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Abstract—Power is a critical limiting factor in supercomputing
as systems scale to exascale levels. To advance scientific comput-
ing, supercomputers must operate efficiently under limited power
budgets. Power-aware scheduling can help by enforcing power
management strategies, but this requires a deep understanding
of application power behavior, especially on modern GPU-centric
supercomputers. This study examines the power behavior of
VASP, a leading HPC application, on the Perlmutter A100 GPU
system at NERSC. We explore how VASP’s power usage changes
with various inputs and parallelism, and assess its response
to power cappings. We find that VASP’s power usage varies
significantly with different workloads, more so than with parallel
concurrency. Additionally, power capping GPUs to 50% of their
Thermal Design Power can be applied to most VASP workloads
with less than a 10% performance loss. These findings shed light
on the feasibility and effectiveness of power-aware scheduling
based on application power profiles on HPC systems.

Index Terms—application power profile, power capping, per-
formance, A100 GPU, VASP, computing center

I. INTRODUCTION

As HPC enters the exascale era, power has become a crit-
ical limiting factor in supercomputing. To advance scientific
computing at scale, supercomputers must operate efficiently
under limited power budgets. Power-aware scheduling [1]–[3]
based on application power profiles has been proposed as a
crucial approach to facilitating system operations under power
limits. This approach has the potential to keep the total system
power within a prescribed budget and optimize performance
by allocating power where demand is most critical. Despite
its potential, few computing centers currently employ power-
aware scheduling. The principal challenge lies in accurately
predicting the power consumption of applications on rapidly
evolving HPC platforms, necessitating a deep understanding
of applications’ power behavior.

Decade-long efforts have aimed to understand the power
usage characteristics of HPC production workloads at both
the system and application levels and build power and energy
prediction models [5]–[8]. However, many of these studies
focused on older generations of CPU and GPU architectures

and have questionable relevance to today’s GPU-centric HPC
platforms.

Recent efforts have targeted application power behavior
on modern GPU systems [9], [10], but they often examine
specific instances within a broader spectrum of application
power behaviors, making their findings insufficient for com-
prehensive power management. The most critical gap remains
an in-depth understanding of applications’ power variations in
production settings, which is essential for accurately predicting
application power usage.

Additionally, application power profiles are architecture-
dependent, while cutting-edge systems often have short life-
times. Therefore, strategies must be developed to transition
power study findings into production deployment promptly.

An earlier study on NERSC’s Cori system [11] implied that
job’s input could have a strong influence on its power use [12].
Recent analysis of NERSC’s Perlmutter system [13] showed
that 65% of the variation in the system power consumption
was due to temporal variation in the power used by individual
jobs [14]. This paper addresses both gaps through a detailed
analysis of a single application: VASP [15], [16], a widely used
materials science application, examining the variation in VASP
job’s power use and exploring how those patterns change
with job input and concurrency. In addition, we evaluate the
impact of GPU power caps on VASP performance to identify
opportunities for efficient power management.

Our investigation shows that:
• VASP’s power consumption is highly dependent on input

parameters.
• VASP’s power usage varies significantly with different

workloads, more so than with parallel concurrency.
• Power capping GPUs to 50% of their Thermal Design

Power (TDP) can be applied to most VASP workloads
with less than a 10% performance loss on NVIDIA A100
GPUs.

The rest of the paper is organized as follows: Section II
describes the hardware, software, and monitoring configura-
tions. In Section III, we present VASP’s power usage across
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a diverse suite of benchmark problems. Section IV provides a
systematic analysis of silicon supercells and how their power
is affected by perturbing the various parameters sampled by
the full benchmark suite. This is followed by a discussion of
our results in Section VI. We conclude with a review of related
work in Section VII.

II. SYSTEM CONFIGURATION AND ENVIRONMENT SETUP

A. Perlmutter System Configuration

This work was performed on the Perlmutter [13] supercom-
puter at NERSC. Perlmutter is a heterogeneous system that
integrates 1,792 GPU-accelerated nodes and 3,072 CPU-only
nodes within a single HPE Cray Shasta platform. Each GPU-
accelerated node contains one AMD EPYC 7763 “Milan” pro-
cessor, 256 GB of DDR4 memory, four NVIDIA A100 Ten-
sor Core GPUs, and four HPE Slingshot “Cassini” Network
Interface Cards (NICs). Among the GPU-accelerated nodes,
256 have 80 GB of High Bandwidth Memory (HBM), and
1,536 have 40 GB of HBM. This work uses only the 40 GB
GPU-accelerated nodes. More information about Perlmutter is
available online [13].

Perlmutter’s total system TDP, including CPU-only nodes,
GPU-accelerated nodes, service nodes, network routers, and
cooling distribution units is 6.9 MW. The TDP of a 40 GB
GPU node is 2,350 W, which includes 280 W for the CPU,
400 W for each of the GPUs, and 470 W for peripherals (used
primarily by the DDR memory and NICs).

B. Power Measurement

NERSC’s Operations Monitoring and Notification Infras-
tructure (OMNI) [17] gathers and manages operational data
from across the NERSC data center. The data include power
measurements from sensors distributed throughout the system.
The Cray Power Monitoring interface [18] runs on all compute
nodes and provides access to power measurements for key
components of the node (the CPU, each GPU, and the DDR
memory ), and the total node power (which includes the afore-
mentioned components plus peripherals such as NICs). The
node-level measurements are forwarded to OMNI’s data store
using the Lightweight Distributed Metric Service (LDMS)
[19]. LDMS samples the measurements at one-second inter-
vals, 1 but the high aggregate data rate across the system
forces much of the data to be dropped, leading to an effective
sampling interval of 2 seconds throughout this study. The node
and GPU power were obtained from OMNI using previously-
developed querying scripts [20].

C. VASP

The Vienna Ab initio Simulation Package (VASP) [15], [16]
is widely used by materials scientists to compute the electronic
structure and atomic-scale properties using plane-wave density
functional theory (DFT) [21], [22]. The fundamental equation
solved by VASP is an eigenvalue problem given by

[− 1
2∇

2 + V (r)]Ψi(r) = ϵiΨi(r) i = 1, 2, ..., N

1There is an ongoing effort to improve the data ingest pipeline.

where the eigenfunctions, Ψi(r), are the “one-electon” or-
bitals, the eigenvalues, ϵi, are the orbital energies, and N
is the number of eigenpairs to be solved. The potential
function, V (r), includes terms due to electron-ion interaction
and a functional that describes electron-electron interaction.
The eigen-problem is nonlinear because the inter-electronic
functional depends on the orbital functions. It is therefore
solved iteratively via self-consistent iteration cycle until a
desired accuracy is achieved. The problem is discretized by
expanding the orbitals in a plane-wave basis.

VASP predominantly utilizes Fortran 90 and relies exten-
sively on FFTs and linear algebra libraries. VASP implements
multiple levels of parallelism, expressed via a combination
of MPI for distributing work across nodes, OpenMP for
multi-/many-core CPUs, and OpenACC for GPUs, all within
a single code-base. For GPU communications, VASP uses
NVIDIA’s Collective Communications Library (NCCL) [23]
as an alternative to MPI.

We conducted our tests using VASP version 6.4.1. The
OpenACC port [24] was built to support both OpenACC
and OpenMP on Perlmutter’s GPU nodes. The software stack
used in this study includes: NVIDIA HPC SDK 22.7 for the
NVIDIA compiler, CUDA 12.0 (CUDA driver: 525.105.17),
QD, cuBLAS, cuSOLVER, and cuFFT libraries, NCCL 2.19.4,
Cray MPICH 8.1.28, MKL from Intel oneAPI 22.1.0 and its
FFTW3 wrappers to FFT, and HDF5 1.12.2.

VASP has three binaries: gamma-point-only (vasp gam),
standard k-points (vasp std), and non-collinear (vasp ncl),
each designed for crystal structures with varying levels of
symmetry. In our tests, we used the standard vasp std, which
is the most commonly used by users.

III. POWER PROFILES OF VASP BENCHMARKS

In this section, we study the power characteristics of a
diverse set of seven VASP benchmarks running on Perlmutter.

A. Benchmark Descriptions

VASP computations are categorized into two main types:
basic density functional theory (DFT) calculations and more
computationally intensive higher-order methods, such as hy-
brid functional calculations, HSE [25], and random phase
approximation, RPA/ACFDTR [26]. Within each functional
calculation, there are numerous variations tailored to systems
with diverse chemical elements. We selected the most com-
monly used DFT functionals to represent these variations:
LDA (CA) and GGA [27]. In this study, we used seven test
cases [28], namely Si256 hse, B.hR105 hse, PdO4, PdO2,
GaAsBi-64, CuC vdw, and Si128 acfdtr. These selections rep-
resent NERSC’s diverse VASP production workloads, ensuring
a comprehensive coverage of various code paths, elements,
and problem sizes. For example, two HSE hybrid functional
calculations with different atomic configurations and problem
sizes are selected in the tests: Si256 hse is a 256-atom silicon
supercell with a vacancy, and B.hR105 hse is a hexa-boron
structure containing 105 atoms. Additionally, we included
PdO4 and PdO2, comprising PdO slabs containing 348 and
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TABLE I
SEVEN VASP BENCHMARKS WERE CHOSEN TO COVER REPRESENTATIVE WORKLOADS AND TO EXERCISE DIFFERENT CODE PATHS.

Si256 hse B.hR105 hse PdO4 PdO2 GaAsBi-64 CuC vdw Si128 acfdtr
Electrons (Ions) 1020 (255) 315 (105) 3288 (348) 1644 (174) 266 (64) 1064 (98) 512 (128)
Functional HSE HSE DFT (LDA) DFT (LDA) DFT (GGA) VDW ACFDT/RPA
Algo CG

(Damped)
CG
(Damped)

RMM
(VeryFast)

RMM
(VeryFast)

BD+RMM
(Fast)

RMM
(VeryFast)

ACFDTR

NELM (NELMDL) 41 (0) 17 (0) 60 (0) 60 (0) 60 (0) 60 (0)
NBANDS 640 256 2048 1024 192 640
NBANDSEXACT 23506
FFT grids 80x80x80 48x48x48 80x120x54 80x60x54 70x70x70 70x70x210 60x60x60
NPLWV 512000 110592 518400 259200 343000 1029000 216000
KPOINTS (KPAR) 1 1 1 (1) 1 1 1 (1) 1 1 1 (1) 1 1 1 (1) 4 4 4 (2) 3 3 1 (1) 1 1 1 (1)

174 atoms, respectively, to evaluate the commonly employed
DFT functional calculation utilizing the RMM-DIIS iteration
scheme. Furthermore, a ternary alloy structure, GaAsBi-64,
was included to cover the metallic systems with the default
iteration scheme, Block Davidson + RMM-DIIS algorithms.
Lastly, Si128 acfdtr, a 128-atom silicon supercell, performs
random phase approximation calculations (RPA/ACFDTR).

Table I details the computational specifics of these bench-
marks. While the number of ions or electrons represents
physical system sizes, the number of plane waves (NPLWV)
or bands (NBANDS) is a computational representation of
physical system sizes. It’s worth mentioning that these bench-
marks were meticulously designed to ensure load balancing
among MPI tasks, with limited I/O to facilitate accurate
benchmarking. (See the VASP Wiki page [29] for further
details on the tags in Table I.)

B. Execution & Measurement Protocol

All our tests were designed to understand VASP’s power
characteristics and dynamics. We used the same setting as
in [28] for the run-time configurations and tuning. This in-
cludes the CPU and GPU process affinity choice, run time
environments, etc. For example, all tests used one OpenMP
thread because, for the VASP GPU port, OpenMP threads have
minor performance impacts for the majority of workloads.
Four MPI tasks per node (one MPI task per GPU) were
used in all tests. There is limited I/O in the tests. The VASP
performance was measured with total runtime.

A few things worth mentioning:
1) Five Repeats: Each benchmark was run five times to

avoid outliers and get the representative power behavior.
We ran DGEMM and Stream tests before running VASP in
the same job script to exclude the runs manifesting rela-
tively larger manufactural differences in hardware devices.
We selected the run with the minimum total runtime as a
representative, which has a reduced chance of being affected
by underperforming system components.

2) Power per Node and GPU: In this study, we focus
on power usage per node and per GPU because our VASP
benchmarks were designed to balance load between GPUs and
nodes. However, as shown in Figure 1, individual nodes in a
multi-node VASP job can have slight power variations, likely
due to manufacturing differences in hardware. This is evident

as identical DGEMM and STREAM runs exhibit similar power
differences across nodes despite consistent performance. Even
idle power varies slightly. A random check on 16 GPU nodes
revealed idle power variability of up to 100 W (410 W
to 510 W). These variations should be taken into account
properly where applicable.

3) High Power Mode: We examined a variety of metrics to
represent application power usage. In this paper, we use the
high power mode (instead of mean power) and full width at
half maximum (FWHM) of the high power mode to charac-
terize application power usage and its distribution. We define
the high power mode as the mode corresponding to the highest
power (see Figure 2); and use the standard statistical definition
of FWHM, which measures the width of the distribution at
half of its maximum value. Compared to mean or maximum
power, high power mode is a better metric for representing
VASP’s power usage, particularly for implementing power
management strategies like power capping. This is because
VASP’s power timeline data is often multi-modal, making
mean power less representative; meanwhile, maximum power
may capture brief spikes that do not reflect overall usage.
However, we also reference mean power where applicable, as
it serves as a useful indicator of energy usage. To determine
the high power mode, we utilize the kernel density estimate
(KDE) plot of the power timeline data distribution.

Fig. 1. The figure shows the power usage of individual nodes participating
in a 4-node VASP job running Si256 hse benchmark. The job was run with
Stream, Dgemm, and an idle phase before running VASP (right segment).
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4) Sampling Rates: We explored the impact of sampling
granularity of power measurements in our study. Figure 2 (left)
illustrates the GPU power distribution and their maximum,
median, and minimum power, as well as the high power mode
(right), across different sampling rates. As the sampling rate
increases, the full width at half maximum (FWHM) of the high
power mode widens, but the high power mode itself remains
unchanged. Additionally, the maximum power may slightly
decrease, and some details of the timeline pattern may be
lost. For instance, at a 10-second sampling rate, the second
power mode is not detected, while at five seconds or finer, all
three modes are visible. Figure 2 shows that any sampling rate
up to 10 seconds is sufficient for capturing the high power
mode and mean power. However, to effectively capture the
power timeline behavior, a sampling rate of five seconds or
finer is necessary, depending on the focus. Our power timeline
data primarily have a 2-second intervals; even with occasional
larger gaps, the interval did not exceed five seconds.

C. VASP Power Timeline Patterns

Figure 3 shows the power timelines for three selected VASP
benchmarks, Si256 hse, GaAsBi-64, and Si128 acfdtr, run-
ning on a single node. Four additional benchmarks (CuC vdw,
PdO4, PdO2, B.hr 105) were omitted as their power timeline
patterns are similar to one of those selected benchmarks.

As shown in Figure 3, power timeline patterns vary signif-
icantly across these benchmarks. For Si256 hse and GaAsBi-
64, node power usage (represented by the black solid line)
remains mostly flat with relatively small fluctuations, whereas
Si128 acfdtr exhibits substantial variation. Notably, a sig-
nificant portion of Si128 acfdtr’s execution runs on CPUs
(evidenced by the flat section in the middle of the timeline) due
to VASP 6.4.1 not yet porting the exact diagonalization step to
GPUs. For Si256 hse and Si128 acddtr, which consume high
power, the four GPUs account for >70% of the total power
usage, while the CPU and memory use less than 10%, with
primarily flat power consumption during execution. GaAsBi-
64, on the other hand, uses much less power, indicating

Fig. 2. Per GPU power distributions (left) and their maximum, median,
minimum, and high power mode (right) at a range of sampling rates. We
measured power data at a 0.1-second sampling rate and then down-sampled
it to the rest of the sampling rates shown in the figure. The experiments were
done with the Si256 hse benchmark using one node.

Fig. 3. Average power consumption of Perlmutter GPU node and its compo-
nents when running VASP benchmarks, Si256 hse, GaAs64, and Si128 acfdtr
(left panels) on a single node. The power timeline data was averaged over
2-second intervals. The gap between the total node power (black line) and
the sum of the individual component powers likely arises from additional
components within the node, such as network interface cards (NICs). The
text box displays the maximum, median, and minimum node power and high
power mode per node. A dashed magenta line indicates the node’s TDP value.
The histogram next to each benchmark power timeline shows the distribution
of node power data.

insufficient workload to fully utilize the four GPUs in this
benchmark.

The histograms next to each power timeline in Figure 3
show the power distribution for each benchmark, revealing
non-normal and at least bimodal characteristics. High power
mode per node ranges from 766 to 1814 W, with maximum
power exceeding 2100 W. Notably, power usage per node, as
measured by the high power mode, remains well below the
node’s TDP (indicated by the magenta dashed line).

D. Power Usage of Representative VASP Workloads

In this subsection, we present the power consumption data
for all benchmarks selected to represent NERSC’s VASP
workloads. For each benchmark, varied node counts were
used to simulate real-world scenarios, reflecting how users run
jobs across a range of nodes with varying levels of parallel
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Fig. 4. Parallel efficiency of VASP.

efficiency 2. See Figure 4 for VASP’s parallel efficiency at
each node count. In general, parallel efficiency of 70% and up
is recommended for optimal use of computing resources.

Figure 5 shows the high power mode per node for VASP
when running each representative workload at different con-
currency. We can see that the power changes with concurrency
for a given workload are not significant, provided the code is
run at a reasonable parallel efficiency level (70% and up); the
power starts to drop visibly at parallel efficiencies below this
level. However, the high power mode varies significantly with
different workloads performing different types of computation
(methods), ranging from 766 to 1810 W. Even within the same
workloads, different sizes, and chemical elements significantly
affect power consumption. For example, while the PdO4 (348
atoms) and PdO2 (174 atoms) benchmarks (the green and red
lines, respectively) have identical chemical elements and unit
cells, their size difference causes a power usage difference
of more than 150 W per node. In another example, the
B.hR105 hse benchmark is the same workload as Si256 hse
but is smaller and contains different chemical elements. While
both use more power than the other benchmarks performing
basic DFT functional calculations (PdO2, PdO4, and GaAsBi-
64), B.hR105 hse uses about 380 W less power per node than
Si256 hse.

Figure 5 illustrates that many factors contribute to the power
variations in VASP to varying degrees, resulting in a wide
range of power usage.

IV. DECOMPOSING VASP POWER VARIATIONS

In this section, we analyze VASP’s power dynamics under
various conditions. We explore how system sizes, internal con-
trol parameters, concurrency, and methods influence VASP’s
power usage. Our experiments primarily use silicon supercells,
allowing us to vary one condition at a time. While our focus
is on power usage, we also present energy consumption data
where relevant.

2Parallel efficiency is defined as S/N, where S is the speedup achieved
when using N processors.

Fig. 5. Power usage of seven representative VASP workloads. The horizontal
axis shows the number of nodes used, and the vertical axis shows the high
power mode per node.

A. Power Changes with System Sizes

Figure 6 shows the high power modes for a single node
and four GPUs within that node for silicon supercells with
varying numbers of atoms. To isolate the effect of size, we
fixed the method to the DFT functional calculation with the
default iteration scheme. The results show that power usage
increases with larger system sizes, reaching a plateau when
the GPU power usage approaches its TDP. The figure indicates
that approximately 2048 silicon atoms are needed to saturate
the GPU resources for the DFT functional calculation.

As mentioned in Section III-A, the computational repre-
sentations of system sizes are the number of plane waves
(NPLWV) and the number of bands (NBANDS). As the
number of atoms in the silicon supercells increases, both
NPLWV and NBANDS also increase, with NPLWV ranging
from 88,200 to 3,175,200 and NBANDS ranging from 164 to
5,764. Therefore, the power increase observed with increasing
silicon supercell sizes is from the combined effect of the
increased number of plane waves and bands. In the following
subsection, we will examine the impact of plane waves and
bands separately.

Fig. 6. VASP power consumption changes with system size. The high power
mode is displayed per node (blue) and per four GPUs (green) within the node
for silicon supercells with varying numbers of atoms. Error bars represent the
full width at half maximum (FWHM) of the high power modes. The magenta
dashed line marks the node’s TDP, while the green dashed line indicates the
combined TDPs of the four GPUs. The experiments used a single node.
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B. Power Changes with Internal Parameters

VASP’s internal parameters, such as the number of plane
waves (NPLWV) and bands (NBANDS), can vary with system
size and specific use cases. For instance, different accuracies
(low, normal, or high) or cut-off energies can lead to varying
numbers of plane waves for a given system. Similarly, users
can select different numbers of bands to achieve better con-
vergence or calculate optical properties.

Figure 7 shows how VASP’s power usage changes with the
number of plane waves (left), and the number of bands (right).
The experiments were done with the Si256 hse benchmark
on a single node using four GPUs. The figure shows that the
high power mode remains constant when the number of bands
changes but varies visibly when the number of plane waves
changes. This observation aligns with VASP’s parallelization
strategy. VASP distributes bands across MPI processes (GPUs)
while distributing plane waves to CUDA and tensor cores on
each GPU. The bands assigned to each GPU are processed
sequentially. Consequently, increasing the number of bands
(NBANDS) per GPU extends the runtime, thereby consuming
more energy (dashed line in Figure 8), but does not increase
computational intensity (power). Conversely, increasing the
number of plane waves (NPLWV) increases the computational
intensity for each GPU due to the greater workload executed
simultaneously, leading to higher power usage per GPU (and
node). In this example, the GPU resources are not saturated
at the reference plane-wave count (NPLWV=216000). If the
GPU resources are saturated at the reference plane-wave
count, no power increase would be observed, as seen in the
silicon supercells with 2048 atoms and more in the previous
subsection.

Notably, job concurrency remained unchanged when the
number of plane waves or bands per GPU was adjusted in
the above experiments.

C. Power Changes with Concurrency

Characterizing power changes with concurrency is essential
for understanding VASP’s power behavior. In a production
setting, users may run jobs with varying node counts, either

Fig. 7. VASP power consumption varies with internal parameters: the number
of planewaves (left panel) and bands (right panel). The high power mode and
mean power per node are shown on the left axis, while the energy to solution,
measured in megajoules, is shown on the right axis. The experiments were
done with Si256 hse using one node.

efficiently or inefficiently. VASP implements multiple levels
of parallelism. The primary level distributes the number of
orbitals (NBANDS) across MPI processes (GPUs), while the
secondary level distributes the plane waves among the cores on
each GPU. As seen in Table I, the parallelism explored in this
study is well below the number of bands for each benchmark.
Thus, increasing concurrency decreases the number of bands
per GPU, while the number of plane waves in each band
remains the same. As discussed in the previous subsection,
increasing (or decreasing) the number of bands per GPU
without altering the total concurrency does not impact VASP
power usage. Thus, power consumption is expected to remain
steady with changes in band count per GPU alone. However,
as job concurrency increases, the added communication time
could affect computational intensity (power) on the GPU, even
though each GPU continues processing the same number of
plane waves simultaneously.

Figure 8 shows the high power mode (left axis) of VASP
and the total energy to the solution (right axis) at various
concurrencies, using the Si256 hse benchmark as an example.
The figure shows that as concurrency increases, VASP’s power
usage remains steady for a range of lower node concurrencies,
especially when parallel efficiency stays within 70% or higher.
This matches the expectation. However, with further increases
in concurrency, power drops correspondingly due to increased
communication time in VASP.

Figure 8 also shows that VASP’s energy consumption in-
creases monotonically with increasing concurrency.

D. Power Changes with Different Methods

Unlike some other codes, VASP includes numerous code
paths within a single application binary, leading to vary-
ing power behaviors depending on the selected types of
computation (methods). In this subsection, we examine the
power behavior for seven distinct methods implemented in
VASP. Among the seven methods, the HSE and ACFDTR
methods are higher-order methods that are computationally
more demanding. They also require more memory compared to
their counterparts, the DFT functional calculation with various
iteration schemes (those prefixed with dft in Figure 9).

Fig. 8. VASP per node power usage (left axis) and the energy to the solution
in megajoules (right axis) at various concurrency for benchmark Si256 hse.
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Fig. 9. VASP power usage varies with types of computations (methods). The
vertical axis shows the high power mode per node. The violin plots with
quartiles illustrate the multi-modal power distributions for the seven selected
methods in VASP, applied to two silicon supercells containing 128 atoms
(blue) and 256 atoms (orange). The tests were run on a single node.

Figure 9 shows the high power modes for the seven selected
methods. To minimize the moving parts in the comparison,
we applied all these methods to the two silicon supercells
with 128 and 256 atoms separately. The VDW method adds
the van der Waals interaction corrections to the eigenenergy
calculations, adding minor computational costs to the basic
DFT calculations. So, we will treat it like other DFT methods
in this subsection. The figure shows significant differences
in power usage between the higher-order methods (HSE and
ACFDTR) and the other DFT methods for both systems.
Notably, the high power mode varies by more than 600 W
per node on average.

Figure 9 also shows that when the supercell size increases,
the power usage increases for all methods. This observation
aligns with the power usage trend when increasing system
sizes as discussed in Section IV-A.

V. POWER CAPPING AND PERFORMANCE

To regulate VASP’s power usage, we investigate VASP
performance under varied power capping. This information
is essential to optimize power allocation among jobs and
distribute power where demand is more critical. While the
DVFS [30] method is commonly employed for its ease of use,
we chose to use power capping to control the device power,
which is more efficient and accurate [31] in power control.
Since the four GPUs on each Perlmutter node consume more
than 70% of node power in VASP and are responsible for
the power fluctuations during execution, we applied power
capping on the GPUs. We used the NVIDIA System Man-
agement Interface (nvidia-smi) [32] tool to set various GPU
power limits (using the -pl option) on the nodes.

A. Efficacy of Power Capping

The power range of the A100 40 GB GPU spans from
100 W to 400 W. We applied four different power caps, 400 W,
300 W, 200 W, and 100 W, to the GPUs allocated for VASP
jobs. The default power limit on Perlmutter GPU nodes is
400 W, which is the A100 40 GB GPU’s TDP. Figure 10

Fig. 10. Power consumed per GPU when running VASP under four different
power caps: 400 W (default), 300 W, 200 W, and 100 W. The horizontal axis
shows power caps applied to the GPUs, and the vertical axis shows the high
power mode per GPU as a fraction of the applied cap. The dashed horizontal
line represents the applied power cap. Each benchmark was run with a node
count optimizing runtime while remaining above 70% parallel efficiency.

shows the high power mode per GPU as a fraction of the
applied cap for seven representative VASP workloads. The
dashed horizontal line represents the applied power cap. Bars
falling below this line indicate that power usage remains within
the applied power cap.

The efficacy of power capping in reducing power usage
within the capped value is evident, except at the lowest allowed
power cap of 100 W. At this cap, a larger error is observed,
but it is not likely to be deployed in practice due to substantial
performance degradation (see Section V-C).

B. Effect of Power Capping

Figure 11 illustrates the impact of power capping using the
Si128 acfdtr benchmark as an example. The peak power is
reduced by about 50%, while the troughs remain unchanged.
This indicates power capping not only reduces power but also
mitigates power variations within a job. Notably, the execution
required higher power at 400 W is now visibly slowed down
under the 200 W power cap.

Fig. 11. Effect of GPU power capping on VASP. The power usage timeline
for node and GPU 0, with and without a 200 W power cap, is shown on the
vertical axis. Power timeline data is averaged over 2-second intervals. The
experiment used the Si128 acfdtr benchmark on a single node.
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C. Performance Response

Figure 12 shows the VASP performance response to dif-
ferent power caps. As shown in the figure, the performance
of VASP is not affected when applying a 300 W power cap.
However, at a 200 W power cap, we start to see a notice-
able performance slowdown with the two most power-hungry
benchmarks: Si256 hse and Si128 scfdtr (each by 9%). When
the power limit is further reduced to 100 W, the slowdown
is drastically increased, about 60% for both Si256 hse and
Si128 acfdtr. Notably, the GaAsBi-64 and PdO2 benchmarks
still have insignificant performance loss (<5%) even at the
100 W power cap.

We observed similar performance responses to power caps
when running these benchmarks at different node counts, with
the 1-node run being the most power-demanding. Figure 13
shows the VASP performance under different power caps when
running Si256 hse at varied node counts. The performance is
normalized at each node count relative to the default power
limit. At all node counts, VASP responds to power caps
similarly to its optimal node count: performance is unaffected
at 300 W but drops 9% at 200 W, and decreases by over 60%
at 100 W.

VI. DISCUSSION

A. Implications

Further work is needed to accurately predict the power usage
of VASP jobs. However, some of our findings can be used in
power-aware scheduling to regulate this usage.

For example, VASP can run at only 50% of TDP with a
less than 10% performance decrease, and the lower power-
demanding jobs, DFT functional calculations, can run without
visible performance loss at this power limit. The batch system
can utilize this information to apply a 50% TDP power cap to
VASP jobs and reallocate the spared power where the demand
is more critical. The batch system can determine the workload
type of VASP jobs in the queue without costly computation.
Therefore, a scheduler can apply power capping decisions to
VASP jobs within each scheduling cycle, usually 30 seconds.

Fig. 12. VASP performance under GPU power caps. The horizontal axis
shows the applied GPU power caps, and the vertical axis shows the per-
formance normalized over the default power limit, 400 W, for the seven
representative benchmarks. he number next to each benchmark name in the
legend is the node count used to run the benchmark.

Fig. 13. VASP performance under GPU power caps when running Si256 hse
at varied node counts. The horizontal axis shows the applied power caps,
and the vertical axis shows the performance normalized at each concurrency
relative to the default power limit, 400 W

B. Deployment strategies

Our deep dive into VASP power dynamics can extend to
other applications. We plan to incrementally include additional
prominent applications running at NERSC, especially those
running at larger scales. Notably, the top 10 applications
consume over 60% of the computing cycles, with VASP alone
accounting for more than 15% of NERSC’s computing cycles
(as depicted in [33], [34]). Our approach has been recently
applied to NERSC’s second top application, MILC [35], which
uses more than 12% of NERSC computing cycles by one
of NERSC’s summer students. By adopting this strategic
approach, we aim to regulate power for a significant portion
of the Perlmutter system. This will be achieved through the
gradual implementation of power-aware scheduling, leveraging
insights from application power profile analyses.

NERSC’s workload is immensely diverse. While it is doable
to deep-dive into a small number of top applications, this level
of detailed study is not practical for all applications running
at NERSC. These other workloads will necessitate a more
statistical approach. To this end, in addition to this bottom-
up approach (application by application), we also plan to
explore top-down methods, such as deep learning techniques,
to address the diverse workloads at NERSC. Ultimately, we
expect to integrate these two approaches to achieve our power
management goals with the desired accuracy.

C. Next Step - Predicting VASP Power

Our in-depth study on VASP power characteristics provides
the basis for developing power prediction models. We have
identified several key contributors to power variations, includ-
ing system sizes (number of plane waves and bands), methods,
and concurrency, and have assessed their varying impacts on
power consumption. Moving forward, we will integrate our
current findings into a comprehensive power model by quan-
tifying each variation and extending our analysis to explore
additional factors, such as chemical elements.
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VII. RELATED WORK

Several recent analyses of power use by leadership-class
supercomputers have highlighted the cost of power for ever-
growing HPC systems [14], [36], [37]. These observational
studies belie a history of research into energy-efficient comput-
ing. A common focus is the use of Dynamic Voltage and Fre-
quency Scaling (DVFS) to reduce the energy used by a job [4],
[30], [38]–[45]. Others have examined and modeled the behav-
ior of jobs running under a power cap [46]. While these studies
mostly focused on the previous generation CPU and GPU
systems, there are more recent studies investigating the power
cap effect on modern GPUs at the system level [47]. How-
ever, system-level power caps leave optimization opportunities
unexplored. Recent studies [48] comparing DVFS and power
capping in the LLM space demonstrated best-use scenarios
for each. Both DVFS and power-capping have the potential to
impact performance negatively, and a variety of metrics have
been proposed to quantify the energy/performance trade-off
[49]–[51].

Power-aware scheduling based on application power profiles
has been proposed for system-level power management [1]–
[3]. Accurate estimates of the workload’s power use are needed
for these methods to be effective [7], [8], and approaches
range from prediction-based [1], [52], to online measurement-
based [2], to data-driven [53], [54].

Machine learning approaches for dynamic power manage-
ment show promise, e.g., [55], but lack evaluation for produc-
tion deployment. These methods must incorporate application-
specific power behavior to accurately predict power usage.

This paper thoroughly investigates the power variations
of an important HPC application in a production environ-
ment, demonstrating that application power consumption can
strongly depend on input data that is not readily available to
the scheduler. Our study aims to build a solid foundation for
implementing power management strategies through power-
aware scheduling based on application power profiles.
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VIII. APPENDIX: ARTIFACT DESCRIPTION/ARTIFACT
EVALUATION

The Artifact Description materials for this paper, including
the data and scripts used to generate the figures, are available
at https://zenodo.org/records/13853298. Please note that VASP
is licensed software, and therefore we are unable to provide
the associated Artifact Evaluation materials.
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