412 : 377 2 : 2 512 : 1009 189 : 153 26 : 26 26 : 26 26 : 26

Fig. 2. Square SGEMM performance (1 iteration) on DAWN.

(a) 1 Iteration (b) 8 Iterations

Fig. 3. Square SGEMM performance on Isambard-AI for different
CPU libraries and configurations.

for SGEMM and substantially lower for DGEMM seen in
Table III. For Transfer-Always, we see the offload threshold
increase twofold by 128 iterations, which we expect as data
is transferred to and from the GPU every iteration. Thus,
the more iterations performed, the greater the GPU offload
overhead. The same behaviour for Transfer-Always can also
be seen on LUMI, although to a lesser extent for SGEMM.

Compared to DAWN, LUMI has two clear differences in
its offload threshold profile. The first is the incredibly low
Transfer-Once offload threshold; reaching {153, 153, 153} by
eight iterations and stabilising at {2,2,2} from 32 iterations on-
wards. A contributing factor to this is the use of different CPU
BLAS libraries, which, will inherently have different perfor-
mance profiles and heuristics. Another is that each CPU socket
in DAWN is considerably more powerful that those in LUMI:
1,536 FP64 FLOPs/cycle [45] vs. 896 FP64 FLOPs/cycle [43]
respectively. This means DAWN has a smaller difference
in CPU-GPU performance, and thus achieves larger offload
thresholds. The other key difference between the systems is
the USM offload thresholds relative to Transfer-Once. Whilst
on DAWN, USM is on-par with Transfer-Once for all iteration
counts, on LUMI, USM consistently has much higher offload
thresholds. Given that data is transferred to and from the GPU

at the same rate, this poor USM performance must be a result
of the vendor’s page migration heuristics.

Given its very capable CPU, with a theoretical peak of 1,152
FP64 FLOPs/cycle [46], Isambard-AI demonstrates that the
SoC-based design of the GH200 Superchip almost entirely
amortises the data transfer overhead of using a GPU for square
GEMM; with an offload threshold of {26, 26, 26} across
almost all iterations and transfer types. Similar to LUMI, USM
performance lags behind the Transfer-Once performance at
one iteration, but this gap quickly closes as the iteration count
increases. However, if we compare these 72-thread NVPL
results with ArmPL 24.04 or single-threaded NVPL results,
as seen in Fig. 3 for the first 192 problem sizes, it is evident
that library heuristics are one cause of the extremely low
offload thresholds seen on Isambard-AI. When one iteration is
performed, both ArmPL and single-threaded NVPL perform
considerably better than NVPL 72-threads for these small
problem sizes. This indicates that NVPL seemingly attempts to
use all available threads for every problem size, whilst ArmPL
scales the thread count with the problem size to optimize
performance. As the iteration count increases to eight, the
same behaviour is seen, however, the additional work done
allows the GPU to showcase its immense raw performance
advantage and decrease the offload threshold.

B. Square GEMV

Given a much higher data-to-compute ratio compared to
square GEMMs, it is often thought that offloading GEMV
computations to the GPU is not worthwhile. At one itera-
tion, and all iterations for Transfer-Always (mimicking an
application with low data re-use), we can see from Table IV
that this is true for all systems as no offload thresholds are
produced. However, the DGEMV performance curves seen
in Fig. 4 show that on DAWN and Isambard-AI there is a
considerable range of problem sizes where the GPU does
outperform the CPU due to a CPU performance drop. This is
also true for SGEMV on these systems at one iteration, where
BLAS library heuristics are likely the cause of the stepped
performance curves. Conversely, on LUMI we see from Fig. 4
that the CPU always outperforms the GPU at one iteration by
a healthy (but narrowing) margin.

As the iteration count increases, Table IV shows that each
system exhibits a unique offload threshold profile. Isambard-
AI exhibits a very static offload threshold for Transfer-Once
and USM, regardless of the iteration count. Analysis of Fig. 5

1479

TABLE IV
SQUARE SGEMV:DGEMV (M=N) GPU OFFLOAD THRESHOLDS FOR EACH DATA TRANSFER TYPE AND HPC SYSTEM.

Iterations DAWN LUMI Isambard-AI
Once Always USM Once Always USM Once Always USM

1 — : — — : — — : — — : — — : — — : — — : — — : — — : —
8 4089 : 3840 — : — — : — 952 : 1197 — : — — : — 256 : 256 — : — — : —

32 4081 : 3065 — : — 4089 : 3521 569 : 617 — : — 2129 : 1885 256 : 249 — : — 256 : 255
64 3953 : 3065 — : — 4081 : 3361 529 : 601 — : — 1219 : 1205 256 : 249 — : — 256 : 251
128 4081 : 3321 — : — 4089 : 3481 465 : 545 — : — 754 : 909 256 : 249 — : — 256 : 249

(a) DAWN

(b) LUMI

(c) Isambard-AI

Fig. 4. Square DGEMV performance (1 iteration).

shows Isambard-AI to have very steep Transfer-Once and
USM performance curves from fairly small problem sizes;
a trend that is apparent from eight iterations onwards for
SGEMV and DGEMV. Despite the visible CPU performance
drop at approximately {256, 256} (which is consistent for all
iteration counts), it is likely that the GPU would begin to
outperform the CPU at close to this point anyway. In contrast,
Fig. 5 shows DAWN to have much shallower and slowly
increasing Transfer-Once and USM performance curves. Their
small gradient, coupled with a better performing (and ma-
ture) CPU BLAS library, leads to the consistently high and
static offload thresholds seen in Table IV for DAWN6. Thus,
it is evident that the GH200’s low CPU-GPU interconnect
latency allows Isambard-AI’s GPU to perform much better on

6DGEMV sees lower offload thresholds than SGEMV due to a steady,
shallow, CPU performance decrease that starts between M=N=3000 and
M=N=3500 depending on iteration count.

(a) Isambard-AI (b) DAWN

Fig. 5. Square SGEMV performance (128 iterations) on Isambard-AI
and DAWN.

memory-bound kernels, such as GEMV, compared to non-SoC
based heterogeneous systems like DAWN.

Akin to the trends seen in Section IV-A, LUMI’s GEMV
offload thresholds steadily decrease as the iteration count
increases; making it worthwhile to use the GPU at reduc-
ing problem sizes as data re-use increases. Given GEMV’s
high data-to-compute ratio, we would typically expect better
CPU performance for all but the largest of problem sizes.
Additionally, examining LUMI’s GEMV performance across
all benchmark runs we see that the CPU performance curve
remains identical regardless of the number of iterations per-
formed. Using perf stat, we discover that an SGEMV of
M=N=2048 run for 1000 iterations uses only 0.89 CPUs. In
comparison, an SGEMM of M=N=K=2048 run for 1000 it-
erations uses 50.2 CPUs. Hence, the poor GEMV performance
achieved on LUMI is due to AOCL not parallelizing GEMV
operations. Switching to OpenBLAS version 0.3.24 and using
OMP NUM THREADS=56, we see significantly improved
square GEMV performance across all iteration counts. Fig. 6
shows a comparison of AOCL and OpenBLAS performance
for 128 iterations of square DGEMV on LUMI, where the
performance difference is clear. Despite poorer small problem
size performance, OpenBLAS produces no offload thresholds
for any data transfer type across all iteration counts; solidifying
how crucial BLAS library choice can be to performance and
that vendor libraries are not always the best choice.

C. Non-Square GEMM

Across all eight non-square GEMM problem types evalu-
ated, there are no consistent themes on all three systems, ex-
cept that M=N , K=16M produces an SGEMM and DGEMM
offload threshold on all systems at one iteration. On DAWN

1480

Fig. 6. AOCL (v4.1) vs. OpenBLAS (v0.3.24) square DGEMV CPU
performance (128 iterations) on LUMI.

TABLE V
THE ITERATION COUNT AT WHICH EACH SGEMM:DGEMM

NON-SQUARE PROBLEM TYPE FIRST YIELDS AN OFFLOAD THRESHOLD.

Problem Type DAWN LUMI Isambard-AI
M=N K=16M 1 : 1 1 : 1 1 : 1
M=N=32 K ≥ 1 — : — 8 : — 1 : 1
K=N M=16K 1 : 1 8 : 8 1 : 1
K=N=32 M ≥ 1 — : — 32 : 8 1 : 1
M=K N=16K 1 : 1 1 : 8 1 : 1
M=K=32 N ≥ 1 — : — 32 : 32 1 : 1
M=N K=32 8 : 8 32 : 32 8 : 8
M=N M=16K 1 : 1 8 : 8 1 : 1

and LUMI at iteration counts greater than one, Transfer-
Always was unable to produce an offload threshold for any
problem type; whilst on Isambard-AI all transfer methods
produced very similar offload thresholds. As such, for the
remainder of this section we focus on Transfer-Once offload
thresholds, given USM also transfers data once per problem
size but can lag behind Transfer-Once’s performance. Table V
shows at which of the tested iteration counts did each non-
square problem first produce an offload threshold.

On DAWN, we see that problem types where two of the
dimensions are fixed to a (relatively) small value never yield
an offload threshold. This is likely due to their much lower
Arithmetic Intensity (FLOPs

Bytes Used) compared to the other non-
square or square problem types, making data movement to the
GPU a performance bottleneck. All other non-square problem
types on DAWN yield (at varying sizes) an offload threshold at
one iteration; excepting M=N , K=32 which also has a smaller
Arithmetic Intensity due to its small fixed K dimension.

Analyzing non-square GEMM on LUMI, we see a large
variation in the iteration count at which each non-square
problem generates an offload threshold; with inconsistency
also present between SGEMM and DGEMM runs of the same
problem type. The most notable cases are M=N=32, K ≥ 1
where DGEMM never produces an offload threshold but
SGEMM does at an iteration count between one and eight;
and K=N=32, M ≥ 1 where SGEMM produces an offload
threshold between eight and 32 iterations whilst DGEMM
does so between one and eight. For the former problem
type, we see SGEMM exhibit a large Transfer-Once GPU
performance jump at {32, 32, 2560} for all iteration counts,
whereas for DGEMM the GPU performance flat-lines at a
low GFLOP/s value very early on. Hence, on LUMI, we

TABLE VI
THE ITERATION COUNT AT WHICH EACH SGEMV:DGEMV

NON-SQUARE PROBLEM TYPE FIRST YIELDS AN OFFLOAD THRESHOLD.

Problem Type DAWN LUMI Isambard-AI
M=16N — : — 8 : 8 1 : 1
N=32 M ≥ 1 — : — 64 : 32 1 : 1
N=16M — : — — : — 1 : 1
M=32 N ≥ 1 — : — — : — 1 : 1

cannot conclude (as we did for DAWN) that a lower Arithmetic
Intensity equates to longer-lived or permanent CPU dominance
due to irregular BLAS library heuristics. Rather, it seems
that each individual problem type will non-deterministically
perform better on the CPU or GPU.

Finally, on Isambard-AI it is again clear how the SoC
design’s reduced CPU-GPU latency facilitates improved GPU
performance compared to the other systems. With all problem
types yielding very low offload thresholds for all transfer types
and iteration counts, there are few instances where offloading
GEMM computations to the GPU is not worthwhile. Despite
M=N , K=32 not producing an offload threshold until eight
iterations, analysis of the one iteration performance graph
shows behaviour similar to that seen in Fig. 4, whereby the
quickly plateauing GPU performance and slowly increasing
CPU performance leads to a large portion of small to mid-
range problem sizes that perform better on the GPU.

D. Non-Square GEMV

Like the results discussed in Section IV-C, Table VI shows
non-square GEMV problems to have system-specific patterns
of which iteration count the first offload threshold is present.
On DAWN, it is clear from the results shown and from
performance graph analysis that non-square GEMV problems
are never worth offloading to the GPU. Despite this, it is worth
noting that for N=16M and occasionally M=16N , the top
5%-10% of problem sizes saw approximately equivalent per-
formance on CPU and GPU Transfer-Once / USM; SGEMV
and DGEMV. Though, akin to that seen in Fig. 4, this is due
to a sudden drop in CPU performance.

For LUMI, we see that non-square problems where the N
dimension is considerably larger than M never yield an offload
threshold. Analysis of the performance graphs confirms a com-
manding CPU performance lead over all GPU transfer types
and iteration counts. Conversely, the M=16N problem sees a
Transfer-Once offload threshold of {2464, 146} for SGEMV
and {1760, 110} for DGEMV at eight iterations that decreases
marginally as the iteration count increases. From 64 iterations,
a USM offload threshold is produced, but is always far larger
than Transfer-Once. Finally, for the N=32, M ≥ 1 problem,
we never see a Transfer-Always or USM offload threshold,
with the Transfer-Once performance only overtaking the CPU
at 32 and 64 iterations for DGEMV and SGEMV respectively.
Starting at {3000, 32} and {3706, 32}, the DGEMV and
SGEMV offload thresholds steadily decrease to {2155, 32}
and {3200, 32} respectively by 128 iterations. Hence, on

1481

LUMI using AOCL and rocBLAS, even with high amounts of
data re-use only specific, moderate to large, non-square GEMV
problem types benefit from GPU acceleration.

Despite Table VI aligning Isambard-AI’s results with those
seen before, where only the smallest of problem sizes are
run best on the CPU, NVPL heuristics seem somewhat to
blame for this. For problem types with one dimension fixed to
the value of 32, the CPU performance is comfortably ahead
of GPU performance until {2048, 32} or {32, 2048} where
(again) we see a large performance drop off. Whilst this
is present at all iteration counts, it is only at one iteration
where it is directly to blame for the production of an offload
threshold. For all other iterations, an early CPU performance
plateau and steadily rising Transfer-Once performance makes
it insignificant to the value of the offload threshold. Whilst all
three transfer methods yield an offload threshold at all iteration
counts for all non-square GEMV problems, for Transfer-
Always this is aided by the CPU performance drop for these
problem types. Additionally, USM is seen to under-perform
Transfer-Once initially by 2x at one iteration, narrowing to
almost identical performance by 64 iterations. But, again, this
is only relevant for these specific problem types given that
M=16N and N=16M have such small offload thresholds for
all iteration counts and transfer types throughout.

V. CONCLUSIONS & FUTURE WORK

To conclude, using GPU-BLOB and the GPU offload thresh-
old we have shown across three heterogeneous HPC systems
that there are very few GEMM and GEMV problems that
consistently benefit from GPU acceleration at a particular size.
Whilst Isambard-AI’s low CPU-GPU interconnect latency was
able to (almost) completely amortise the GPU offload penalty
in most cases, for non-SoC based systems, the results were
not so simple.

Unsurprisingly, moderate or larger square GEMM problems
do benefit from GPU acceleration on DAWN, but, we have
seen on LUMI that when data re-use is high it can be
beneficial to always use the GPU. When data re-use is low, the
square GEMM offload threshold increases drastically with the
iteration count on both systems. For square GEMV, we saw on
DAWN that only very large problem sizes would benefit from a
GPU. Whereas on LUMI, the square GEMV offload threshold
was surprisingly low due to a lack of multi-threading in AOCL.
Looking at non-square problems on DAWN, many GEMMs
required a reasonably large problem size or more than one
iteration to yield a Transfer-Once offload threshold (if at all),
and all non-square GEMV problems failed to ever perform bet-
ter on the GPU. On LUMI, most non-square GEMMs yielded
an offload threshold, but at a higher iteration count. Whether a
non-square GEMV yielded an offload threshold depended on
the ratio between M and N and a high iteration count. The one
consistency across all systems (including Isambard-AI) was
square GEMV problems with low data re-use (i.e., Transfer-
Always) never producing an offload threshold, regardless of
the iteration count.

Hence, for non-SoC systems, whether the common mantra
of “performing GEMM on GPU and GEMV on CPU” holds
true depends entirely on multiple factors: from the hardware
used, where a system may have a lower powered CPU to
feed high performing GPUs; to BLAS library choice, where
one library’s heuristics may cause sudden performance drops,
or another having sub-optimal multi-threading capabilities; to
the shape of the specific problem, where a lower Arithmetic
Intensity often leads to poorer GPU performance, but not
always; to the amount of data re-use, where often low re-use
causes a significant increase in the GPU offload threshold; to
the data transfer methodology used, where we often saw the
USM performance lag behind the Transfer-Once performance
on Isambard-AI and LUMI. However, with new SoC style
devices such as the NVIDIA GH200 found inside Isambard-
AI, our GEMV-based mantra must change; with it being very
rare to encounter a GEMM or GEMV problem that would not
benefit from GPU acceleration.

Whilst the GPU offload threshold introduced in this study
provides a useful means of determining whether a given BLAS
operation could benefit from GPU acceleration, it was shown
to have some limitations. First, as we saw in Fig. 4 the
absence of an offload threshold does not equate to the CPU
outperforming the GPU for all problem sizes. Second, the
offload threshold alone does not indicate by how much the
GPU outperforms the CPU. Hence, generating performance
graphs is likely required to accurately determine whether a
BLAS-based application would benefit from GPU accelera-
tion, and whether enough performance can be gained for the
code porting effort to be worthwhile.

Building on this work, we aim to analyse the impact of CPU
matrix engines on the offload threshold. Given the different
implementations from a variety of vendors, assessing their
impact on GEMM and GEMV kernels on heterogeneous nodes
is of particular interest. Given their prevalence in AI and
mixed-precision computations, we are also looking to support
half-precision kernels; FP16 and Bfloat16. Not all BLAS
libraries support HGEMM, and some that do are not intuitive
to use, so were not included in this initial study. oneMKL’s
C interface, for example, does have HGEMM support, but its
data-type MKL_F16 is defined internally as an unsigned
short [47]. With no conversion functions (as of v2024.1.0)
to or from MKL_F16, akin to those found in the CUDA API,
it makes targeting half-precision kernels complex.

Investigation of the performance characteristics of batched
kernels would expand the range of applications that GPU-
BLOB can evaluate. Given that batched kernels can greatly
improve GEMM performance for small problem sizes if many
can be computed concurrently [48], [49], we wish to quantify
the effect that this has on the offload threshold.

Finally, we are currently working to support sparse BLAS
computations in GPU-BLOB. Again, this would broaden the
scope of applications we can evaluate, but, due to the large
variety of sparse problem types, narrowing this down into a
core subset that is representative of a wide array of applications
is non-trivial.

1482

ACKNOWLEDGMENTS

This work was performed using resources provided by
the Cambridge Service for Data Driven Discovery (CSD3)
operated by the University of Cambridge Research Computing
Service (www.csd3.cam.ac.uk), provided by Dell EMC and
Intel using Tier-2 funding from the Engineering and Physical
Sciences Research Council (capital grant EP/T022159/1), and
DiRAC funding from the Science and Technology Facilities
Council (www.dirac.ac.uk).

This work used the Isambard-AI UK National AI Ser-
vice operated by The University of Bristol, and funded by
STFC/UKRI and DSIT.

We acknowledge the EuroHPC Joint Undertaking for award-
ing this project access to the EuroHPC supercomputer LUMI,
hosted by CSC (Finland) and the LUMI consortium through
a EuroHPC Regular Access call.

The University of Bristol is an Intel oneAPI Center of
Excellence, which helped support this work.

REFERENCES

[1] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
Linear Algebra Subprograms for Fortran Usage,” ACM Trans. Math.
Softw., vol. 5, p. 308–323, sep 1979.

[2] J. J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An
extended set of FORTRAN basic linear algebra subprograms,” ACM
Trans. Math. Softw., vol. 14, p. 1–17, mar 1988.

[3] J. J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of
level 3 basic linear algebra subprograms,” ACM Trans. Math. Softw.,
vol. 16, p. 1–17, mar 1990.

[4] H. Waugh and S. McIntosh-Smith, “On the Use of BLAS Libraries in
Modern Scientific Codes at Scale,” in Driving Scientific and Engineering
Discoveries Through the Convergence of HPC, Big Data and AI, pp. 67–
79, Springer International Publishing, 2020.

[5] J. Domke, E. Vatai, A. Drozd, P. ChenT, Y. Oyama, L. Zhang, S. Salaria,
D. Mukunoki, A. Podobas, M. WahibT, and S. Matsuoka, “Matrix
Engines for High Performance Computing: A Paragon of Performance
or Grasping at Straws?,” in 2021 IEEE International Parallel and
Distributed Processing Symposium (IPDPS), pp. 1056–1065, 2021.

[6] T. Deakin, J. Cownie, W.-C. Lin, and S. McIntosh-Smith, “Heteroge-
neous Programming for the Homogeneous Majority,” in International
Workshop on Performance, Portability and Productivity in HPC held in
conjunction with Supercomputing (P3HPC), IEEE, 2022.

[7] Top500, “LIST STATISTICS.” https://www.top500.org/statistics/list/,
2024. Accessed: 18th July 2024.

[8] P. Warden, “Why GEMM is at the heart of
deep learning.” https://petewarden.com/2015/04/20/
why-gemm-is-at-the-heart-of-deep-learning/, April 2015. Accessed:
18th July 2024.

[9] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“NVIDIA Tensor Core Programmability, Performance & Precision,” in
2018 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 522–531, 2018.

[10] A. Wolf, “Architecting for Accelerators – In-
tel AMX and Intel XMX.” https://community.intel.
com/t5/Blogs/Tech-Innovation/Artificial-Intelligence-AI/
Architecting-for-Accelerators-Intel-AMX-and-Intel-XMX/post/
1481022, April 2023. Accessed: 18th July 2024.

[11] G. Schieffer, D. Medeiros, J. Faj, A. Marathe, and I. Peng, “Character-
izing the Performance, Power Efficiency, and Programmability of AMD
Matrix Cores,” in 2024 IEEE International Symposium on Performance
Analysis of Systems and Software, 2024.

[12] W. J. Starke, B. W. Thompto, J. A. Stuecheli, and J. E. Moreira, “IBM’s
POWER10 Processor,” IEEE Micro, vol. 41, no. 2, pp. 7–14, 2021.

[13] D. Johnson, “AMX: Apple Matrix coprocessor.” https://gist.github.com/
dougallj/7a75a3be1ec69ca550e7c36dc75e0d6f, September 2022. Ac-
cessed: 24th July 2024.

[14] F. Wilkinson and S. McIntosh-Smith, “An Initial Evaluation of Arm’s
Scalable Matrix Extension,” in 2022 IEEE/ACM International Workshop
on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS), pp. 135–140, 2022.

[15] NVIDIA, NVIDIA GH200 Grace Hopper Superchip Architecture.
NVIDIA, 2024.

[16] A. Smith, G. H. Loh, M. J. Schulte, M. Ignatowski, S. Naffziger,
M. Mantor, M. Fowler, N. Kalyanasundharam, V. Alla, N. Malaya, J. L.
Greathouse, E. Chapman, and R. Swaminathan, “Realizing the AMD
Exascale Heterogeneous Processor Vision,” in ISCA ’24: Proceedings
of the 51st Annual International Symposium on Computer Architecture,
Association for Computing Machinery, 2024.

[17] Innovative Computing Laboratory, “MAGMA.” https://icl.utk.edu/
magma/, 2024. Accessed: 23rd July 2024.

[18] R. Nath, S. Tomov, and J. Dongarra, “An Improved Magma Gemm For
Fermi Graphics Processing Units,” The International Journal of High
Performance Computing Applications, vol. 24, pp. 511–515, November
2010.

[19] S. Tomov, R. Nath, H. Ltaief, and J. Dongarra, “Dense linear algebra
solvers for multicore with GPU accelerators,” in 2010 IEEE Interna-
tional Symposium on Parallel & Distributed Processing, Workshops and
Phd Forum (IPDPSW), pp. 1–8, 2010.

[20] A. Abdelfattah, S. Tomov, and J. Dongarra, “Matrix multiplication on
batches of small matrices in half and half-complex precisions,” Journal
of Parallel and Distributed Computing, vol. 145, pp. 188–201, 2020.

[21] A. Chikin, J. N. Amaral, K. Ali, and E. Tiotto, “Toward an Analytical
Performance Model to Select between GPU and CPU Execution,” in
2019 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), pp. 353–362, 2019.

[22] O. Beaumont, L. Eyraud-Dubois, and A. Shilova, “Optimal GPU-CPU
Offloading Strategies for Deep Neural Network Training,” in Euro-Par
2020: Parallel Processing (M. Malawski and K. Rzadca, eds.), (Cham),
pp. 151–166, Springer International Publishing, 2020.

[23] F. Li, Y. Ye, X. Zhang, and Z. Tian, “CPU versus GPU: which
can perform matrix computation faster—performance comparison for
basic linear algebra subprograms,” Neural Computing and Applications,
vol. 31, pp. 4353–5365, 2019.

[24] F. Favaro, E. Dufrechou, J. Oliver, and P. Ezzatti, “Evaluation of dense
and sparse linear algebra kernels in FPGAs,” 04 2024.

[25] L. A. Torres, C. J. B. H, and Y. Denneulin, “Evaluation of computational
and energy performance in matrix multiplication algorithms on CPU and
GPU using MKL, cuBLAS and SYCL,” 2024.

[26] A. Castelló, E. S. Quintana-Ortı́, and F. D. Igual, “Anatomy of the blis
family of algorithms for matrix multiplication,” in 2022 30th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing (PDP), pp. 92–99, 2022.

[27] F. Wilkinson and A. Cockrean, “UoB-HPC/GPU-BLAS-Offload-
Benchmark: GPU-BLOB v1.0.0,” Sept. 2024.

[28] NVIDIA, “Matrix Multiplication Background User’s
Guide.” https://docs.nvidia.com/deeplearning/performance/
dl-performance-matrix-multiplication/index.html, Feb 2023. Accessed:
18th July 2024.

[29] Bishwa, “FLOPS calculation in cublasDgemm.” https://forums.
developer.nvidia.com/t/flops-calculation-in-cublasdgemm/24673/5,
October 2011. Accessed: 16th July 2024.

[30] Advanced Micro Devices, AOCL User Guide: Revision 4.2. Advanced
Micro Devices, feb 2024.

[31] Intel Corporation, “Data Alignment and Leading Dimen-
sions.” https://www.intel.com/content/www/us/en/docs/onemkl/
developer-guide-linux/2024-1/coding-techniques.html, 2024. Accessed:
19th July 2024.

[32] M. Harris, “How to Optimize Data Transfers in CUDA C/C++.” https:
//developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/, De-
cember 2012. Accessed: 19th July 2024.

[33] I. S. Dhillon, Y. Guan, and B. Kulis, “Kernel k-means: spectral clustering
and normalized cuts,” in Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD
’04, (New York, NY, USA), p. 551–556, Association for Computing
Machinery, 2004.

[34] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra, “Performance,
design, and autotuning of batched gemm for gpus,” in High Performance
Computing (J. M. Kunkel, P. Balaji, and J. Dongarra, eds.), (Cham),
pp. 21–38, Springer International Publishing, 2016.

1483

[35] S. Yin, Q. Wang, R. Hao, T. Zhou, S. Mei, and J. Liu, “Optimizing
irregular-shaped matrix-matrix multiplication on multi-core dsps,” in
2022 IEEE International Conference on Cluster Computing (CLUSTER),
(Los Alamitos, CA, USA), pp. 451–461, IEEE Computer Society, sep
2022.

[36] W. Yang, J. Fang, D. Dong, X. Su, and Z. Wang, “Libshalom: optimizing
small and irregular-shaped matrix multiplications on armv8 multi-cores,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC ’21, (New York, NY,
USA), Association for Computing Machinery, 2021.

[37] L. Walsh, “The rise of Dawn.” https://www.cam.ac.uk/stories/
ai-supercomputer-dawn-research-energy-medicine-climate, February
2024. Accessed: 25th July 2024.

[38] P. Manninen, F. Robertsén, and G. Markomanolis, “May we introduce:
LUMI.” https://www.lumi-supercomputer.eu/may-we-introduce-lumi/,
November 2020. Accessed: 25th July 2024.

[39] S. Mcintosh-Smith, S. Alam, and C. Woods, “Isambard-AI: a leadership
class supercomputer optimised specifically for Artificial Intelligence,” in
CUG 2024: Cray User Group, May 2024.

[40] EuroHPC, “LUMI-G example batch scripts.” https://docs.
lumi-supercomputer.eu/runjobs/scheduled-jobs/lumig-job/, 2024.
Accessed: 15th July 2024.

[41] D. Mulnix, “Intel Data Center GPU Max Series Technical Overview.”
https://www.intel.com/content/www/us/en/developer/articles/technical/
intel-data-center-gpu-max-series-overview.html, April 2024. Accessed:
16th July 2024.

[42] J. R. Reinders, “Options for using a GPU Tile Hierarchy.”
https://www.intel.com/content/www/us/en/developer/articles/technical/
flattening-gpu-tile-hierarchy.html, October 2023. Accessed: 16th July
2024.

[43] EuroHPC, “GPU nodes - LUMI-G.” https://docs.lumi-supercomputer.eu/
hardware/lumig/, 2024. Accessed: 15th July 2024.

[44] W.-C. Lin, S. McIntosh-Smith, and T. Deakin, “Preliminary report:
Initial evaluation of StdPar implementations on AMD GPUs for HPC,”
2024.

[45] Intel Corporation, “Intel Xeon Platinum 8468 Processor.”
https://www.intel.com/content/www/us/en/products/sku/231735/
intel-xeon-platinum-8468-processor-105m-cache-2-10-ghz/
specifications.html, 2023. Accessed: 17th July 2024.

[46] J. Evans, I. Finder, I. Goldwasser, J. Linford, V. Mehta,
D. Ruiz, and M. Wagner, “NVIDIA Grace CPU Superchip
Architecture In Depth.” https://developer.nvidia.com/blog/
nvidia-grace-cpu-superchip-architecture-in-depth/, Jan 2024. Accessed:
23rd July 2024.

[47] Intel oneAPI Math Kernel Library, “mkl types.h,” 2024. Line 107,
Version 2024.1.0.

[48] C. Cecka, “Pro Tip: cuBLAS Strided Batched Matrix Multiply,” NVIDIA
Technical Blog, Feb 2017. Accessed: 8th July 2024.

[49] J. Dongarra, S. Hammarling, N. J. Higham, S. D. Relton, P. Valero-
Lara, and M. Zounon, “The Design and Performance of Batched BLAS
on Modern High-Performance Computing Systems,” Procedia Computer
Science, vol. 108, pp. 495–504, 2017. International Conference on Com-
putational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland.

APPENDIX A

On DAWN, explicit scaling, single-tile operation,
and driver selection for the Intel Data Centre
GPU Max 1550 was achieved using the following
environment variables: EnableImplicitScaling=0;
ZE_FLAT_DEVICE_HIERARCHY=FLAT;
ZE_AFFINITY_MASK=0,1,2,3,4,5,6,7;
ONEAPI_DEVICE_SE- LECTOR="level_zero:0".
Fig. 7 shows a comparison of oneMKL SGEMM Transfer-
Once performance on DAWN using Implicit Scaling (viewing
the GPU as one device) and Explicit Scaling (viewing the
GPU as two separate devices). Clearly, implicit scaling yields
much lower and less-consistent performance than explicit
scaling, despite having twice the compute resources.

Fig. 7. DAWN GPU SGEMM performance (32 iterations) using implicit and
explicit hardware scaling.

1484

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

C1 A new portable benchmark, the GPU BLAS Offload
Benchmark (GPU-BLOB), to facilitate the collection
of CPU and GPU BLAS performance data on het-
erogeneous systems.

C2 A new metric, the GPU Offload Threshold, which,
for a given BLAS problem type (or relationship
between the dimensions) gives the dimension values
at which the GPU is guaranteed to perform better
than the CPU for all larger problem sizes.

C3 Data on when GEMM and GEMV problems of a
certain size and shape will perform better on a GPU
compared to a single CPU socket for three HPC
systems: DAWN, LUMI, and Isambard-AI.

C4 An analysis on how and how often data is moved to
and from the GPU affects the achieved GEMM and
GEMV performance for three main GPU vendors and
their respective BLAS libraries. This includes data
for Unified Shared Memory (USM).

B. Computational Artifacts

A1 GPU BLAS Offload Benchmark
10.5281/zenodo.13835297

Artifact ID Contributions Related
Supported Paper Elements

A1 C1, C2, C3, C4 Tables 3-6
Figures 2-7

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

The artifact A1 is contribution C1.
One of the main outputs of artifact A1 is the GPU offload
threshold which is contribution C2. This metric, in combina-
tion with A1’s output performance data, is used to formulate
contribution C3.
Artifact A1 is developed to perform three data offload
paradigms (Transfer-Once, Transfer-Always, USM). The per-
formance data and offload threshold collected by A1 is used
to formulate contribution C4.

Expected Results

The output of running GPU-BLOB on each of the three
systems should yield the following results for contribution C3:

• Square GEMM: Isambard-AI should have the lowest
offload threshold at all iteration counts, followed by
LUMI, then DAWN. Transfer-Once and USM offload
thresholds should decrease as iteration counts increase

on LUMI and DAWN; Transfer-Always should see the
offload threshold increase as the iteration count increases.

• Square GEMV: On all three systems Transfer-Always
should not yield an offload threshold at any iteration
count. Transfer-Once and USM should also not yield
an offload threshold at one iteration on any system. On
DAWN and Isambard-AI, Transfer-Once and USM of-
fload thresholds should remain somewhat constant regard-
less of iteration count. On LUMI, the offload threshold
should decrease as iteration count increases.

• Non-Square GEMM: Isambard-AI should yield an of-
fload threshold for each problem type at one iteration,
excepting problem {M=N , K=32}. On DAWN, all prob-
lem types that fix two GEMM dimensions to 32 should
never yield an offload threshold. All other problems
(again excepting {M=N , K=32}) should yield an offload
threshold at one iteration. Results on LUMI should not
see a specific pattern, with most problem types yielding
an offload threshold at eight or 32 iterations.

• Non-Square GEMV: No offload threshold should be
seen for any problem type on DAWN, or problem types
{N=16M} or {M=32, N ≥ 1} on LUMI. Isambard-AI
should yield an offload threshold for all problem types at
one iteration.

For contribution C4, we see the following behaviour on each
of the three systems:

• DAWN: Transfer-Once and USM results should be ap-
proximately the same throughout. Transfer-Always al-
ways lags behind the other transfer types in terms of
achieved performance except at one iteration where they
should be equivalent.

• LUMI: Transfer-Always should see very similar results to
Transfer-Once at one iteration, and then severely lag be-
hind performance wise for all other iteration counts. USM
results should be between Transfer-Once and Transfer-
Always at all iteration counts.

• Isambard-AI: Transfer-Always should see very simi-
lar results to Transfer-Once at one iteration, and then
severely lag behind performance wise for all other it-
eration counts. USM should lag behind Transfer-Once
at lower (one and eight) iteration counts, but then be
approximately equivalent for all other iteration counts.

Expected Reproduction Time (in Minutes)

Compilation of the benchmark should take up to 5 minutes
depending on the system, given the required modules are
available on the system. If they are not, then this can be
expected to take 30 minutes per system.

Assuming all five experiments (i.e one experiment for each
iteration value i ∈ {1, 8, 32, 64, 128}) of the benchmark can be
run in parallel on each HPC system, artifact execution should
take up to 8 hours (480 minutes) on DAWN and Isambard-AI,
and 14 hours (840 minutes) on LUMI.

1485

Artifact analysis (including generating graphs from the
benchmark’s performance data CSV files using the included
Python script) for all three systems is expected to take 6 hours
(360 minutes).

Artifact Setup (incl. Inputs)

Hardware: The following hardware is required for each of
the systems evaluated in this study (denoted Sn):
S1 DAWN: Intel Xeon Platinum 8468 + Intel Data Center

GPU Max 1550
S2 LUMI: AMD EPYC 7A53 + AMD MI250X
S3 Isambard-AI: NVIDIA Grace-Hopper GH200 Superchip

(120GB LPDDR5X + 96GB HBM3)
Software: All systems require the GPU BLAS Offload

benchmark V1.0.0; artifact A1: https://github.com/UoB-HPC/
GPU-BLAS-Offload-Benchmark/tree/v1.0.0

Each corresponding system Sn requires the following
software:
S1 – Intel oneMKL version 2024.1.0 via Intel oneAPI

Bast Toolkit https://www.intel.com/content/www/
us/en/developer/tools/oneapi/base-toolkit-download.
html.
NB Intel has removed support for versions 2024.2.0
and earlier as of 23rd September 2024.

S2 – AOCL version 4.1 https://www.amd.com/en/
developer/aocl/eula/aocl-4-1-eula.html?filename=
aocl-linux-gcc-4.1.0.tar.gz

– rocBLAS via rocm version 5.2.3 https://rocm.docs.
amd.com/en/docs-5.2.3/index.html

S3 – NVPL version 24.7 https://developer.nvidia.com/
nvpl-downloads

– cuBLAS version 24.5 via NVHPC
version 24.5 https://developer.nvidia.com/
nvidia-hpc-sdk-245-downloads

Datasets / Inputs: All data is generated by the GPU
BLAS Offload Benchmark at runtime. See Installation and
Deployment on how to generate the data sets used in this study.

Installation and Deployment: The benchmark is compiled,
deployed, and executed on each of the corresponding systems
Sn as follows. This collects all data used in this study:
S1 – Compiler: icpx version 2024.1.0

– Compilation Command: make COMPILER=INTEL
CPU_LIB=ONEMKL GPU_LIB=ONEMKL

– Execution: OMP_NUM_THREADS=48
OMP_PROC_BIND=close
OMP_PLACES=cores ./gpu-blob -i n
-s 1 -d 4096 where n ∈ {1, 8, 32, 64, 128}

S2 – Two versions of the benchmark need to be compiled
and executed due to compiler-library incompatibility:
a CPU-only and a GPU-only version.

– CPU-only Compiler: g++ version 7.5
– CPU-only Compilation Command: make
COMPILER=GNU CPU_LIB=AOCL
CXXFLAGS="-L<AOCL_DIR>/lib

-I<AOCL_DIR>/include/blis
-Wl,-rpath,<AOCL_DIR>/lib"

– CPU-only Execution: BLIS_NUM_THREADS=56
OMP_PROC_BIND=close
OMP_PLACES=cores ./gpu-blob_cpu -i
n -s 1 -d 4096 where n ∈ {1, 8, 32, 64, 128}

– GPU-only Compiler: hipcc version 5.2.3
– GPU-only Compilation Command: make
COMPILER=HIP CPU_LIB=ROCBLAS

– GPU-only Execution: ./gpu-blob_gpu -i n
-s 1 -d 4096 where n ∈ {1, 8, 32, 64, 128}

S3 – Compiler: nvc++ version 24.5
– Compilation Command:
make COMPILER=NVIDIA
CPU_LIB=NVPL GPU_LIB=CUBLAS
CXXFLAGS="-L<NVPL_DIR>/lib
-I<NVPL_DIR>/include
-Wl,-rpath,<NVPL_DIR>/lib"

– Execution: OMP_NUM_THREADS=72
OMP_PROC_BIND=close
OMP_PLACES=cores ./gpu-blob -i n
-s 1 -d 4096 where n ∈ {1, 8, 32, 64, 128}

Artifact Execution

T1 Generate dataset using the execution command(s) seen in
Artifact Setup - Installation and Deployment.

T2 Extract offload thresholds via:
– S1 or S3: Taking offload thresholds from the tables

printed to stdout by the benchmark.
– S2: Use the included
calculateOffloadThreshold.py Python
script on each pair of output CSV files (CPU and
GPU CSV for the same problem type).

T3 Generate performance graphs using the included
createGflopsGraphs.py Python script with the
input being a CSV directory/

– When processing results from S2, each problem
type’s CPU-only and GPU-only CSV result files will
need to be concatenated (removing the additional
header row) prior to using the graphing Python script.

Task dependencies: T1 → T2 and T1 → T3.

1486

Artifact Evaluation (AE)

A. Computational Artifact A1

Artifact Setup (incl. Inputs)

Per-system library compilation:
• DAWN:

– Download Intel oneMKL version 2024.1.0
via Intel oneAPI Bast Toolkit from
https://www.intel.com/content/www/us/en/
developer/tools/oneapi/base-toolkit-download.html,
selecting Linux and Offline Installer, then following
the download instructions.

– Run the install script via sh
./l_BaseKit_p_2024.1.0.100_
offline.sh -a --cli --eula accept

– Once installed, run source
<oneapi_install_dir>/2024.1.0/
setvars.sh to add the libraries and compilers to
the relevant paths and be available for use.

• LUMI:
– Download AOCL version 4.1 from https://www.

amd.com/en/developer/aocl/eula/aocl-4-1-eula.html?
filename=aocl-linux-gcc-4.1.0.tar.gz.

– Download rocm version 5.2.3 from https://rocm.
docs.amd.com/en/docs-5.2.3/index.html.

– Install rocm using the instructions at
https://rocm.docs.amd.com/projects/install-on-linux/
en/latest/install/quick-start.html.

– Run module load rocm/5.2.3 to make the
rocm and rocBLAS libraries, and the hipcc compiler
available for use.

• Isambard-AI:
– Download NVPL version 24.7 from

https://developer.nvidia.com/nvpl-downloads
– Download NVHPC version 24.5

from https://developer.nvidia.com/
nvidia-hpc-sdk-245-downloads

– Install NVHPC by running
nvhpc_2024_245_Linux_aarch64_cuda_
12.4/install and following the script
instructions.

– Run module use
NVHPC_24.5/modulefiles then module
load nvhpc/24.5 to make nvc++ and cuBLAS
available for use.

Per-system benchmark compilation:
• DAWN:

– make COMPILER=INTEL CPU_LIB=ONEMKL
GPU_LIB=ONEMKL

• LUMI:
– CPU-only: make COMPILER=GNU

CPU_LIB=AOCL CXXFLAGS="-L<AOCL_DIR>/lib

-I<AOCL_DIR>/include/blis
-Wl,-rpath,<AOCL_DIR>/lib"

– GPU-only: make COMPILER=HIP
CPU_LIB=ROCBLAS

• Isambard-AI:
– make COMPILER=NVIDIA
CPU_LIB=NVPL GPU_LIB=CUBLAS
CXXFLAGS="-L<NVPL_DIR>/lib
-I<NVPL_DIR>/include
-Wl,-rpath,<NVPL_DIR>/lib"

Per-system code deployment guidelines:
• DAWN:

– pvc partition, 1 node, 48 tasks per node, exclusive
node access

– Ensure to set the following environment variables to
enable explicit GPU scaling and target only one of
the two GPU tiles: NEOReadDebugKeys=1
PrintDebugSettings=1
ReturnSubDevicesAsApiDevices=1
EnableImplicitScaling=0
ZE_AFFINITY_MASK=0,1,2,3,4,5,6,7
ZE_FLAT_DEVICE_HIERARCHY=FLAT
ONEAPI_DEVICE_SELECTOR="level_
zero:0"

• LUMI:
– CPU-only: standard-g partition, 1 node, 56 task per

node, exclusive node access
– GPU-only: standard-g partition, 1 node, 1 gpu per

node, gpu-bind closest, 1 task per node, exclusive
node access

– For GPU-only, ensure to set the following environ-
ment variable: export HSA_XNACK=1

• Isambard-AI:
– 1 node, 72 tasks per node, exclusive node access

Artifact Execution

To generate performance and offload threshold data for a
given system, the following commands should be run:

• DAWN: OMP_NUM_THREADS=48
OMP_PROC_BIND=close OMP_PLACES=cores
./gpu-blob -i n -s 1 -d 4096 where
n ∈ {1, 8, 32, 64, 128}

• LUMI: Two versions of the benchmark need to be com-
piled and executed due to compiler-library incompatibil-
ity:

– CPU-only Execution: BLIS_NUM_THREADS=56
OMP_PROC_BIND=close
OMP_PLACES=cores ./gpu-blob_cpu -i
n -s 1 -d 4096 where n ∈ {1, 8, 32, 64, 128}

– GPU-only Execution: ./gpu-blob_gpu -i n
-s 1 -d 4096 where n ∈ {1, 8, 32, 64, 128}

• Isambard-AI: OMP_NUM_THREADS=72
OMP_PROC_BIND=close OMP_PLACES=cores

1487

./gpu-blob -i n -s 1 -d 4096 where
n ∈ {1, 8, 32, 64, 128}

Following this execution, offload threshold data for DAWN
and Isambard-AI will be easily available given it is
printed to stdout by the benchmark. For LUMI, the
calculateOffloadThreshold.py Python script in-
cluded with GPU-BLOB can be used on each pair of output
CSV files (CPU and GPU CSV for the same problem type)
to yield the offload thresholds.

Lastly, performance graphs of each system can also be gen-
erated using the data produced by GPU-BLOB. This can be
done using the createGflopsGraphs.py Python script
included with GPU-BLOB, where the single input argument
is a single problem’s CSV file directory. For LUMI, a pre-
processing step of concatenating each problem type’s CPU-
only and GPU-only CSV result files (removing the additional
header row) is required prior to using the graphing Python
script.

Artifact Analysis (incl. Outputs)

From each system, one should expect the benchmark to
have produced 28 CSV files per experiment run: 9 SGEMM,
9 DGEMM, 5 SGEMV, 5 DGEMV; one CSV file per problem
type. These CSV files contain the raw GFLOP/s performance
data for each problem size evaluated, along with problem
dimensions, runtime, and other metrics. For DAWN and
Isambard-AI (or when GPU-BLOB is run with a CPU and a
GPU library), the offload threshold for each data transfer type
and problem type will be printed in a table to stdout. For
LUMI (or when CPU and GPU data is collected individually),
the method for generating the offload threshold per problem
type described above in Artifact Execution should be followed.
This data forms the contributions C1, C2, and C3.

To more easily analyse the results, performance graphs should
be created using the method described above in Artifact
Execution. This method of graph generation was used to create
the graphs for the study where appropriate or interesting.
Displaying the data graphically allows for much simpler
interpretation of the results; at what problem size the GPU
becomes worthwhile for use for each problem type (i.e. the
offload threshold), and the effect the data transfer type has on
achieved GEMM / GEMV performance. The former of these
graph evaluations adds to contribution C3, whilst the latter
forms the contribution C4.

Generally, a higher offload threshold (i.e. a larger problem
size) equates to the CPU having a longer-lasting compute
advantage over the GPU. This is often due to either a) data is
moved to and from the GPU too often and prevents the com-
pute advantage of the GPU being fully realised (common for
Transfer-Always), or b) a given problem has a low Arithmetic
Intensity and so it is beneficial to keep the problem resident on
the CPU for larger and larger problem sizes. As the iteration

count is increased, it is expected that the Transfer-Once and
USM offload thresholds stays the same or decreases, whilst
the Transfer-Always offload threshold increases.

Using the offload thresholds in combination with perfor-
mance graph analysis is the recommended way of assessing
when it becomes beneficial to offload a GEMM or GEMV
problem to the GPU; for a given problem type and iteration
count. This is also how the three different data transfer
methods should be compared and how one should assess how
data movement frequency can play a large role as to when
offloading to the GPU is worthwhile.

1488

