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Abstract—In modern HPC systems, performance measure-
ments are often disturbed by noise. Because repeating mea-
surements to increase confidence in their results is costly, al-
ternative noise-resilient techniques are desirable. Therefore, we
implement a logical clock, which does not rely on real-time
measurements, in Score-P. We explore several methods to model
computational work with the clock increment, counting OpenMP
loop iterations, LLVM basic blocks/statements, or hardware
counters. We demonstrate the strengths and weaknesses of using
logical time stamps in a trace analysis workflow with Score-
P and Scalasca, by evaluating the performance problems we
can find in three MPI+OpenMP mini-apps. By design, logical
measurements reliably show algorithmic issues, such as load
imbalance, but cannot capture external aspects of program
execution, for example memory contention. In summary, logical-
time based measurements are a specialized but valuable addition
to the performance analyst’s toolbox.

Index Terms—F.1.2.d Parallelism and concurrency, C.4.c Mea-
surement techniques, C.4.g Measurement, evaluation, modeling,
simulation of multiple-processor systems, K.6.2.d Performance
and usage measurement

I. INTRODUCTION

With the ever-increasing scale of HPC systems, their hard-
ware and software grow in complexity. To make the most
of these resource-intensive machines, it is essential to assess
and improve performance on all scales of the architecture.
Experts rely on a multitude of specialized measurement and
analysis tools for their performance assessments. In this work,
we focus on a performance analysis workflow with Score-
P [1] and Scalasca [2], [3]. Score-P collects traces and
profiles from parallel programs, relying mainly on automatic
instrumentation of the target applications during compilation
and linking. Scalasca analyses the resulting traces to identify
wait states and their origins in inter-process communication.
It reports its findings as an application profile enhanced with
additional metrics derived from the trace analysis. Both tools
are designed to measure applications at production scale.

Even the simplest performance metric, the program wall
clock time, can vary substantially between repetitions of the
same computation due to effects outside the application’s
control. For example, Chunduri et al. observed a run-to-run
variation of 70% [4] in the MILC application on a Xeon Phi
cluster. Beni et al. [5] more recently observed the latency
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of an MPI_Bcast microbenchmark to vary by a factor of
6 on the Marconi100 cluster. This noise is present on all
modern computers [6] and can have a multitude of origins.
Ates et al. [7] classify noise by the hardware component it
originates from as CPU [8], cache, memory, storage [9], or
network [10], [11] noise. Noise makes the interpretation of
performance data less reliable. For instance, did a change
in the code really shorten the program run time, or was
the baseline just negatively affected by noise? Does waiting
time in an MPI collective come from an uneven distribution
of work or from noise? Repeating measurements to increase
confidence in results is potentially costly, as many repeti-
tions are needed [12]. Although noise on the target system
should be considered when optimizing an application [8],
some aspects of the program execution—the aforementioned
load imbalance, for instance—exist independently. Therefore,
measurement techniques that are less sensitive to noise can
identify these problems more reliably and cheaply.

In this work, we investigate a noise-resilient measurement
technique based on the Lamport clock [13]. This algorithm
is independent of a physical clock, relying instead on the
logical order induced by messages between processes to assign
timestamps. Consequently, the resulting program traces are
independent of the actual timings and insensitive to noise.
Lamport’s algorithm works for any positive clock increment
between events, which leaves room for adaptation. We explore
various choices for the clock increment to model the effort
spent in a given code region.

A. Contributions

We implement Lamport’s logical clock algorithm in Score-
P. Furthermore, we extend the basic algorithm with four meth-
ods to increment the clock between events, counting either
OpenMP loop iterations, LLVM [14] basic blocks, LLVM
statements, or CPU instructions. Based on measurements of
three established OpenMP+MPI mini-apps, we evaluate the
usefulness of these methods in the context of the Score-
P/Scalasca workflow. The central question for evaluation is
which performance problems can be detected from a Scalasca
report based on logical event traces. On the one hand, we
demonstrate that measurements with the logical clock are
robust against noise and, therefore, can represent intrinsic
aspects of application performance, such as load balance, more
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reliably than measurements with a physical clock. On the
other hand, by the same design, the logical clock is agnostic
to aspects outside the program’s direct control, rendering it
unable to detect some common performance problems related
to these. In this work, we clearly establish the strengths and
limitations of the proposed measurement techniques and pave
the way for further improvement.

B. Related Work

The variety of hardware, the range of scales (from single
thread and single function to entire programs on full clusters),
and the multitude of programming languages and paradigms
lead to many specialized tools for assessing application perfor-
mance. The Virtual Institute – High Productivity Supercom-
puting Tools Guide [15] provides a structured overview of the
available tools and the questions they help to answer. Other
notable measurement tools are Tau [16] and Extrae [17].

Many tools for visual or semi-automatic trace analysis exist.
Vampir [18] visualizes traces in a timeline. Ravel [19] employs
the logical clock to visualize the structure of application
traces. In contrast to our implementation, the logical time
stamps are computed in a post-processing step. Extra-P [20]
aims to identify possible bottlenecks at a larger scale from
extrapolation of performance models obtained from a series
of small-scale runs.

Extensive work exists on quantifying noise in HPC systems
and its impact on application performance. We mention only
a few publications: Zhai et al. use time variability in fixed
work quanta already present in most applications to quantify
noise [21]. Voevodin et al. develop a tool to monitor noise
on a cluster on a daily basis by executing a small Netgauge
workload after every job [22]. Ferreira et al. analyze the
influence of system parameters on performance degradation
due to OS noise [23]. Beni et al. investigate the bandwidth
variability in the shared network of a cluster [5]. Tools like
HPAS [7] allow the injection of additional, easily adjustable
noise to study an application’s sensitivity to various noise
sources.

Despite this, to our knowledge, little work has been done to
make performance analysis more robust to noise. Ritter, Tarraf
et al. performed extensive measurements to identify hardware
counters less sensitive to noise [24]. Ritter, Geiß et al. use
neural networks to extract performance models from noisy
performance data [25].

C. Outline

In Section II we introduce the logical clock and describe the
various methods to model computational effort. We outline the
implementation in the measurement tool Score-P [1]. Section
III summarizes Scalasca’s method of automatic wait state anal-
ysis and the implications of using a logical clock in this setting.
Then, in Section IV, we describe the system specification,
the benchmark applications, and the configurations used in
our experiments. The main part of this work is in Section V,
where we discuss experimental results in detail. Finally, we

summarize our insights and discuss possible future work in
Section VI.

II. LOGICAL CLOCK MODELS

In the abstract sense, a clock is a function that assigns
numbers (time stamps) to events. The logical clock described
by Lamport in [13] introduces an order that respects causal
relations to events in a distributed system (parallel program).
Causality does not depend on physical time. It is sufficient
to have a trace record of the events in all processes, and
the messages passed between them. An event a could have
influenced event b if either a and b are events on the same
process and a is recorded before b, or a is the sending of
a message to a different process and b is the receipt of
that message. This is written as the transitive happens before
relation a→ b. A logical clock C assigns the time stamps such
that the clock condition holds: If a → b, then C(a) < C(b).
This can be achieved via a process-local counter Ci that
follows this simple algorithm:

Algorithm 1 Logical clock.
For event a on process i:

1) Increment the local counter Ci.
2) a) If a is the sending of a message M , attach the

current value Ci to that message as M.C.
b) If a is the receipt of message M , set Ci ←

max(Ci,M.C + 1)
3) Record the time stamp C(a) = Ci.

This general definition of a logical clock still leaves many
choices for the concrete implementation. In particular, the
definition of a process, what counts as an event, and the
value of the increment in the first step. Here, we apply the
concept to tracing parallel programs with Score-P. In the case
of a hybrid OpenMP+MPI program, Score-P considers each
OpenMP thread on each MPI rank as a separate location:
threads correspond to processes in the logical time model. The
events of the logical clock are exactly the events written by
Score-P into the trace file. The selection of recorded events
is highly configurable, e.g. via command line options and
filters. Each (unfiltered) function entry and exit is recorded
with automatic compiler instrumentation.

The logical clock has two main advantages over physical
clocks. Firstly, the event time stamps are guaranteed to be
in the right order because of the clock condition. Physical
clocks can be out of sync, necessitating time-stamp correction
algorithms that skew the results. Secondly, logical clocks are
insensitive to noise, i.e., to factors outside of program control
that influence the run-time behavior.

In programs relying on nondeterministic MPI semantics,
such as wildcard receives, the happens-before relation is
insufficient to detect all causalities. In this case, messages can
be matched differently depending on the timing, therefore the
event order and logical time stamps might vary between exe-
cutions. Although we are aware of improved clock algorithms,
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such as the vector clock or the lazy Lamport clock protocol
[26], which remedy this situation partially, we rely on the
original Lamport clock in this work. For the benchmarks in
IV this is sufficient to produce deterministic traces.

A. Effort models

If the logical time stamps are only needed for ordering
events across processes, an increment of one is sufficient.
However, Scalasca’s analysis also assigns additional meaning
to the time stamps: Differences in time stamps translate to
the duration of code regions and wait states. The increment
in Algorithm 1 should, therefore, reflect the amount of work
spent between two events. We investigate five variants to
estimate the effort of code regions:

• lt1: Increment the counter by one.
• ltloop: Increment the counter by one before each event.

Additionally, increment the counter in each OpenMP loop
iteration.

• ltbb: Increment by one plus the number of LLVM IR1

basic blocks executed since the last recorded event.
The extra increment by one ensures that time stamps
are strictly increasing. Also, count calls into external
functions as X basic blocks.

• ltstmt: Same as ltbb but counting LLVM statements. Count
calls into external functions as Y statements.

• lthwctr: Increment by the difference in the value of some
hardware counter (e.g. number of instructions) since the
last recorded event.

lt1 is the original logical clock that serves as a baseline.
ltloop is a coarse but easy-to-implement estimate under the
assumption that most work in an OpenMP program happens
inside parallel loops and is the same for all iterations. The
modes ltbb and ltstmt rely on a plugin for LLVM [14], adding
further instrumentation to the program to count the number of
basic blocks or statements. The additional counts are an ad-hoc
solution to estimate effort in regions outside the instrumented
code. We increase the counter by a constant X = 100 basic
blocks or Y = 4300 statements whenever there is a call to
OpenMP (parallel, for, fork, join). We do not assign extra
effort to other external functions. These numbers are fitted
to our observations in the LULESH benchmark (see V-C3),
which spends a significant portion of the time inside the
OpenMP runtime. The estimates are specific to this particular
experiment and not reliable in general. A more sophisticated
model might base estimates on micro-benchmarks on the target
system.

For lthwctr, we consider the Linux perf counter
PERF_COUNT_HW_INSTRUCTIONS. Note that as shown
by Ritter et al. [24], this counter is subject to noise but
more resistant to it than run-time. An advantage of hardware
counters is that they also count effort spent in regions not seen
by the instrumentation, e.g. inside calls to library functions.

1LLVM Intermediate Representation: A hardware-independent abstract as-
sembly language

B. Implementation in Score-P

In Score-P, the logical clock is implemented as an additional
timer by storing a counter on each location and updating it
during measurement according to the logical clock algorithm.
Steps one and three of Algorithm 1 are implemented by
incrementing the counter each time it is read.

Step two requires synchronization of counters between
locations. To capture causalities correctly, it is important that
the event model is compatible with the logical clock, i.e., all
communication across threads and ranks has to be recorded
as an event. In the current implementation, only MPI and
OpenMP communication is supported. MPI communication is
instrumented via the PMPI tools interface. We implemented
point-to-point communication as well as non-blocking collec-
tives on intra-communicators. Schulz et al. [27] discuss several
mechanisms to attach piggyback messages to MPI point-
to-point communication. We choose to send extra messages
to synchronize counters, because it is easy to implement
incrementally inside Score-P’s existing MPI wrappers. The
OpenMP instrumentation is implemented with the source-to-
source translation tool Opari2. Our implementation supports
barriers, loops, fork/join and critical regions.

III. PERFORMANCE ANALYSIS

Additional tools are needed to gain insights from the huge
amount of trace data. Scalasca [2] automatically searches for
certain patterns in a trace and aggregates this information over
time to produce a parallel profile.

A profile stores information along the three dimensions
metric, call path, and system resource. The axes for these
dimensions are trees: The root of the call path tree is the
main function, each leaf corresponds to a stack frame. The
root of the system tree represents the entire job allocation,
whereas the leaves represent individual threads. Queries can
be fine-grained or aggregate over children in each dimension.
Examples are: How much time does thread 0 spend in function
foo? How many CPU seconds does the program consume in
total? The Cube browser [28] provides a convenient graphical
interface to explore these profiles.

Patterns extracted by Scalasca are represented as additional
metrics in such a profile. For example, the metric time can be
divided into time spent in computation, MPI calls, OpenMP
calls, and idle threads. Those are further subdivided into
the various communication patterns and wait states. Figure
1 shows a selection of the child metrics of time used in the
analysis part of this work.

The classical example of a wait state is the MPI late sender:
A point-to-point communication in which the sending of the
message is started later than the matching reception. The
receiver is blocked waiting at least until the sender initiates the
message transfer. The severity assigned to the wait state is the
difference in time stamps between entering the MPI_Send
and the MPI_Recv.

Scalasca also produces higher-order analysis results that are
not grouped under time but are presented as additional metrics
in the output profile. In the evaluation of our experiments, we
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time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total time
comp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Computation
mpi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MPI calls

p2p . . . . . . . . . . . MPI point-to-point communication
latesender . Receiver waiting for a late message
latereceiver . . . . . . Sender waiting for a receiver

collective . . . . . . . . . . MPI collective communication
wait nxn. . . . . . . . . . . . .Waiting in MPI all-to-all

omp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . OpenMP runtime
management . . Starting and ending parallel regions
sync . . . . . . . . . . . . . . . Waiting to syncronize threads

barrier wait . . . . Waiting in an OpenMP barrier
barrier overheadOverhead of OpenMP barriers

Fig. 1: Selected metrics in the analysis.

consider one such class of metrics: delay costs. For each wait
state metric, there is a corresponding delay cost metric that
shows the root causes for this wait state. For instance, the
delay cost for the late sender shows the call paths and locations
that are responsible for the wait time at the receiver. The
delay costs are often more useful in pinpointing performance
problems than the wait state metrics. For example, the wait
time in an MPI all-to-all exchange is attributed to the MPI
call itself, while the corresponding delay cost highlights the
imbalanced functions causing the wait time.

Intervals measured with different clocks have different inter-
pretations and severity values for metrics cannot be compared
directly. We normalize all values by the total severity of
the time metric to obtain dimensionless values. These values
should be interpreted as fractions of the total reported effort
for a given effort model. When describing measurements, we
use ’time’ to refer to the time metric.

We begin the exploration of a measurement generally asking
two types of questions. Firstly, ’What percentage of the time
is spent in useful computations vs. MPI calls, idle threads,
etc.?’ Secondly, ’What call paths contribute the most to these
metrics?’, e.g. ’Which functions are responsible for most of
the idle time?’ The answers determine the direction for deeper
investigations. Answers to the first type of question, e.g. ’The
application spends 5%T in MPI’, involve fractions of the
total time in percent, denoted with the symbol %T . In the
Cube browser, one sets the metric view to ’Own root percent’
to obtain these values. The second type of question could
be answered with ’The functions comm_boundaries and
reduce_results are responsible for 80%M and 10%M

of the MPI time’. Here, the symbol %M denotes a fraction
relative to the value of a given metric. To display these values
in Cube, one sets the call path view to ’Metric selection
percent’. Usually, the ranking of call paths and the order of
magnitude of their contributions is more important than the
exact percentages.

The investigation usually proceeds with the highlighted
wait states and corresponding call paths. Visual comparisons
are, therefore, useful in this study because they represent

the exploration done in a typical performance analysis. To
compare measurements obtained from different clocks, we plot
the results as stacked bars next to each other. For instance,
Figure 5a compares contributions of various call paths to the
metric comp in the MiniFE-1 experiment.

Scalasca helps to show where and how parallel execution
of a program is inefficient. It is still up to a human expert
to interpret the analysis results and decide how to modify the
code and configuration. Thus, the central questions for the
evaluation of the following experiments are

• Can we draw useful conclusions from a Scalasca report
based on logical event traces?

• Which kinds of performance problem can we detect?
• In which settings does the method fail, i.e., when do the

analysis results become inconclusive or even misleading?
• How closely is real-time in each code region modeled by

the clock increment?

IV. BENCHMARKS AND CONFIGURATIONS

A mini-app is a program designed to represent the
performance-critical workload of an HPC application while
keeping code complexity to a minimum. We select three
such mini-apps, all proxies for grid-based physics simulations,
for our investigation: MiniFE [29], LULESH [30], and the
C++ port of TeaLeaf [31]. Currently, the logical clock is
implemented only in MPI and OpenMP, which excludes codes
using other parallel paradigms. Because the implementation of
ltbb and ltstmt depends on LLVM, we restrict the selection to
C/C++ codes.

A. Hardware specification

All measurements are taken on the standard nodes of the
Jureca-DC cluster 2, with the following hardware specification:

• Processors: 2 × AMD EPYC 7742 (2 × 64 cores@2.25
GHz)

• Memory: 512 GB DDR4@3200 MHz (8 NUMA domains
with 64 GB each)

• Interconnect: InfiniBand HDR100 (NVIDIA Mellanox
Connect-X6)

B. General workflow

Many factors influence benchmark performance. On the
job level, influential options are the number of MPI ranks,
the number of OpenMP threads per rank, the distribution of
ranks/threads on the hardware, and the pinning of threads to
CPUs. Application-specific options may influence the total
amount, the type, and the distribution of work onto ranks. We
run each benchmark without instrumentation with varied con-
figurations and collect the benchmark’s performance results.
All benchmarks report at least the time to completion. MiniFE
and LULESH also report a Figure of Merit, i.e., the rate at
which the application completes a unit of work. We use these
figures to carry out preliminary scaling studies, which already

2https://apps.fz-juelich.de/jsc/hps/jureca/configuration.html
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indicate possible causes for performance loss. Then, we select
a few interesting configurations for the detailed analysis.

To obtain reference timings, the application is run five times
without instrumentation. Then, we perform an instrumented
measurement and Scalasca trace analysis with the physical
clock provided by the time stamp counter of x86-64 (denoted
tsc), and each of the logical clocks lt1, ltloop, ltbb, ltstmt,
lthwctr. Time measurements, needed to determine measurement
overhead, are subject to noise. Additionally, tsc and lthwctr
measurements are noise sensitive. Therefore, we repeat every
measurement five times. We base our evaluation in Section V
on the arithmetic mean of the five call-path profiles from the
repeated measurements.

In the following, we briefly describe the mini-apps and the
configurations we chose for our experiments.

C. MiniFE

MiniFE is designed to model performance characteristics
of typical finite element codes. First, a sparse linear system
is assembled, which is then solved by an iterative method—
conjugate gradient (CG) descent without preconditioner. There
is an option to introduce imbalance across MPI ranks. An
imbalance of 50% means that one-half of the ranks is assigned
three times as many elements as the other half.

We choose these two configurations:
a) MiniFE-1: Single node, 8 MPI ranks (one per

NUMA domain), one thread per rank. The grid has 4003

elements in total. We set artificial imbalance to 50%. This
configuration is somewhat untypical because it leaves most of
the node unused. However, we select it because it presents
a single, well-defined performance problem that should be
detected easily by logical measurements.

b) MiniFE-2: This configuration is the same as
MiniFE-1, except with 16 threads per rank. Because the
job uses one entire node, it is more representative of a
typical system use. In addition to the imbalance, there is
another performance problem that should be detected by the
logical measurements: parts of the matrix assembly are single
threaded. We can also expect a performance decrease in CG
due to contention for memory bandwidth among the threads.

D. LULESH

LULESH is a proxy app for hydrodynamics simulations
[30] in a suite developed by the Lawrence Livermore National
Laboratory.

The cubic domain is decomposed with a regular hexahedral
grid, where some field quantities are associated with the
nodes and some with the elements. Each time step has three
phases: First, the global time step size is computed in func-
tion TimeIncrement, relying on an MPI_Allreduce,
thus synchronizing ranks. Then, the node-centered quantities
are updated in LagrangeNodal, and finally, the element-
centered quantities are updated in LagrangeElements.
Processes exclusively use point-to-point communication to
access grid quantities on neighbors.

LULESH requires a cube number of MPI ranks such
that each subdomain is a cube and each rank has
the same number of elements. There is an option
to introduce artificial work imbalance into the routine
ApplyMaterialPropertiesForElems.

We set the number of grid elements per rank to 503 and use
four threads per rank.

a) LULESH-1: This configuration uses 64 ranks and
fills exactly two nodes. The default artificial imbalance is
enabled. We can expect inefficiencies from multiple sources:
load imbalances across ranks, contention for memory access,
OpenMP overhead and waiting times, and sequential code.

b) LULESH-2: We chose this configuration because the
logical measurements should be unable to detect the prominent
performance problem. Artificial imbalance is disabled. The job
uses 27 ranks on one node, which cannot be distributed evenly
across NUMA domains. Three NUMA domains are filled
completely with four ranks (16 threads) each. The other five
domains are assigned three ranks (12 threads) each. The main
performance problem is the uneven contention for memory
bandwidth.

E. TeaLeaf

TeaLeaf, originally a Fortran code that has been ported to
C++ [31], solves the heat conduction problem in two space
dimensions. Spatial derivatives are approximated via five-point
finite differences. The time steps are computed with an implicit
method, relying on an iterative CG solver for the linear system.

The chosen configurations compute the predefined bench-
mark 5e_4_4 (40002 cells, simulated time 4s) on one com-
pute node:

• TeaLeaf-1: 1 MPI rank, 128 OpenMP threads per rank:
Distributes threads across sockets.

• TeaLeaf-2: 2 MPI ranks, 64 OpenMP threads per rank:
Each rank fills exactly one socket. This is the optimal
configuration on Jureca-DC.

• TeaLeaf-3: 8 MPI ranks, 16 OpenMP threads per rank:
Each rank fills one NUMA node.

• TeaLeaf-4: 128 MPI ranks, 1 OpenMP thread per rank:
Loses performance in the MPI all-to-all exchanges

The problem fits neatly into L3 cache: There is 8 × 4 ×
16MB = 512MB L3 cache on the node, and the main
calculation operates on 40002×4 = 64M double values. Table
II shows timings for the configurations and the overhead of
instrumentation with tsc. The optimal configuration filling one
node is 2 MPI ranks with 64 OpenMP threads each. In this
configuration, each rank occupies one of the two sockets. This
reduces the cost of the frequent MPI all-to-all exchanges and
avoids thread communication across sockets.

V. RESULTS

First, we investigate the measurement overhead of the
various timer modes. Then, we compare trace analysis results
obtained with different timers with the Jaccard score before
we discuss the results for each benchmark in detail.
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Overhead / %

Mode MiniFE-2 LULESH-1 TeaLeaf-2
init solve total

tsc −14.3 0.3 −6.5 3.1 41.5
lt1 −12.2 0.3 −5.3 3.6 40.5

ltloop −15.7 0.2 −6.9 4.3 42.5
ltbb 97.8 0.2 47.9 23.5 48.0

ltstmt 94.5 0.2 46.6 23.9 43.7
lthwctr 89.9 0.4 41.5 14.7 56.5

TABLE I: Measurement overheads for selected configurations
and the various clocks.

A. Overhead

Using the reference measurement, we determine the over-
head of the various modes, as shown in Table I. Keeping
overhead small is especially important for physical measure-
ments because overhead degrades their accuracy. With filter
files and various other options, Score-P can be configured
to ignore events, thus incurring less overhead and consuming
less memory. As a rule of thumb, we specified filters to keep
the overhead for tsc measurements reasonably small, i.e., at
approximately 5% or below penalty to total run-time. This is
not always possible, though.

The MiniFE benchmark consists of two main distinct
phases: matrix initialization and CG-solver. The sensitivity of
their run-time to noise and/or overhead is different. Measure-
ment overhead stems to a large part from the initialization
phase, whereas the overhead in the solver phase is negligible.
The total overhead depends on the ratio of initialization time
to solver time, which depends on the benchmark configuration
in turn. Figure 2 shows individual and averaged run times of
the initialization phase in MiniFE-2 for each measurement
method. For this particular experiment, tsc and the low-effort
logical timers lt1 and ltloop even produce a negative overhead
on average, i.e., the program runs faster with instrumentation.
A possible explanation is that measurement induces a desyn-
chronization between threads, which has also been observed
by Afzal et al. [32] to increase performance in memory-bound
codes. In contrast, the logical clocks ltbb, ltstmt, and lthwctr
introduce overhead on the order of 100% in this phase. We
do not show a plot for the CG phase, as none of the methods
produce any significant overhead, and the run-to-run variation
between timings is negligible.

In the LULESH experiments, we observed below 1% run-
to-run variation in timings. The overhead of the lt1 and ltloop
methods is slightly greater than in tsc measurements. ltbb, ltstmt
have the greatest overhead.

Despite filtering, the TeaLeaf experiment suffers from high
overhead, between 40% and 56%. We observed the greatest
overhead with the lthwctr counter. This is caused by Score-P
interfering with the cache, as we discuss in more detail in
Section V-C5.

The accuracy of logical measurements does not suffer from
overhead because they are invariant to the timing of events.
However, greater overhead means that experiments are more

ref tsc lt1 ltloop ltbb ltstmt lthwc
0

20

40

ru
nt

im
e/
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c

MiniFE-2 matrix structure gen

individual
mean

Fig. 2: MiniFE-2: Run-time for matrix structure generation.

costly to run. Broadly speaking, the methods lt1 and ltloop are
less intrusive than ltbb, ltstmt, and lthwctr. Compared to tsc, the
additional overhead of the less intrusive methods is negligible.
In some instances, the overhead is even smaller than with
tsc, despite the additional work done in OpenMP and MPI
synchronizations. With the more intrusive methods, one should
be prepared for 1.5 times longer runs compared to tsc.

B. High-level comparison of methods

We describe the three dimensions of a profile, i.e., metric,
call path, and system, in Section III. A profile provides map-
pings from those dimensions to normalized severity values,
for instance, (metric, call path) 7→ severity in %T . We use a
generalized Jaccard score to measure the similarity of two such
mappings from different measurements.

The original Jaccard score is a measure of similarity be-
tween two sets. It is computed as the ratio of the size of the
intersection to the size of the union:

J(A,B) =
|A ∩B|
|A ∪B|

. (1)

Here, we generalize this idea to functions: Given a discrete
definition set X and two functions A,B : X 7→ R≥0, their
Jaccard score is computed as in Equation 1, with adapted
notions of intersection and union:

|A ∩B| :=
∑
x∈X

min(A(x), B(x)),

|A ∪B| :=
∑
x∈X

max(A(x), B(x)).

This definition is analogous to Costa’s generalization of the
Jaccard score to multi-sets [33], which are functions mapping
to N0 instead of R≥0. The score is zero when the functions
have disjoint support, one when the functions are identical,
and otherwise, it assumes any value in between.

In the following, we consider the scores:
• J(M,C) for the mapping from (metric, call path) pairs to

their contributions to run time (in %T ). Figure 3 shows
J(M,C) scores comparing the various logical timers to tsc
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in the MiniFE and LULESH experiments. Figure 4 shows
the same for TeaLeaf.

• Jmetric
C for the mapping from call paths to their relative

contributions to a given metric (in %M ). We show these
scores in the bar plots 5, 6 and 9.

According to the J(M,C) score, lt1 and ltloop perform gen-
erally worse than the more advanced methods ltbb, ltstmt and
lthwctr. In almost all experiments, lt1 has the lowest score. But
there is no clear best method for all benchmarks. ltbb has the
highest score of all methods in MiniFE-1 and all TeaLeaf
experiments, but the lowest score in the LULESH experiments.
ltstmt scores highest in MiniFE-2 and LULESH-2, lthwctr is
best in LULESH-1.

The configurations MiniFE-1, MiniFE-2, LULESH-1,
and LULESH-2 were designed to be increasingly challenging
for logical methods. Indeed, for each of the ltbb, ltstmt and
lthwctr methods, the score decreases in the same order. The
ltstmt method performs most consistently across benchmarks,
whereas ltbb shows the largest difference across benchmarks.

Figures 3 and 4 also show the minimal Jaccard score
between any pair of the five repetitions of each measurement.
This shows how much the analysis results vary from run
to run, i.e., how susceptible the analysis is to noise. In all
experiments, this minimal run-to-run score is above 0.9 for
tsc measurements. The lthwctr measurements show generally
a slightly larger variation, i.e., a lower run-to-run score than
tsc. In the TeaLeaf-2 experiment, we observe a minimal
score of only 0.67, meaning that the lthwctr measurement is
much more susceptible to noise than tsc. At first sight, this
observation is in contradiction with the results from Ritter,
Tarraf et al. [24], who observe a lesser run-to-run variabil-
ity in instruction counters compared to time measurements.
However, their measurements also indicate a high counter
variability for a few call paths that contribute little to total
run time. Their evaluation is concerned with plain profiles
recording the total time/total counter per call path, whereas our
evaluation also includes the additional metrics from Scalasca’s
wait state analysis. Our findings indicate that wait state anal-
ysis is influenced differently by noise than plain profiling. Of
course, all other logical measurements are exactly the same in
each repetition, and therefore, the minimal run-to-run score is
one.

C. Detailed analysis

1) MiniFE-1: The tsc measurement reports that only
60%T of the time is spent in computation. The first bar
in Figure 5a shows a breakdown of computation time by
call path. The various stages of matrix assembly contribute
slightly more than 50%M to the computation time, while
the rest is spent in the CG solver, mainly in computing
matrix-vector products (37%M ). Most of the remaining time
(38%T ) is spent waiting in MPI all-to-all exchanges. As
shown in Figure 6a, the three most important call paths are
make_local_matrix (44%M ), cg_solve/dot(31%M ),
and generate_matrix_structure(20%M ). The wait-
ing does not manifest in the compute-intensive call paths but

lt1 ltloop ltbb ltstmt lthwc

0.2

0.4

0.6

0.8

0

1

MiniFE & LULESH Jaccard scores

MiniFE-1 MiniFE-2 LULESH-1 LULESH-2

Fig. 3: Similarity of the logical measurements to tsc, ac-
cording to Jaccard score for (metric, call path) contributions.
Bars—grouped by measurement method and color-coded by
experiment—show J(M,C) between tsc (average) and the
logical measurement (average). The lines show the minimal
J(M,C) between the repetitions of tsc, color-coded by experi-
ment. Circles show minimal J(M,C) between repetitions of the
lthwctr measurements.

lt1 ltloop ltbb ltstmt lthwc

0.2

0.4

0.6

0.8

0

1

TeaLeaf Jaccard scores

TeaLeaf-1 TeaLeaf-2 TeaLeaf-3 TeaLeaf-4

Fig. 4: Similarity of logical measurements to tsc, according
to (metric, call path) contributions (J(M,C)). See Fig. 3 for a
detailed description.

in those procedures that rely on MPI all-to-all exchanges.
However, the delay-cost analysis (not shown here) highlights
the compute-intensive functions.

Conclusions from tsc: There is a large computational im-
balance in all parts of the code, which is, relative to compute
time, worse in the matrix assembly than in the solver.

The logical measurements attribute similar portions of the
time to computation (between 62%T and 68%T ) and all-
to-all wait time (between 28%T and 38%T ). That is, all
measurements indicate a computational imbalance between
MPI ranks. The ltloop method also reports late sending of point-
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(a) MiniFE-1, comp

tsc lt1 ltloop ltbb ltstmt lthwc
0
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100
0.022 0.2 0.39 0.62 0.46

(b) MiniFE-2, comp

cg solve/daxpby
cg solve/dot
cg solve/dot r2
cg solve/operator()
cg solve
make local matrix
impose dirichlet
perform element loop
generate matrix structure/operator()
generate matrix structure
root

Fig. 5: MiniFE-1 and MiniFE-2: Contributions of selected call paths to user computation (metric comp, in %M ).

tsc lt1 ltloop ltbb ltstmt lthwc
0
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100
0.12 0.24 0.84 0.63 0.81

(a) MiniFE-1, wait nxn

tsc lt1 ltloop ltbb ltstmt lthwc
0

50

100
0.27 0.34 0.45 0.62 0.53

(b) MiniFE-2, wait nxn

cg solve/dot
cg solve/dot r2
cg solve
make local matrix
generate matrix structure
root

Fig. 6: MiniFE-1 and MiniFE-2: Contributions of selected call paths to all-to-all wait time (metric wait nxn, in %M ).

to-point messages as a minor problem with 6%T . This is not
seen in tsc and therefore misleading.

However, the attribution of these times to the call paths
differs significantly between the measurements, as seen in the
other bars in Figures 5a and 6a. Unsurprisingly, lt1 highlights
parts of the code that contain many inexpensive function calls,
i.e., the matrix assembly. The ltloop measurement overempha-
sizes regions with many inexpensive loop iterations, i.e., the
vector operations in the CG solver. These methods fail to
estimate the effort of code regions even in this simple setting
and cannot be trusted to identify call paths responsible for the
imbalance. The ltbb, ltstmt, and lthwctr measurements are in good
agreement with tsc regarding the contribution of call paths to
the metrics. Results obtained with these methods support the
same interpretation as the tsc measurement.

2) MiniFE-2: This configuration uses 16 OpenMP
threads per rank. The tsc result shows that the program
spends most of its run time in idle threads (58%T ) and only
39%T in useful computation. Waiting in all-to-all exchanges
takes 2%T of the total time. Since MPI is single-threaded
in this application, the wait time is responsible for 15 times
as much idle time in the worker threads, i.e., 30%T of the
total time. This is the computational imbalance we have

seen before in MiniFE-1. But the waiting time can explain
only half of the idle time. The tsc measurement shows
that generate_matrix_structure/operator() also
contributes to idle threads with 35%M , but does only 4%M

of the computation. This procedure is single-threaded and,
therefore, a candidate for easy performance gains. The
make_local_matrix routine is also single-threaded and
contributes another 6%M to idle threads.

The first bar in Figure 5b shows the contributions of call
paths to computation time. Compared to the MiniFE-1
experiment, the matrix-vector products contribute a greater
portion (70%M ). This indicates a reduced efficiency due to
memory contention between threads.

According to tsc, the application spends only 0.6%T time in
OpenMP and almost all of that in waiting at OpenMP barriers.
The overhead of OpenMP constructs is negligible. There is
little potential for optimization here.

Figure 7 shows the contributions of paradigms to the total
run time for each method. All measurements report a similar
time in MPI, but the ratio of idle threads to useful computation
varies. Because most work in the OpenMP parallel regions
does not involve additional function calls, lt1 shows no effort
in the worker threads (93%T idle threads = 15×6%T com-
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Fig. 7: MiniFE-2: Time spent in user computation, OpenMP,
MPI, and idle threads, relative to total run time (metrics comp,
mpi, omp, idle threads, in %T ).

tsc lt1 ltloop ltbb ltstmt lthwc
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idle threads
omp
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Fig. 8: LULESH-1: Time spent in user computation, OpenMP,
MPI, and idle threads, relative to total run time (metrics comp,
mpi, omp, idle threads, in %T ).

putation + MPI). In contrast, ltloop focuses on the work done
in OpenMP loops. In this measurement, the 2.1%T MPI time
explains almost all the total idle time(33%T ). Therefore, ltloop
is unable to detect idle threads due to serial regions. The other
methods ltbb, ltstmt, and lthwctr are closer to tsc in this regard
but tend to overestimate effort in the serial regions of the code.
Regarding computational imbalance and serial regions, the ltbb,
ltstmt, and lthwctr measurements support the same conclusions
as tsc.

Figure 5b shows the contributions of call paths to the
computation time for the various timer methods. The values
reported by the logical measurements are the same as in Figure
5a for MiniFE-1. Since the code has no parallelization
overhead that can be detected by the logical clocks, i.e.,
outside the OpenMP runtime, the total computational effort
is the same. Consequently, the logical measurements cannot
detect the memory contention issue.

3) LULESH-1: Figure 8 shows how the execution time
is distributed to the paradigms. The tsc measurement reports

that most time (78%T ) is spent in computation. The program
spends 2%T in MPI. Since MPI runs single-threaded, this
explains already 6%T idle time. Another significant portion of
the time is spent in OpenMP (7%T ). The rest of the idle time
indicates serial sections of the code. Both MPI and OpenMP
are good candidates to look for optimizations.

According to tsc, half the MPI time (1%T ) comes from
waiting at all-to-all exchanges, while late senders in point-to-
point communication (0.5%T ) are a lesser problem. The rest
of the time in this category is spent in the MPI library.

Figure 9b shows the call paths that cause the all-
to-all wait time. Two functions are highlighted by
the tsc measurement: CalcForceForNodes and
ApplyMaterialPropertiesForElems. The second is
the function where the artificial imbalance is applied. The
first does not have an artificial imbalance. However, the first
bar in Figure 9a shows that this function is responsible for
most of the computation time. Therefore, minor imbalances
in this function still cause most of the all-to-all wait time.
The same call path is also responsible for most (89%M ) of
the wait time in point-to-point communication.

tsc attributes the 7%T in OpenMP mostly to
waiting at barriers (5%T ) and to a lesser extent
(2%T ) to overhead of the OpenMP runtime.
Waiting at barriers is approximately proportional to
computation time and, therefore, predominantly occurs
in CalcForceForNodes. The overhead is caused mostly
by ApplyMaterialPropertiesForElems, which
contains many OpenMP loops doing little work each.

The logical measurements yield varied results. The lt1
measurement reports similar waiting time in MPI all-to-all
and late senders as tsc but does not show the call paths
causing these issues correctly. This method does not find
the computational imbalance across MPI ranks. Overhead of
OpenMP runtime, and therefore the overall time in OpenMP
is strongly overestimated. However, the overhead is correctly
attributed to the material update routine, which contains many
small OpenMP loops and is also responsible for most of the
overhead shown in the tsc measurement. For the same reason,
computation time is attributed to the wrong call paths.

ltloop estimates computational effort slightly better but still
overestimates the call path with many inexpensive OpenMP
loop iterations. In MPI, the measurement reports only the all-
to-all wait state, which it overestimates. Corresponding delay
costs point to the material update routine, which contains
the artificial imbalance. The measurement, therefore, enables
the analyst to find the work imbalance. However, the wait
time caused by the nodal calculations is not found. These
calculations are perfectly balanced in terms of OpenMP loop
iterations. Thus, the imbalance must have another cause, most
likely timing variations of memory accesses. The ltloop method
cannot measure time inside the OpenMP runtime and therefore
shows no OpenMP overhead. The measurement also does not
report any waiting time in OpenMP, i.e., the number of loop
iterations is balanced across threads and cannot explain the
waiting at OpenMP barriers seen with tsc.
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(b) LULESH-1, delay mpi collective n2n

CalcTimeConstraintsForElems
ApplyMaterialPropertiesForElems
CalcQForElems
CalcLagrangeElements
CalcForceForNodes
LagrangeNodal
root

Fig. 9: LULESH-1. Contributions of selected call paths to user computation (metric comp, in %M ) 9a, and to delay cost for
MPI all-to-all wait states (metric delay mpi collective n2n, in %M ) 9b.

The ltbb and ltstmt measurements estimate time spent in
computation, MPI, OpenMP and idle threads similarly to
tsc, although overestimating the MPI time. With respect to
MPI wait states, both measurements support the same in-
terpretation as ltloop, i.e., a computational imbalance in the
material updates. Figure 9a shows that ltbb and ltstmt yield
better estimates for the computational effort in individual
call paths than ltloop. ltbb only presents a small improvement,
whereas the ltstmt estimates are significantly better. Because
we fitted the constants from II-A, which estimate effort in
the OpenMP runtime, to this particular experiment, both
measurements report a similar time for OpenMP overhead as
tsc. With this tuning, the measurements correctly highlight
ApplyMaterialPropertiesForElems as the origin of
most of the overhead. Similarly to the ltloop result, the compu-
tations are balanced in terms of basic blocks and statements
across threads.

The lthwctr measurement reports wait time for MPI all-to-all
communication (2.3%T ) and waiting for late senders (2.6%T ).
Both patterns are overestimated, and in contrast to tsc, the late
sender pattern is more severe. As shown in 9b, delay costs for
all-to-all wait time point to the right call paths in approxi-
mately the right amount. That is, lthwctr is the only logical
measurement that shows an imbalance resulting from the nodal
calculations. But the low Jaccard score (Jdelay

(C) = 0.17)) for
that metric indicates that lthwctr associates the delay costs with
different procedures inside the CalcForceForNodes call
path. In particular, tsc points to various OpenMP loops doing
computation, whereas lthwctr points to an MPI_Waitall
call. A possible explanation is that the nodal calculations
are balanced in terms of instructions, but timing variations
lead to waiting time, which shows as extra instructions inside
the MPI_Waitall call. The computational imbalance in the
material updates is also found correctly. Additionally, lthwctr
is the only logical method that shows effort in the MPI
library (2%T ). No waiting in OpenMP barriers is reported,
meaning that computations are balanced across threads with
respect to instruction count. The OpenMP overhead is also

Name Ranks time / sec. overhead / %

Ref. tsc

TeaLeaf-1 1 58.8 83.9 42.8
TeaLeaf-2 2 41.5 58.7 41.5
TeaLeaf-3 8 53.1 58.1 9.4
TeaLeaf-4 128 54.2 62.3 14.9

TABLE II: Run times and tsc measurement overheads for
TeaLeaf.

found by lthwctr and correctly attributed to the material update
routine. The hardware counters also yield the best estimate for
computation effort among the logical timers.

4) LULESH-2: We included LULESH-2 as an example of
a configuration where the logical measurements fail to detect
the dominant and obvious performance problem. The artificial
imbalance is disabled in this experiment, and the work is
distributed evenly across ranks. However, the ranks are not
distributed evenly across the hardware of the node. Ranks
on the fully occupied NUMA domains have less bandwidth
available than the ranks on the partially occupied domains. In
the tsc measurement, this manifests as a late sender wait state
with 3.3%T that is caused mostly by CalcForceForNodes.
lthwctr is the only logical measurement that reports the late
sender wait state as the dominant issue, but locates it in the
wrong call paths.

5) TeaLeaf-1,2,3,4: The tsc measurement of
TeaLeaf-2 reports that a large portion of the application
run-time (39%T ) is spent in OpenMP, which is classified
as 11%T waiting at barriers and 28%T overhead. These
observations on their own indicate major issues with the load
distribution to threads and suboptimal use of OpenMP in
general. However, Table II shows that the measurement caused
a 40% penalty to overall run time in this configuration. With
instrumentation, we do not observe a significant difference
between the optimal TeaLeaf-2 and the other configurations
with more ranks, TeaLeaf-3 and TeaLeaf-4.

The instrumentation consumes additional memory and
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pushes the computation out of the cache. The resulting over-
heads are large enough to skew the analysis and are most likely
the cause for the observed time in OpenMP. In this case, the
tsc result is potentially misleading.

The ltbb, ltstmt and lthwctr report all below 2%T time as
OpenMP overhead and between 2.3%T and 2.6%T waiting in
barriers, therefore work in terms of statements or instructions
is distributed almost evenly between threads.

In the TeaLeaf-2 experiment, which uses only 2 MPI
ranks, none of the measurements shows significant time in
MPI. In configuration TeaLeaf-3, wait time in MPI all-
to-all exchanges becomes noticeable (0.4%T in tsc), and in
TeaLeaf-4, which employs 128 ranks, this becomes the
dominant problem (12%T in tsc). Even with almost perfect
load balance, minor timing variations lead to some waiting
time in all-to-all exchanges. Only the lthwctr measurement
shows the same problem(44%T ), whereas ltbb and ltstmt show
little to no time in MPI. The wait time in barriers, which is
not caused by uneven work distribution, is not shown by the
logical measurements.

VI. DISCUSSION

In this work, we investigated how useful time stamps from
logical clocks are in a performance analysis workflow based
on Scalasca trace analysis. Therefore, we extended the Score-P
measurement system to record logical instead of physical time
stamps. We implemented four simple models to estimate work
done in a logical time interval based on counting OpenMP
loop iterations, LLVM basic blocks, LLVM statements, and
CPU instructions.

To compare the different clock models, we measured a
few selected mini-applications with each clock. We used the
Jaccard score to evaluate how much results overlap with
the traditional time based methods. However, while Scalasca
detects wait states and their causes automatically in large
trace files, interpretation by human experts is still needed to
understand application performance. Therefore, in addition to
the scoring approach, we used our experience to interpret the
measurements and compare the timer methods.

A. Conclusions

It is time to summarize the conclusions we draw from our
exploratory experiments. Firstly, none of the simple logical
time based techniques is a drop-in replacement for a physical
clock. We consider these methods to be specialized tools to
be used in conjunction with traditional measurements. Their
usefulness very much depends on the specific scenario.

Wait states caused by contention for system resources,
e.g. main memory, are not detected by design. If such a
problem is present, the logical measurements are skewed and
might be misleading. However, using the combined results
from a physical and a logical measurement, it is possible
to differentiate intrinsic wait states caused by uneven work
distribution from extrinsic wait states due to uneven resource
distribution.

The less intrusive methods lt1 and ltloop introduce little to no
additional overhead compared to tsc. Overhead for the more
intrusive methods is generally larger than for physical mea-
surement, most notably with ltbb and ltstmt, which increase run
time by 1.5 in some cases. Still, a single logical measurement
is faster than repeating the experiment to account for noise.
When the measurement overhead negatively impacts perfor-
mance, the physical clock measurement might be misleading.
In this case, the logical clocks have an advantage, as they are
insensitive to their own overhead.

The logical clock lt1 without an additional effort model is
barely useful. Estimating work by the OpenMP loop count
is sufficient to detect clearly defined load imbalances across
ranks and threads when most work is done inside parallel
loops of roughly the same complexity. However, the ltloop
model overestimates loops with many inexpensive iterations
and imbalances in these regions. Additionally, it does not
detect idling threads due to serial regions. This model is
probably not useful in most scenarios.

The ltbb and ltstmt models make limited use of the com-
piler’s representation of the code. Counting basic blocks or
statements results in similar models with minor differences in
the weighting of call paths. Both correctly show wait states
caused by load imbalances and serial regions. However, time
spent in library calls is not recorded, for instance, the overhead
of MPI routines or OpenMP regions. In principle, one can
improve the measurements by adding an effort model for
library calls, as we did for OpenMP. In practice, this must
be more sophisticated than assuming a constant amount of
work in each library call.

The lthwctr model also correctly shows wait states caused
by load imbalances and serial regions. Additionally, it can
record effort in code not seen by the instrumenter at compile-
time. This leads to a better representation of effort in MPI
and OpenMP but comes at the cost of making measurements
susceptible to noise again.

B. Future work

Towards employing logical measurement techniques in the
performance analysis of production code, further work is
required.

The LLVM-based clocks need better effort models for
MPI, OpenMP, and other library calls. As [34], [35] have
shown, such models would need to be hardware and vendor-
dependent to be accurate. Assigning different weights for
different kinds of statements might improve the model further.
We considered only the number of instructions in the hardware
counter model. Experiments with different hardware counters
and combinations of hardware counters might lead to a better
model. The validation of more complex effort models requires
gathering and evaluating more data in a more automatic and
quantitative way. Comparing measurements with the Jaccard
score is a first step in this direction. An analysis method that
combines physical time and logical time measurements could
provide more insight than individual measurements.
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