
Workload-Adaptive Scheduling for Efficient Use of
Parallel File Systems in High-Performance

Computing Clusters
Alexander V. Goponenko∗, Benjamin A. Allan†, Jim M. Brandt‡, and Damian Dechev§

∗ § University of Central Florida, Department of Computer Science, Orlando, FL, USA
Email: ∗alexander.goponenko@ucf.edu, §damian.dechev@ucf.edu

† ‡ Sandia National Laboratories, Albuquerque, NM, USA
Email: †baallan@sandia.gov, ‡brandt@sandia.gov

Abstract—Whereas contentions within storage systems notice-
ably impact runtimes, shared bandwidth-type resources, such as
Lustre, pose challenges for high-performance computing clus-
ter schedulers. Additionally, accurately estimating job resource
requirements, particularly related to I/O operations, remains
a significant challenge for users. In response to these chal-
lenges, we have developed a prototype that facilitates I/O-aware
scheduling in Slurm without imposing additional burdens on
users. Accounting for the specific properties of this bandwidth-
type resource, our system monitors real-time Lustre bandwidth
utilization, estimates job I/O requirements, and dynamically
adjusts to the demands placed on the file system. Our workload-
adaptive scheduler aims to maintain the bandwidth utilization at
a level that reflects the resource requirement of the job queue.
We further enhance the efficacy of our approach by introducing
a “two-group” approximation technique that ensures efficient
performance regardless of the availability of zero-throughput
jobs. We demonstrate effectiveness of our approach through
evaluation on a real cluster.

Index Terms—High-performance computing, parallel job
scheduling, I/O-aware scheduling, multi-resource scheduling,
Slurm, Lustre

I. INTRODUCTION

High-Performance Computing (HPC) clusters are designed
to handle intensive computations that are not feasible on a
single computer. To fulfill this role, an HPC cluster contains
many high-end computer servers called nodes and a large
amount of other resources. Most jobs that run on an HPC
cluster do not require all cluster resources. Therefore, HPC
clusters typically process several jobs simultaneously. Often,

Sandia National Laboratories is a multi-mission laboratory managed and
operated by National Technology & Engineering Solutions of Sandia, LLC
(NTESS), a wholly owned subsidiary of Honeywell International Inc., for
the U.S. Department of Energy’s National Nuclear Security Administration
(DOE/NNSA) under contract DE-NA0003525. This written work is authored
by an employee of NTESS. The employee, not NTESS, owns the right, title
and interest in and to the written work and is responsible for its contents. Any
subjective views or opinions that might be expressed in the written work do
not necessarily represent the views of the U.S. Government. The publisher
acknowledges that the U.S. Government retains a non-exclusive, paid-up,
irrevocable, world-wide license to publish or reproduce the published form
of this written work or allow others to do so, for U.S. Government purposes.
The DOE will provide public access to results of federally sponsored research
in accordance with the DOE Public Access Plan.

the combined demand of the jobs submitted to a cluster
surpasses the cluster’s capacity. Schedulers negotiate conflicts
between the demands and the available resources. An HPC
cluster scheduler decides the order of execution of queued
jobs and the allocation of the cluster resources to the running
jobs. An efficient scheduler must ensure the fair use of the
HPC cluster according to user policies and, at the same time,
attain close to optimal performance and job throughput of
the cluster. The growing use of high-intensity computing and
its rising economic and environmental impact underscore the
need for maximizing the utilization of HPC infrastructure [1],
[2]. For instance, the Frontier system’s construction cost is
estimated to be around 400–600 million US dollars, with
an operational energy consumption of 22 MW [3]. A 5%
improvement in its performance could potentially allow for
a 5% reduction in system size. This reduction could translate
to savings of 20–30 million US dollars in construction costs
and approximately 9.2 GW·h of energy annually. The annual
energy savings could amount to 700 thousand US dollars
(assuming a cost of $0.08 per kW·h [4]) or be sufficient to
meet the energy needs of 400 people (based on a worldwide
per capita energy consumption of 21 039 kW·h in 2022 [5]).
Although Frontier represents one of the largest clusters, it
comprises only a fraction of the HPC computing infrastructure
(17% of TOP500 total performance [6]). Many HPC clusters
are less efficient than Frontier, indicating that improving their
performance could realize even greater benefits. Consequently,
there is a constant demand for more efficient schedulers.

In the past, HPC schedulers primarily focused on managing
compute nodes as if the nodes were the only cluster’s resource.
However, as jobs become more resource-intensive and HPC
systems become more complex, other resource bottlenecks
become prominent. As a result, the effectiveness of approaches
initially designed with a single resource in mind deteriorates.
For instance, I/O bandwidth is frequently becoming an in-
creasingly scarce resource [7]–[10]. Contention within HPC
storage systems leads to performance degradation. To mitigate
I/O congestion and enhance cluster efficiency, schedulers
must manage these bandwidth-type resources. Unlike compute

1506979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00190

nodes, where resource management systems can appropriately
restrict a job’s usage to its dedicated share, the bandwidth-
type resources, such as file systems and networks, cannot be
exclusively reserved for a single job. A parallel file system,
such as Lustre, will inevitably experience concurrent access
from multiple jobs. This shared usage impacts the execution
time of each job. Furthermore, an allocation of a specific
portion of the file system bandwidth to a job may even prove
counterproductive because HPC jobs I/O operations are bursty
and unpredictable (Section II-B).

Advanced scheduling techniques encounter additional hur-
dles due to the need for detailed information regarding job
resource requirements. Requests for job details inconvenience
users and pose a potential barrier to the adoption of new
scheduling methods. Furthermore, users often struggle to pro-
vide adequate estimations of their jobs’ resource requirements.
Thus, inaccuracies in user-provided job runtimes have a sig-
nificant impact on scheduling quality [11]–[13]. Anticipating
file system usage presents even greater challenges. Whereas
some users can estimate the maximum total bytes written or
read by their jobs, determining average I/O throughput can be
cumbersome. Predicting file access patterns, peak rates, and
their temporal occurrence within the job execution window is a
nearly impossible task. Relying on inaccurate data jeopardizes
scheduling efficiency.

A. Contributions

We have developed a prototype of a complete, functioning
I/O-aware scheduling system for Slurm, a widely utilized HPC
cluster resource manager [14]. The prototype introduces Lustre
bandwidth as an additional resource in Slurm and implements
full-featured multi-resource backfill scheduling.

Our scheduler accounts for the specific properties of the
new bandwidth-type resource. The system measures real-time
Lustre bandwidth utilization and autonomously determines
additional job resource requirements the scheduler needs.

We also present the workload-adaptive scheduling that re-
duces I/O congestion by maintaining the bandwidth utilization
at a level that matches the resource requirements of the job
queue. We further enhance this approach via a “two-group”
approximation technique, which attains efficient performance
regardless of the availability of zero-throughput jobs.

Through evaluation conducted on a real HPC cluster, we
demonstrate the effectiveness of our workload-adaptive I/O-
aware scheduling approach. Our strategy reduces the file
system congestion and surpasses not only the performance
of the default Slurm scheduler but also the improvements
attainable by the previously reported I/O-aware HPC cluster
scheduling techniques.

Although our implementation specifically targets Slurm and
Lustre, the concepts of bandwidth-type resource, workload-
adaptive scheduling (Section VII), and “two-group” approxi-
mation (Section VII-A) that we introduce are widely applica-
ble to other schedulers and I/O resources.

time𝑠! 𝑏! 𝑐!

𝑄!
wait time

𝐷!
runtime

submit time start time complete time

Fig. 1: Diagram of job lifetime showing the notation used
herein.

II. BACKGROUND

We will use the following notation in this paper, as described
on the diagram that represents events happening to a job
(Fig. 1). After a user submits a job j, at time sj (called submit
time or arrival time), the job may end up in a wait queue. After
spending Qj wait time in the queue, the job starts at time bj
and completes after additional Dj runtime at time cj .

For simplicity, we discuss the implementation based on
Slurm and Lustre, although the results apply to other resource
management systems as well as other parallel file systems.
Also for simplicity, we consider only two cluster resources:
nodes (N nodes in total) and Lustre bandwidth. Each job is
assumed to require a constant number of nodes to run nj ; the
user provides this number during the job submission, along
with a requested runtime limit Lj . The actual job runtime
Dj , is not known until the job is completed. We denote the
estimated runtime as dj . The Lustre throughput of the job,
averaged over its duration, is also unknown, depends on the
cluster environment, and must be estimated. The estimated
throughput is referred to as rj .

A. Slurm Scheduling Algorithm

Slurm provides a backfill list scheduling algorithm, im-
plemented as a plugin and enabled by default. Algorithm 1
delineates this scheduling algorithm. Conceptually, it is a
hybrid backfill scheduling approach that can be adjusted via
the value of BackfillMax to balance the fairness and the
scheduling overhead. If BackfillMax = 1, the algorithm be-
comes equivalent to EASY backfill [15]. However, the default
Slurm setting is equivalent to BackfillMax = ∞, which directs
the scheduler to make reservations for all delayed jobs. The
scheduler must therefore keep track of these reservations. Pro-
cedure InitializeReservationTracker instantiates a
resource reservation tracker data structure and initializes it by
reserving, for each running job j, the resources used by the
job for the time the job is allowed to run, that is, the time
interval [bj , bj + Lj). Procedure ReserveResources(j, t)
reserves the resources for job j starting at time t, also for
the maximum time the job is allowed to run Lj . Procedure
EarliestStartTime(j, t) returns the earliest time not
later than t such that the resources required by job j are
available for the duration Lj .

Slurm offers several methods for integrating various re-
sources into the scheduling system [16]. The most suitable
approach for managing the parallel file system resource is
through the use of “licenses.” Whereas Slurm’s license man-
agement was previously basic, the release of version 22.05

1507

Algorithm 1. Outline of Slurm scheduling backfill algorithm
Input: Running jobs R, waiting jobs Q, current time tnow
Options: Maximum number of backfill reservations to track

BackfillMax
1 RT← InitializeReservationTracker(R,Q)
2 Sort waiting jobs in Q.
3 BackfillCount← 0
4 for j ∈ Q do
5 t← RT.EarliestStartTime(j, tnow)
6 if t = tnow then
7 Start job j.
8 RT.ReserveResources(j, tnow)
9 else

10 if BackfillCount ≥ BackfillMax then
11 Skip job j until the next scheduling round.
12 else
13 RT.ReserveResources(j, t)
14 BackfillCount← BackfillCount + 1

introduced the option to enable accurate license reservation
tracking for delayed jobs [17]. However, if Lustre bandwidth
is integrated into Slurm using existing functionality, the sched-
uler will require the users to specify the file system resource
requirements for their jobs. This places an additional burden
on the users and may encourage them to underestimate their
job’s file usage in an attempt to avoid potential scheduling
delays caused by license shortages. The users would not
face penalties for underestimating, as Slurm does not enforce
license resource allocation. Furthermore, Algorithm 1 has a
limited efficiency in cases of multiple resources: local deple-
tion of one resource can cause under-utilization of the other
resources [18].

B. Characteristics of HPC Jobs I/O Patterns

I/O patterns in HPC clusters are often characterized by
burstiness [19]–[21]. Due to the periodic nature of scientific
applications, characterized by computation phases followed
by I/O phases, the bursts of I/O activity in HPC clusters
tend to be lengthy [22]. Despite the adoption of buffers and
other mechanisms to mitigate the negative impacts of these
I/O bursts, the simultaneous occurrence of I/O phases from
multiple jobs often leads to a slowdown in the execution of all
affected jobs. Strategies that try to keep the average through-
puts of all the jobs running below the available bandwidth
(including the I/O-aware scheduling presented in Section VI)
are less useful when there are bursts of I/O activity. The
overlap of I/O bursts may still lead to periods of file system
overload. Restricting jobs so that the sum of the maximum
job throughputs always remains below the bandwidth is in-
efficient, resulting in either under-utilization of the cluster or
in a cluster design with excessive over-provisioning of the
file system bandwidth. Although scheduling jobs so that I/O
phases do not overlap would help, predicting I/O patterns is
challenging [23]. Therefore, alternative scheduling techniques
that can minimize instances of I/O activity overlap, such as
the workload-adaptive scheduling presented in Section VII,
are preferable.

Slurm
scheduler

Analytical
Services

job resource
requirements

current
resource
utilization

LDMS Records

LDMS

stores data from nodes

Fig. 2: Diagram of interactions between the components of
the scheduling system.

III. OVERVIEW OF OUR IMPLEMENTATION

We developed our prototype by integrating three pri-
mary components: a scheduler, responsible for job schedul-
ing and management; a performance monitoring tool that
gathers resource usage data; and analytical services tasked
with processing runtime data into real-time resource utiliza-
tion and job resource requirements. Fig. 2 illustrates the
schematic component diagram. The scheduler component con-
sists of Slurm (with a small number of necessary modi-
fications) and a scheduling plugin that is configurable to
provide all the features described in this paper. The source
code and details on the scheduler prototype are available at
GitHub1. For performance monitoring, we employ LDMS, the
Lightweight Distributed Metric Service [24], which collects
various performance-related information from all compute
nodes and stores it in a database accessible by the analytical
services. Our database utilizes the Scalable Object Store
(SOS), a component of LDMS.

The analytical services, the third component depicted in
Fig. 2, fulfill Slurm’s requests for information, with a primary
focus on predicting job resource requirements. We compute
these predictions as weighted averages of historical resource
usage of similar jobs, using exponentially decaying weights to
increase the contribution of recent jobs. When a job finishes,
the scheduler notifies the analytical services, which will then
retrieve LDMS records related to the job, compute the job’s
resource utilization, and reevaluate resource requirements for
future requests. In the upcoming examples of workloads,
identifying similar jobs and predicting job resource utilization
pose no significant challenge. Consequently, our prototype
does not explore advanced prediction techniques. It’s worth
emphasizing that various prediction methods discussed in
existing literature [13], [25]–[29] can seamlessly integrate
into our framework. In addition to estimating job resource
requirements, the analytical services module computes the
current total Lustre throughput, for robustness in scenarios
where estimates are inaccurate or unavailable for certain jobs,
as discussed in Section VI.

1https://github.com/algo74/slurm/tree/workload-adaptive-paper-2024

1508

IV. EVALUATION METHODOLOGY

In the remaining sections, we compare I/O-aware and
workload-adaptive scheduling with the default Slurm sched-
uler and with each other. We demonstrate these scheduling
techniques in application to the scheduling of simplified but
representative workloads on a real HPC system (see Appendix
for details).

Our experiments were conducted on Stria, a production clus-
ter comprising 288 ARM64 nodes featuring 2.0 GHz Cavium
Thunder-X2 processors with 2 sockets and 28 cores per socket.
The cluster is equipped with a 2:1 oversubscribed Mellanox
EDR Infiniband network [30]. Stria’s Lustre 2.12.3 file system
consists of two metadata servers, four object storage servers,
and 56 Solid State Drive volumes with a total capacity of
383 TiB. This Lustre instance is not shared with other clusters.
We allocated 16 nodes from Stria for our experiments. One
node served as the control node, responsible for running our
modified Slurm control instance and the other system modules.
The remaining 15 nodes were utilized as compute nodes of our
experiments.

Given the impractical length of time required to conduct
scheduling experiments of workloads containing real HPC
cluster applications, we opted for synthetic job workloads. We
designed these workloads to reflect common characteristics
of HPC I/O patterns and highlight various aspects of job
scheduling in the context of parallel file system usage. How-
ever, we did not specifically tailor the workloads to maximize
the observed differences between the evaluated methods. We
configured each job in our workloads to require one node
in order to streamline the analysis and avoid unnecessary
complications associated with node scheduling. As a result,
our experiments show no noticeable signs of backfill or
node reservation for delayed jobs. Nevertheless, it’s worth
mentioning that our scheduler fully implements and handles
these aspects of scheduling, similar to Slurm.

The first workload we analyze, which we refer to as
“Workload 1,” consists of two types of jobs: “write×8” and
“sleep.” A “write×8” job executes 8 parallel threads on one
node, with each thread generating 10 GiB of data written to
a randomly chosen Lustre storage volume (80 GiB total per
job). Conversely, a “sleep” job remains idle for 600 s, also
using one node. These jobs are organized within “Workload 1”
into a pattern of 8 waves. Each wave comprises 30 “write×8”
jobs and 60 “sleep” jobs, resulting in a total of 720 jobs
in the entire workload. This workload mirrors the common
scenario where users submit batches of similar jobs and
reflects the predominance of write operations in scientific
computation tasks [7]. The second workload, “Workload 2,”
shares similarities with “Workload 1” but features six distinct
job types. It is described further in Section VII-A.

V. DEFAULT SLURM BACKFILL SCHEDULING

For comparison with the other algorithms, Fig. 3(a) presents
the results of scheduling “Workload 1” using the default Slurm
backfill scheduler. The top panel of Fig. 3(a) displays the

Algorithm 2. Conceptual outline of I/O-aware scheduler’s
InitializeReservationTracker

Input: Running jobs R, waiting jobs Q, current time tnow
Output: {NT,LT}

1 Obtain the latest values of rj for j ∈ R
⋃
Q.

2 Obtain current Lustre throughput Rnow.
3 Initialize a node tracker NT using the Slurm’s standard

method.
4 Create a new tracker LT to monitor Lustre throughput

reservations.
5 for j ∈ R do
6 Reserve rj in LT for interval [bj , bj + Lj).
7 if

∑
j∈R

rj < Rnow then

8 Reserve Rnow −
∑
j∈R

rj in LT for
[
tnow,max

j∈R
(bj + Lj)

)
.

Lustre throughput, while the bottom panel shows the node al-
location. These results demonstrate that the default scheduler,
which lacks awareness of the file system utilization, dispatches
jobs in the order they appear in the queue. Consequently,
periods of high Lustre utilization are followed by intervals
of low utilization.

The Lustre throughput undergoes significant fluctuations
even while the combination of the running jobs does not
change, which is a common situation we observe in other
instances of parallel file systems. The peak Lustre throughput
is about 20 GiB/s. Fig. 4 indicates that as more “write×8”
jobs are added to run simultaneously, the rate of increase in
throughput diminishes. Although the “short-term” bandwidth
is approximately 20 GiB/s, the “long-term” bandwidth may
likely be located around 15 GiB/s; the throughput levels up
near this threshold in Fig. 4.

VI. I/O-AWARE SCHEDULING

Our I/O-aware approach ensures that the estimated through-
put within the schedule never exceeds the file system
bandwidth. We implemented it by modifying the Slurm’s
backfill scheduling plugin, as well as making other ad-
justments to Slurm. Algorithm 2 outlines the procedure
InitializeReservationTracker of the I/O-aware
scheduler. Conceptually, this approach treats Lustre throughput
as another “regular” cluster-wide resource, similar to Slurm’s
licenses. However, an important difference lies in employing
predicted resource requirements, as well as measured current
total resource utilization, both obtained from analytical ser-
vices at the beginning of each scheduling round (Lines 1
and 2). Accounting for the most recent estimates not only
alleviates the burden on users to provide the data but also
helps address the inherent dependence of these job parameters
on running conditions. By incorporating the measured total
throughput, we compensate for potential underestimations of
Lustre resource utilization. For instance, this approach helps
mitigate possible file system overload caused by new jobs
lacking historical data for predicting resource requirements,
because we select the highest current bandwidth utilization
among the values computed by the two methods, as described

1509

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

10 s average
300 s average

0 5000 10 000 15 000 20 000 25 000 30 000 33 147
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

write×8 sleep

(a) Default Slurm scheduling

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 5000 10 000 15 000 20 000 25 000 29 674
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(b) I/O-aware with 20 GiB/s limit, “pre-trained”

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 5000 10 000 15 000 20 000 26 403
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(c) I/O-aware with 15 GiB/s limit, “pre-trained”

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 5000 10 000 15 000 20 000 24 379
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(d) Adaptive with 20 GiB/s limit, “pre-trained”

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 5000 10 000 15 000 20 000 24 979
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(e) Adaptive with 20 GiB/s limit, “untrained”

Fig. 3: Representative results of scheduling “Workload 1.”

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of parallel “write×8” jobs

0

5

10

15

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

Fig. 4: Lustre total throughput as the number of concurrent
“write×8” jobs varies from 0 to 15 (box plot).

in Line 7. The procedures EarliestStartTime (Algo-
rithm 4) and ReserveResources (Algorithm 3) are funda-
mentally equivalent to other implementations of two-resource
backfill scheduling, such as AI4IO Suite (Section VIII).

Algorithm 3. Conceptual outline of I/O-aware scheduler’s
ReserveResources

Input: Object {NT,LT}, job j, reservation start time t
1 Reserve nj in NT for interval [t, t+ Lj).
2 Reserve rj in LT for interval [t, t+ Lj).

Fig. 3(b) demonstrates the results of scheduling “Work-
load 1” using the I/O-aware scheduler with Lustre throughput
limit of 20 GiB/s. The estimator is “pre-trained” by running
jobs in isolation, to illustrate the scheduler performance with
good data. At the beginning of the experiment, the scheduler
dispatches fewer than six “write×8” jobs but later increases
the number of simultaneous “write×8” jobs because the jobs’
throughput estimate decreases due to the file system con-
gestion. Running more “write×8” jobs intensifies the con-
gestion, resulting in a further decrease in the estimate and,
consequently, allowing even more “write×8” jobs to run.
Eventually, this process stabilizes, although the number of
concurrently running “write×8” jobs continues to fluctuate
over time. Overall, the I/O-aware scheduler yields a 10%
improvement of the total workload runtime (also referred to as
makespan) compared to default Slurm scheduling [Fig. 3(a)].

Algorithm 4. Conceptual outline of I/O-aware scheduler’s
EarliestStartTime

Input: Object {NT,LT}, job j, initial reservation start time
tmin

Options: Total count of nodes N , throughput limit Rlimit
Output: Earliest time all resources are available t

1 t← tmin
2 repeat
3 tNT ← earliest time not earlier than t when less than

N − nj is reserved in NT for interval [t, t+ Lj)
4 t← earliest time not earlier than tNT when less than

Rlimit − rj is reserved in LT for interval [t, t+ Lj)
5 until t = tNT

1510

A stricter throughput limit of 15 GiB/s leads to greater im-
provement in the total runtime of the workload. The outcome is
presented in Fig. 3(c), indicating a considerable 20% improve-
ment of the total runtime over the default Slurm scheduler.
However, the reduced throughput limit may not yield benefits
for every workload [31], which motivated our development
of scheduling methods that dynamically reevaluate resource
limits based on the job queue’s composition, as described in
the following section.

VII. WORKLOAD-ADAPTIVE SCHEDULING

Workload-adaptive scheduling aims to maintain a consistent
I/O throughput level throughout the execution of the job
queue [31]. This adaptive approach calculates the desired
level from the estimated resource requirements of the jobs
in the queue, hence its name. The target throughput is the
one that allows all I/O operations (

∑
rjdj bytes in total)

complete within the minimum time required to allocate the
other resources—that is, the nodes in our scenario—to all jobs
(
∑

njdj/N):

R̃ =
∑

rjdjN
/∑

njdj . (1)

Similar to the I/O-aware scheduler, the workload-adaptive
scheduler prevents the total throughput from exceeding a given
limit at any time by monitoring bandwidth utilization and
reserving I/O throughput for delayed jobs. In addition, the
workload-adaptive scheduler avoids scheduling I/O-heavy jobs
during time intervals where the targeted throughput R̃ has
already been reached.

Fig. 3(d) displays the results of scheduling “Workload 1”
with the workload-adaptive scheduling approach, following
the same “pre-training” process as previously described. The
scheduler converges to the optimal state where 2-3 “write×8”
jobs run simultaneously, maintaining the total Lustre through-
put close to 10 GiB/s. This approach results in 26% improve-
ment of the total workload runtime over the default Slurm
backfill scheduler.

The workload-adaptive scheduling converges to the optimal
state even without prior information about the job resource
requirements. Fig. 3(e) illustrates the scheduler’s performance
when it is not pre-trained by running jobs in isolation. Ini-
tially, having no estimates of the job resource requirements,
the scheduler assumed zero Lustre throughput for all jobs.
However, it promptly transitions from a scheduling approach
similar to the default Slurm scheduler to one that maintains
stable I/O throughput for the remainder of the experiment.
Despite the initial less efficient scheduling, the total runtime
was 5.5% shorter than that of the non-adaptive I/O-aware
scheduler with the throughput limit of 15 GiB/s, and 25%
shorter than the default Slurm scheduler.

A. Two-group Approximation

The “naı̈ve” workload-adaptive scheduler, which simply
refrains from scheduling jobs that utilize the file system
once the targeted throughput is attained, exhibits effective
scheduling for “Workload 1.” This is because the workload

contains a sufficient number of jobs that do not use the
file system. Such a scheduler may succeed with real HPC
cluster workloads because a significant proportion of HPC
jobs exhibit minimal or no I/O activity [32]. Nevertheless, in
a more general scenario this simplistic approach may result in
idle nodes, causing performance degradation, when the number
of non-I/O jobs in the queue is not sufficient to occupy the
remaining nodes once the targeted throughput R̃ is reached.
To ensure efficiency, the algorithm must sustain a consistent
throughput without rendering nodes idle.

We introduce a simplified approach, which we refer to
as the “two-group” approximation algorithm, to address this
non-trivial problem. Its primary concept involves categorizing
waiting jobs into two groups according to their file system
usage. Jobs with minimal usage are considered “zero jobs”
and the remaining jobs are designated as “regular jobs”:

Zero Jobs = {j ∈ Q : rj ≤ njr
∗}

Regular Jobs = {j ∈ Q : rj > njr
∗} .

The threshold r∗ defines the process of categorizing the
jobs into the groups. Finding the value of the threshold that
minimizes node idle time while maintaining the throughput
sufficiently to optimize the performance is not straightforward
because the optimized parameters depend on the threshold in a
non-linear and possibly even non-monotonic way. One method
for determining the value of this parameter is to consider
the quality-of-service conditions. For example, in this study,
we guarantee that at least half of the total node-hours in the
waiting queue are not delayed as a result of efforts to regulate
the file system throughput. In other words, we set threshold
r∗ in such a way that:∑

j ∈ Zero Jobs

njdj ≥
∑

j ∈ Regular Jobs

njdj . (2)

After establishing the threshold, we identify “zero jobs”
and assume they have no Lustre throughput. To keep the
“two-group” approximation close on average to the original
problem, we also modify other parameters. We compute the
average load of the “zero jobs”:

rzero =
∑

j ∈ Zero Jobs

rjnjdj

/ ∑
j ∈ Zero Jobs

njdj , (3)

and recalculate the target load and job requirements for the
“regular jobs”:

R̃
′
= R̃−N rzero , (4)

rj
′ =

{
0, j ∈ Zero Jobs
rj − nj rzero, j ∈ Regular Jobs .

(5)

This way, maintaining
∑

rj
′ close to R̃

′
is equivalent, when

time-averaged, to maintaining
∑

rj close to R̃.
The schematic of the workload-adaptive scheduling is sum-

marized in Algorithms 5–7. Lines 3–5 of Algorithm 5 describe
the computation of R̃ following the ideas of (1) but accounting
for both the jobs in the wait queue and the remaining portions

1511

Algorithm 5. Conceptual outline of workload-adaptive sched-
uler’s InitializeReservationTracker

Input: Running jobs R, waiting jobs Q, current time tnow

Output: {RT,AT, r∗, rzero, R̃
′
}

1 Obtain the latest values of rj and dj for j ∈ R
⋃
Q.

2 Initialize an I/O-aware tracker RT using Algorithm 2.
3 VI/O ←

∑
j∈R,

tnow<bj+dj

rj (bj + dj − tnow) +
∑
j∈Q

rjdj

4 Tnodes ←
∑

j∈R,
tnow<bj+dj

nj

N
(bj + dj − tnow) +

∑
j∈Q

nj

N
dj

5 R̃← VI/O
Tnodes

6 Determine minimum threshold r∗, e.g. to satisfy (2).
7 Compute rzero using (3).
8 Compute R̃

′
using (4).

9 Create a new tracker AT to monitor adjusted Lustre
throughput reservations.

10 for j ∈ R do
11 Reserve rj − nj rzero in AT for interval [bj , bj + Lj).

Algorithm 6. Conceptual outline of workload-adaptive sched-
uler’s ReserveResources

Input: Object {RT,AT, r∗, rzero, R̃
′
}, job j, reservation

start time t
1 RT.ReserveResources(j, t)
2 if rj > njr

∗ then /* “Regular job” */
3 Reserve rj − nj rzero in AT for interval [t, t+ Lj).

of the running jobs. Lines 6–8 correspond to computation of
the other parameters using (2)–(4). Lines 9–11 demonstrate
initialization of an additional tracker used to determine when∑

rj
′ reaches R̃

′
. “Regular jobs” are not scheduled to run dur-

ing the time this target is reached (Lines 4–8 of Algorithm 7).
Additionally, the scheduler controls, in the same manner as
the I/O-aware scheduler in Section VI, that the utilization of
the resources, including the file system throughput, does not
exceed their limits.

In order to evaluate the effectiveness of this method, we
conduct experiments involving the scheduling of a workload
comprised of six different job types, each with its own file
system usage. This workload, referred to as “Workload 2,” is
structured into waves, similar to “Workload 1” but totaling 5

Algorithm 7. Conceptual outline of workload-adaptive sched-
uler’s EarliestStartTime

Input: Object {RT,AT, r∗, rzero, R̃
′
}, job j, initial

reservation start time tmin
Output: Earliest time all resources are available t

1 if rj ≤ njr
∗ then /* “Zero job” */

2 t← RT.EarliestStartTime(j, tmin)
3 else /* “Regular job” */
4 t← tmin
5 repeat
6 tRT ← RT.EarliestStartTime(j, t)
7 t← earliest time not earlier than tRT when no more

than R̃
′

is reserved in AT for interval [t, t+ Lj)
8 until t = tRT

waves in all. A wave is a sequence of phases, each phase is
made up of jobs of the same type. Specifically, every wave
starts with 30 “write×8” jobs, which are the same jobs used
in “Workload 1,” each job executing eight parallel threads
and writing a total of 80 GiB per job. Following these jobs
are 30 “write×6” jobs, which run six parallel threads on
one node, with each thread also generating 10 GiB of data
written to a randomly chosen Lustre volume (60 GiB per job).
Subsequently, 30 “write×4” jobs are submitted (four threads,
40 GiB per job), followed by 70 “write×2” jobs (two threads,
20 GiB per job), and 120 “write×1” jobs (one thread writing
10 GiB to a randomly selected Lustre volume). Finally, the
wave concludes with 30 “sleep” jobs, each idling for 600 s
on one node, replicating the “sleep” jobs of “Workload 1.”
The workload contains 1550 jobs in total. To “pre-train” the
estimator, representative jobs are run in isolation before the
main stage of the experiment.

As demonstrated in Fig. 5(a), the default Slurm sched-
uler dispatches the jobs of this workload in the order they
are submitted.2 The I/O-aware scheduler with a throughput
limit of 20 GiB/s results in a very similar scheduling pattern
[Fig. 5(b)], but nevertheless, manages to make the Lustre
throughput somewhat more uniform and improve the total
workload runtime. We repeated the experiments multiple times
to account for the variability of the results. Fig. 6 summarizes
the measured total runtime of the experiments. It illustrates
a commonly observed high variability of parallel file system
performance in HPC clusters [7], [33]. Because the runtime
distribution is skewed, we use the median as the measure
of central tendency. The median of the workload runtime
achieved by the I/O-aware scheduler with the throughput limit
of 20 GiB/s is 4% less than the runtime attained by the default
Slurm scheduler. Decreasing the throughput limit to 15 GiB/s
helps the I/O-aware scheduler further improve the workload
runtime. The median runtime in this case is 7% less than
the value obtained by the default Slurm scheduler (Fig. 6).
However, with the throughput limit of 15 GiB/s, the I/O-aware
scheduler quickly runs out of “sleep” jobs it uses to occupy the
remaining nodes when the throughput limit is reached, causing
idle compute nodes in the second half of the experiment
[Fig. 5(c)]. For this workload, the total runtime still improves
over the value obtained by the I/O-aware scheduler with the
higher throughput limit. However, in other situations it could
result in performance degradation.

The workload-adaptive scheduler using the throughput limit
of 20 GiB/s is able to further improve the overall system
performance. The median workload runtime decreases by
5% over the best I/O-aware scheduler’s configuration and
by 12% over the default Slurm scheduler (Fig. 6). These
results demonstrate the effectiveness of our approach. Fig. 5(d)
confirms that the workload-adaptive scheduling with the “two-
group” approximation avoids idling nodes while keeping the
file system throughput reasonably close to the target.

2Although our scheduler fully implements backfill scheduling, this exper-
iment shows no noticeable signs of backfill because each job requires one
node and no other resource.

1512

Interestingly, although the target throughput for “Work-
load 2” stays above 15 GiB/s throughout most of the experi-
ment, the “two-group” approximation technique helps reduce
the node idle time even when the scheduler’s Lustre throughput
limit is set to 15 GiB/s, as seen on Fig. 5(e). In this case, the
median workload runtime of the workload-adaptive scheduler
is about 3% less than the result of the I/O-aware scheduler
with the same throughput limit.

VIII. RELEVANT WORK

The conventional approach of constraining job scheduling
so that the throughput does not surpass the bandwidth limit,
which constitutes our I/O-aware scheduling, has been previ-
ously documented. Notably, AI4IO Suite [33] includes an I/O-
aware scheduler and a resource utilization estimator. AI4IO
also provides a “canary” application designed to detect inter-
mittent file system degradation events. Although there are sim-
ilarities with our approach, AI4IO employs Flux [34], an HPC
management software that is still in the development stage.
In contrast, our implementation is designed to operate with
Slurm, a well-established and popular HPC cluster resource
manager. Moreover, unlike our workload-adaptive scheduling
method, AI4IO and other existing implementations of I/O-
aware scheduling have no capability to mitigate I/O contention
by attaining more uniform I/O throughput. Additionally, no
other I/O-aware scheduler implements techniques such as our
“two-group” approximation to reduce idle nodes.

Ideas similar to the workload-adaptive scheduling approach
were presented in previous works that deal with process
scheduling on multi-core systems. [35] proposed a technique
to alleviate memory bus contention by regulating throughput
to match the average bandwidth requirement. Furthermore,
[36] introduced a concept of “fitness” of processes in order
to balance the utilization of CPUs and memory bandwidth
during scheduling, a goal akin to that of our “two-group”
approximation method. Though these techniques are inspira-
tional, they are not directly applicable to HPC job scheduling.
Unlike HPC job scheduling, process scheduling only needs to
decide which processes to run immediately without resource
reservation or job backfilling considerations. Therefore, the
problem of scheduling HPC jobs differs fundamentally from
the problem of scheduling processes on CPU cores.

Several multi-resource scheduling techniques aimed at en-
hancing datacenter efficiency also do not account for resource
reservations and backfilling. This relaxation transforms the
scheduling into a vector bin packing problem. [37] demon-
strated that best results in such scenarios are achieved by
employing “dot-product” or “L2-norm” heuristics to choose
the order of job resource allocation attempts. [38] implemented
the “dot-product” heuristics in a Yarn scheduler referred to
as “TETRIS.” [39] suggest a three-stage scheduling algorithm
that relies heavily on detailed information about arriving jobs,
including the percentage of jobs and resource requirements of
each job type. When such information is assumed to be avail-
able, the proposed algorithm outperforms “TETRIS.” These
techniques are also not applicable to HPC job scheduling,

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

10 s average
300 s average

0 10 000 20 000 30 000 43 085
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

write×8
write×6
write×4

write×2
write×1
sleep

(a) Default Slurm scheduling

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 10 000 20 000 30 000 41 665
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(b) I/O-aware with 20 GiB/s limit

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 10 000 20 000 30 000 39 890
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(c) I/O-aware with 15 GiB/s limit

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 10 000 20 000 30 000 37 825
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(d) Adaptive with 20 GiB/s limit

0

10

20

Lu
st

re
th

ro
ug

hp
ut

(G
iB

/s
)

0 10 000 20 000 30 000 38 676
time (s)

0

4

8

12

no
de

al
lo

ca
tio

n

(e) Adaptive with 15 GiB/s limit

Fig. 5: Representative results of scheduling “Workload 2.”

1513

Default I/O-aware
20 GiB/s

I/O-aware
15 GiB/s

Adaptive
20 GiB/s

Adaptive
15 GiB/s

36 000

38 000

40 000

42 000

44 000

46 000

48 000
To

ta
lr

un
tim

e
(s

)

Indivilual experiments
Median

Fig. 6: Summary of results of scheduling “Workload 2” (swarm
plot and median for each scheduler configuration).

which requires resource reservations and backfill to enforce
job priorities.

[18] propose a scheduling approach for HPC clusters that
defines a “window” of jobs at the head of the queue and sched-
ules the jobs in the “window” without considering job order,
effectively converting the scheduling problem into a vector
bin packing one. The authors present a mechanism to prevent
job starvation; however, they did not validate its effectiveness.
Therefore, this approach may be less favorable among HPC
cluster practitioners compared to the well-established backfill
approach. Similarly, the “pack-scheduling” technique [18],
[40], which may delay jobs while required resources are idle,
may struggle to find acceptance within the HPC community.

[41] develop heuristics that improve the performance of
EASY backfill algorithm (BackfillMax = 1 as described in
Section II-A) in the case of multiple resources. Although it
could be an alternative to our “two-group” approximation,
the approach is not applicable for BackfillMax > 1 and
considers only the case of a single machine. [42] evaluate
heuristics for reducing I/O utilization conflicts, which could
be an alternative to our workload-adaptive approach, but their
work also considers EASY backfill algorithm only and is not
applicable for BackfillMax > 1. Furthermore, they evaluated
their approach via simulations using their own runtime model
and did not confirm the results with real-world experiments.

An orthogonal approach to our work deals with the schedul-
ing of I/O calls of co-running jobs [8], [43]–[46]. This direc-
tion is thoroughly reviewed by [40]. Optimizing the I/O call
scheduling reduces but cannot fully remove the effects of the
file system congestion. Our workload-adaptive job scheduling
is, therefore, complimentary to such studies, as it reduces the
need for I/O call scheduling.

IX. CONCLUSIONS

Through a set of Slurm plugins and auxiliary modules,
we have implemented I/O-aware scheduling in Slurm without
imposing additional burdens on users. In addition to the
straightforward I/O-aware scheduling, which imposes limits
on the I/O throughput, our implementation introduces the

workload-adaptive approach. This approach aims to maintain
the throughput at a level computed based on the overall
resource requirement of the job queue. Our workload-adaptive
scheduler, requiring no manual tuning for the workload, usu-
ally outperforms both the default Slurm scheduler and the
conventional I/O-aware scheduler. We showcase the advan-
tages of our approach through an evaluation conducted on an
actual HPC cluster system; similar improvements have been
observed in experiments conducted through simulations [31],
[47] and on a cluster of virtual machines [47]. The workload-
adaptive scheduler is expected to enhance performance in
all scenarios where the relationship between throughput and
load is concave [31]. Fig. 4 illustrates such a relationship for
the studied Lustre file system. A similar concave profile is
anticipated for most parallel file systems.

We augment the workload-adaptive scheduling with our
“two-group” approximation technique to eliminate the sched-
uler’s reliance on zero-throughput jobs being available for
scheduling on nodes that otherwise would remain idle once
the target throughput is reached. The “two-group” approxi-
mation is based on treating a pre-defined fraction of the job
queue as zero-throughput jobs. We demonstrate the efficacy of
scheduling with the “two-group” approximation in scenarios
where the workload contains few zero-throughput jobs.

In our evaluation, the workload-adaptive scheduler gains
12% to 26% in efficiency compared to the default Slurm sched-
uler and outperforms the I/O-aware scheduler by 5% to 8%.
Whereas the improvements provided by the workload-adaptive
scheduling may appear modest at times, their significance
becomes apparent when considering the scale of the HPC
computing industry. Since our workloads were not specifically
designed to maximize the benefits of the proposed methods,
the reported values serve as rough estimates of the poten-
tial advantages of workload-adaptive scheduling, rather than
definitive limits. Real-world results could differ, especially
because many HPC cluster file systems are over-provisioned
to handle peak access rates. However, for workloads with
little I/O bandwidth utilization, the proposed approach will
closely resemble the standard Slurm behavior, thus causing
no performance degradation. In the next iteration of our
prototype, we aim to further reduce the overhead associated
with scheduling minimally used resources. Additionally, we
plan to expand the features for monitoring file system usage.
With these enhancements, adopting the system will have no
downside. Once it gains popularity, the data generated while
using the system may inform the design of I/O components
for future HPC clusters.

ACKNOWLEDGMENT

Some materials contained in this paper were previously
presented in PhD thesis by Goponenko [47]. The authors
thank Kenneth Lamar, Ramin Izadpanah, Christina Peterson,
Zachary Painter, Benjamin Schwaller, and Omar Aaziz for
their valuable suggestions. The works at the University of
Central Florida were supported by contracts with Sandia
National Laboratories.

1514

REFERENCES

[1] M. Etinski, J. Corbalan, J. Labarta, and M. Valero, “Linear programming
based parallel job scheduling for power constrained systems,” in 2011
International Conference on High Performance Computing Simulation,
(Istanbul, Turkey), pp. 72–80, IEEE, July 2011.

[2] N. Ensmenger, “The Environmental History of Computing,” Technology
and Culture, vol. 59, no. 4, pp. S7–S33, 2018.

[3] S. Atchley, C. Zimmer, J. Lange, D. Bernholdt, V. Melesse Vergara,
T. Beck, M. Brim, R. Budiardja, S. Chandrasekaran, M. Eisenbach,
T. Evans, M. Ezell, N. Frontiere, A. Georgiadou, J. Glenski, P. Grete,
S. Hamilton, J. Holmen, A. Huebl, D. Jacobson, W. Joubert, K. Mcma-
hon, E. Merzari, S. Moore, A. Myers, S. Nichols, S. Oral, T. Pa-
patheodore, D. Perez, D. M. Rogers, E. Schneider, J.-L. Vay, and
P. K. Yeung, “Frontier: Exploring Exascale,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, SC ’23, (New York, NY, USA), pp. 1–16,
Association for Computing Machinery, Nov. 2023.

[4] U.S. Energy Information Administration, “Electric Power Monthly.”
https://www.eia.gov/electricity/monthly/epm table grapher.php.

[5] H. Ritchie, P. Rosado, and M. Roser, “Energy Production and Consump-
tion,” Our World in Data, Feb. 2024.

[6] TOP500.org, “Performance Development | TOP500.”
https://www.top500.org/statistics/perfdevel/, 2023.

[7] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N. Pod-
horszki, “Characterizing output bottlenecks in a supercomputer,” in SC
’12: Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, pp. 1–11, Nov. 2012.

[8] A. Gainaru, G. Aupy, A. Benoit, F. Cappello, Y. Robert, and M. Snir,
“Scheduling the I/O of HPC Applications Under Congestion,” in 2015
IEEE International Parallel and Distributed Processing Symposium,
pp. 1013–1022, May 2015.

[9] G. K. Lockwood, S. Snyder, T. Wang, S. Byna, P. Carns, and N. J.
Wright, “A Year in the Life of a Parallel File System,” in SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 931–943, Nov. 2018.

[10] S.-M. Tseng, B. Nicolae, F. Cappello, and A. Chandramowlishwaran,
“Demystifying asynchronous I/O Interference in HPC applications,” The
International Journal of High Performance Computing Applications,
vol. 35, pp. 391–412, July 2021.

[11] C. Galleguillos, A. Sı̂rbu, Z. Kiziltan, O. Babaoglu, A. Borghesi,
and T. Bridi, “Data-Driven Job Dispatching in HPC Systems,” in
Machine Learning, Optimization, and Big Data (G. Nicosia, P. Pardalos,
G. Giuffrida, and R. Umeton, eds.), Lecture Notes in Computer Science,
(Cham), pp. 449–461, Springer International Publishing, 2018.

[12] D. Tsafrir, Y. Etsion, and D. G. Feitelson, “Modeling User Runtime
Estimates,” in Job Scheduling Strategies for Parallel Processing (D. Fei-
telson, E. Frachtenberg, L. Rudolph, and U. Schwiegelshohn, eds.),
Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 1–35,
Springer, 2005.

[13] E. Gaussier, D. Glesser, V. Reis, and D. Trystram, “Improving backfilling
by using machine learning to predict running times,” in SC ’15: Proceed-
ings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, (Austin, TX, USA), pp. 1–10, IEEE,
Nov. 2015.

[14] A. B. Yoo, M. A. Jette, and M. Grondona, “SLURM: Simple Linux
Utility for Resource Management,” in Job Scheduling Strategies for
Parallel Processing (D. Feitelson, L. Rudolph, and U. Schwiegelshohn,
eds.), Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 44–
60, Springer, 2003.

[15] D. A. Lifka, “The ANL/IBM SP scheduling system,” in Job Scheduling
Strategies for Parallel Processing (D. G. Feitelson and L. Rudolph, eds.),
Lecture Notes in Computer Science, (Berlin, Heidelberg), pp. 295–303,
Springer, 1995.

[16] SchedMD, “Slurm Workload Manager - Trackable RESources (TRES).”
https://slurm.schedmd.com/tres.html, May 2018.

[17] SchedMD, “Release notes for Slurm version 22.05.”
https://slurm.schedmd.com/archive/slurm-22.05.0/news.html, May
2022.

[18] Y. Fan, Z. Lan, P. Rich, W. E. Allcock, M. E. Papka, B. Austin, and
D. Paul, “Scheduling Beyond CPUs for HPC,” in Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing, HPDC ’19, (New York, NY, USA), pp. 97–108, Association
for Computing Machinery, June 2019.

[19] Y. Kim, R. Gunasekaran, G. M. Shipman, D. A. Dillow, Z. Zhang,
and B. W. Settlemyer, “Workload characterization of a leadership class
storage cluster,” in 2010 5th Petascale Data Storage Workshop (PDSW
’10), pp. 1–5, Nov. 2010.

[20] P. Carns, K. Harms, W. Allcock, C. Bacon, S. Lang, R. Latham, and
R. Ross, “Understanding and Improving Computational Science Storage
Access through Continuous Characterization,” ACM Transactions on
Storage, vol. 7, pp. 8:1–8:26, Oct. 2011.

[21] A. Kougkas, M. Dorier, R. Latham, R. Ross, and X.-H. Sun, “Leveraging
burst buffer coordination to prevent I/O interference,” in 2016 IEEE 12th
International Conference on E-Science (e-Science), pp. 371–380, Oct.
2016.

[22] E. Rosti, G. Serazzi, E. Smirni, and M. S. Squillante, “The impact of
I/O on program behavior and parallel scheduling,” in Proceedings of
the 1998 ACM SIGMETRICS Joint International Conference on Mea-
surement and Modeling of Computer Systems, SIGMETRICS ’98/PER-
FORMANCE ’98, (New York, NY, USA), pp. 56–65, Association for
Computing Machinery, June 1998.

[23] E. Costa, T. Patel, B. Schwaller, J. M. Brandt, and D. Tiwari, “System-
atically Inferring I/O Performance Variability by Examining Repetitive
Job Behavior,” in SC21: International Conference for High Performance
Computing, Networking, Storage and Analysis, (St. Louis, MO, USA),
pp. 1–15, IEEE, Nov. 2021.

[24] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The Lightweight Distributed
Metric Service: A Scalable Infrastructure for Continuous Monitoring
of Large Scale Computing Systems and Applications,” in SC ’14:
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 154–165, Nov. 2014.

[25] R. Gibbons, “A historical application profiler for use by parallel sched-
ulers,” in Job Scheduling Strategies for Parallel Processing (D. G.
Feitelson and L. Rudolph, eds.), Lecture Notes in Computer Science,
(Berlin, Heidelberg), pp. 58–77, Springer, 1997.

[26] K. Lamar, A. Goponenko, O. Aaziz, B. A. Allan, J. M. Brandt, and
D. Dechev, “Evaluating HPC Job Run Time Predictions Using Applica-
tion Input Parameters,” in Proceedings of the 17th ACM International
Conference on Distributed and Event-based Systems, DEBS ’23, (New
York, NY, USA), pp. 127–138, Association for Computing Machinery,
June 2023.

[27] M. R. Wyatt, S. Herbein, T. Gamblin, A. Moody, D. H. Ahn, and
M. Taufer, “PRIONN: Predicting Runtime and IO using Neural Net-
works,” in Proceedings of the 47th International Conference on Parallel
Processing, ICPP 2018, (Eugene, OR, USA), pp. 1–12, Association for
Computing Machinery, Aug. 2018.

[28] K. Lamar, A. Goponenko, C. Peterson, B. A. Allan, J. M. Brandt, and
D. Dechev, “Backfilling HPC Jobs with a Multimodal-Aware Predictor,”
in 2021 IEEE International Conference on Cluster Computing (CLUS-
TER), (Portland, OR, USA), pp. 618–622, IEEE, Sept. 2021.

[29] E. R. Rodrigues, R. L. F. Cunha, M. A. S. Netto, and M. Spriggs,
“Helping HPC Users Specify Job Memory Requirements via Machine
Learning,” in 2016 Third International Workshop on HPC User Support
Tools (HUST), pp. 6–13, Nov. 2016.

[30] B. A. Allan, M. Aguilar, B. Schwaller, and S. Langer, “LDMS Mon-
itoring of EDR InfiniBand Networks,” in 2020 IEEE International
Conference on Cluster Computing (CLUSTER), pp. 459–463, Sept.
2020.

[31] A. V. Goponenko, R. Izadpanah, J. M. Brandt, and D. Dechev, “To-
wards workload-adaptive scheduling for HPC clusters,” in 2020 IEEE
International Conference on Cluster Computing (CLUSTER), pp. 449–
453, Sept. 2020.

[32] J. P. White, A. D. Kofke, R. L. DeLeon, M. Innus, M. D. Jones, and T. R.
Furlani, “Automatic Characterization of HPC Job Parallel Filesystem I/O
Patterns,” in Proceedings of the Practice and Experience on Advanced
Research Computing, PEARC ’18, (New York, NY, USA), pp. 1–8,
Association for Computing Machinery, July 2018.

[33] M. R. Wyatt, S. Herbein, T. Gamblin, and M. Taufer, “AI4IO: A suite of
AI-based tools for IO-aware scheduling,” The International Journal of
High Performance Computing Applications, vol. 36, pp. 370–387, May
2022.

[34] D. H. Ahn, N. Bass, A. Chu, J. Garlick, M. Grondona, S. Herbein, H. I.
Ingólfsson, J. Koning, T. Patki, T. R. W. Scogland, B. Springmeyer,
and M. Taufer, “Flux: Overcoming scheduling challenges for exascale

1515

workflows,” Future Generation Computer Systems, vol. 110, pp. 202–
213, Sept. 2020.

[35] D. Xu, C. Wu, and P.-C. Yew, “On mitigating memory bandwidth
contention through bandwidth-aware scheduling,” in Proceedings of the
19th International Conference on Parallel Architectures and Compila-
tion Techniques, PACT ’10, (Vienna, Austria), pp. 237–248, Association
for Computing Machinery, Sept. 2010.

[36] C. D. Antonopoulos, D. S. Nikolopoulos, and T. S. Papatheodorou,
“Scheduling Algorithms with Bus Bandwidth Considerations for SMPs,”
in High-Performance Computing, ch. 16, pp. 313–332, John Wiley &
Sons, Ltd, 2005.

[37] R. Panigrahy, K. Talwar, L. Uyeda, and U. Wieder, “Heuristics for Vector
Bin Packing,” tech. rep., Microsoft, Jan. 2011.

[38] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella,
“Multi-resource packing for cluster schedulers,” in Proceedings of the
2014 ACM Conference on SIGCOMM, SIGCOMM ’14, (New York, NY,
USA), pp. 455–466, Association for Computing Machinery, Aug. 2014.

[39] T. T. Tran, M. Padmanabhan, P. Y. Zhang, H. Li, D. G. Down, and
J. C. Beck, “Multi-stage resource-aware scheduling for data centers with
heterogeneous servers,” Journal of Scheduling, vol. 21, pp. 251–267,
Apr. 2018.

[40] E. Jeannot, G. Pallez, and N. Vidal, “IO-aware Job-Scheduling: Exploit-
ing the Impacts of Workload Characterizations to select the Mapping
Strategy,” The International Journal of High Performance Computing
Applications, p. 10943420231175854, May 2023.

[41] W. Leinberger, G. Karypis, and V. Kumar, “Job Scheduling in the
presence of Multiple Resource Requirements,” in SC ’99: Proceedings of
the 1999 ACM/IEEE Conference on Supercomputing, (Portland, Oregon,
USA), pp. 47–47, IEEE, Nov. 1999.

[42] F. Guim, I. Rodero, and J. Corbalan, “The Resource Usage Aware Back-
filling,” in Job Scheduling Strategies for Parallel Processing (E. Fracht-
enberg and U. Schwiegelshohn, eds.), Lecture Notes in Computer
Science, (Berlin, Heidelberg), pp. 59–79, Springer, 2009.

[43] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang, and Z. Lan, “I/O-
aware bandwidth allocation for petascale computing systems,” Parallel
Computing, vol. 58, pp. 107–116, Oct. 2016.

[44] E. Jeannot, G. Pallez, and N. Vidal, “Scheduling periodic I/O access
with bi-colored chains: Models and algorithms,” Journal of Scheduling,
vol. 24, pp. 469–481, Oct. 2021.

[45] F. Boito, G. Pallez, L. Teylo, and N. Vidal, “IO-Sets: Simple and Effi-
cient Approaches for I/O Bandwidth Management,” IEEE Transactions
on Parallel and Distributed Systems, vol. 34, pp. 2783–2796, Oct. 2023.

[46] Z. Zhou, X. Yang, D. Zhao, P. Rich, W. Tang, J. Wang, and Z. Lan,
“I/O-Aware Batch Scheduling for Petascale Computing Systems,” in
2015 IEEE International Conference on Cluster Computing, pp. 254–
263, Sept. 2015.

[47] A. V. Goponenko, Objective-Driven Strategies for HPC Job Scheduling.
PhD thesis, University of Central Florida, Orlando, FL, USA, Aug. 2024.

1516

