
ActorProf: A Framework for Profiling and
Visualizing Fine-grained Asynchronous Bulk

Synchronous Parallel Execution
Jiawei Yang§1, Shubhendra Pal Singhal§2, Jun Shirako3, Akihiro Hayashi4, Vivek Sarkar5

{1jyang810, 2ssinghal74, 3shirako 4ahayashi, 5vsarkar}@gatech.edu
Georgia Institute of Technology

Atlanta, GA, USA

Abstract—A Fine-grained Asynchronous Bulk Synchronous
Parallel (FA-BSP) model is an extended version of the existing
BSP model that facilitates fine-grained asynchronous point-to-
point messages with automatic message aggregation.
While many large irregular applications written with the FA-
BSP model demonstrate promising performance, no profiler is
aware of profile-worthy portions of an FA-BSP program and
visualizes the results in an intuitive way. This is reasonable
because the FA-BSP program relies on multiple external libraries,
and the runtime frequently switches between different portions
of the program, which makes it difficult for well-established
profilers like score-p, TAU(τ), CrayPat, Intel®Vtune™, and
HPCToolkit to profile and visualize these portions in an FA-
BSP-friendly manner.
This paper designs and implements a profiling and visualization
framework called ActorProf. The framework enables 1) asyn-
chronous point-to-point message-aware profiling with hardware
performance counters, 2) overall performance breakdown that is
aware of FA-BSP execution, and 3) visualization of these profiling
results.

Index Terms—ActorProf, HClib, FA-BSP, SPMD, Actors, Se-
lectors, Conveyors, OpenSHMEM

I. INTRODUCTION

In the exascale era of computing, irregular applications like
Breadth First Search (BFS), Triangle Counting, and PageRank
built on top of the Bulk Synchronous Parallel (BSP) model [1]
such as OpenSHMEM [2] and MPI [3] face a common
challenge: "sending large orders of small byte-sized messages
(is generally of ∼8-32 bytes for billion in number) degrades
performance due to the under-utilization of the network band-
width" [4]. This problem can significantly limit large-scale
irregular applications’ ability to scale effectively in both strong
and weak scaling scenarios. One solution to the problem is
using Message Aggregation, where multiple small messages
intended for the same destination are combined into a larger
message to improve bandwidth utilization.

Conveyors is one of the state-of-the-art message aggre-
gation libraries [4]. While it shows promising scalability for
different large-scale irregular applications, it poses another
orthogonal issue: the programming is complex. In Conveyors
programs, users need to manually interleave the message

§These authors contributed equally to this work.

Virtual Processors

Local Computation
+

Offloaded Active Messages

Barrier Synchronization

PE0 PE1 PE2 …

SU
PE

RS
TE

P
SU

PE
RS

TE
P

Barrier Synchronization

Message Handling

Asynchronous
Messaging

Local Computation
+

Offloaded Active Messages

Figure 1: Fine-grain Asynchronous Bulk Synchronous Parallel
Model (FA-BSP) [5]

sending and receiving parts in the same portion of the code
and also handle errors such as aggregation buffer overflow
in that portion. This process is error-prone and typically
hinders productivity. The Fine-grained Asynchronous Bulk
Synchronous Parallel (FA-BSP) model [5] is introduced to
abstract away such complexity of message aggregation, while
enabling promising scalability. In a nutshell, the FA-BSP
model can be viewed as an extended version of the BSP
model that facilitates fine-grained asynchronous point-to-point
messages with automatic message aggregation without any
user-written error handling. As illustrated in Figure 1, each
processing element (PE), performs 1) a local computation (the
BLUE part), 2) asynchronous messaging (the arrows) during
the local computation, and 3) message handlers (the RED part)
in an interleaved fashion.

HClib-Actor [6] is the only realization of the FA-BSP model
as of this writing. In the literature, many irregular applica-
tions are written with HClib-Actor, demonstrating promising
strong/weak scaling and even outperforming the state-of-the-
art counterparts ([7]–[9]).

However, one challenging problem with HClib-Actor pro-
grams is profiling and visualizing meaningful data for the user.
From the users’ perspective, they want a profiler to recognize

1599979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00199

and profile the local computation, asynchronous messaging,
and message handlers parts. Because the HClib-Actor relies
on lower-level libraries such as Conveyors and OpenSHMEM
for asynchronous communication and message aggregation,
as well as HClib for interleaved execution, this presents a
challenge for existing profilers such as score-p, TAU(τ),
CrayPat, and Intel®Vtune™ to profile and visualize these
parts in an FA-BSP-friendly manner.

To alleviate this problem, this paper designs and implements
a profiling and visualization framework called ActorProf.
This paper makes the following contributions:

1) Message-aware Profiling for HClib-Actor: ActorProf
generates statistics on 1) point-to-point sends between
PEs before aggregation (what we call Logical Trace),
and 2) PAPI [10] counter numbers for user-given PAPI
events for each local computation and message handling
part. (Section III-A)

2) Overall Breakdown for HClib-Actor: ActorProf also
measures how many rtdsc() cycles are spent in the
three key parts of an HClib-Actor programs: the local
computation part, the message handling part, and the
communication part. This gives the user a big picture of
their HClib-Actor program execution. (Section III-B)

3) After Aggregation Message Profiling for Conveyors:
ActorProf also generates statistics on point-to-point
sends between PEs after aggregation (what we call
Physical Trace), which is supposed to be done by
existing profilers because aggregated messages are sent
via OpenSHMEM’s non-blocking routines. However, it
is unfortunate that existing profilers can not correctly
capture such non-blocking routines [11], and we decided
to generate physical traces. (Section III-C)

4) Data Visualization for HClib-Actor, which helps the user
infer performance bottlenecks. (Section III-D).

ActorProf can be downloaded from https://github.com/
srirajpaul/hclib/tree/bale3_actor/modules/bale_actor/tools.

We organize this paper into six sections. Section II explains
the FA-BSP model for communication and the integration
with Conveyors and OpenSHMEM. Section III introduces
the system design of ActorProf, which records multiple
information depending on the macros defined and provides the
internal working of the tool as a guide to profile asynchronous
communication tasks on multi-node distributed architectures.
In Section IV, we illustrate the tool’s usage by analyzing and
showing experiments for the Triangle Counting application.
We conclude the paper by discussing the related and future
work in Section V and Section VI respectively.

II. BACKGROUND

This section briefly discusses the FA-BSP model. For the
terminology used in the paper, refer to Table I.

The Habanero C/C++ library (HClib) [12] was developed
to enable an asynchronous many-task (AMT) programming
model and its runtime system on a single-node platform. It
inherits different parallel constructs originally from the X10
[13] language.

TABLE I: Terminology used in this paper

Abbreviations Description

PGAS Partitioned Global Address Space
SPMD Single Program Multiple Data
BSP Bulk Synchronous Parallel
FA-BSP Fine-grained Asynchronous Bulk Synchronous Parallel
MAIN Segment of constructing a message and any local computation

(The body of finish minus send in Listing 1)
PROC Segment of message handling (process in Listing 2)
COMM Any region outside MAIN and PROC
HWPC Hardware Performance Counters
PE OpenSHMEM processing element. There is one actor instance

per PE.
Node A cluster node, group of PEs
Selector HClib-Actor with multiple mailboxes
Segment Culmination of functions which does not involve any asyn-

chronous communication
Region Placement of trace APIs are only applicable to use in HClib-

Actor. The user application is prohibited from accessing these
APIs.

HClib-Actor [6] is an external PGAS-inspired (Partitioned
Global Address Mailbox) actor-based [14] module for HClib
that enables the FA-BSP execution on a multi-node platform.
The features of HClib-Actor include (1) Asynchronous mes-
saging with actor/selector (Selector [15] is an actor with multi-
ple mailboxes), (2) SPMD-style programming with OpenSH-
MEM [2], and (3) Automatic message aggregation with the
Conveyors library [4].

A. HClib-Actor

Listing 1: The MAIN Part (BLUE part and → in Figure 1)

1 // SPMD
2 int* larray = (int*)calloc(N, sizeof(int));
3 MyActor* actor_ptr = new MyActor(larray);
4 hclib::finish([=]() {
5 actor_ptr->start();
6 for (int i = 0; i < N; i++) {
7 int dst = ...;
8 // Asynchronous SEND
9 actor_ptr->send(i, dst);

10 }
11 actor_ptr->done(0);
12 });

Listing 2: The PROC Part (RED part in Figure 1)

1 // Actor Class
2 class MyActor: public hclib::Selector<1, int> {
3 int *larray;
4 // Message Handler
5 void process(int idx, int sender_rank) {
6 larray[idx] += 1; // no atomics
7 }
8 public:
9 MyActor(int *larray) : larray(larray) {

10 mb[0].process = [this](int idx, int sender_rank) {
11 this->process(idx, sender_rank);
12 };
13 }
14 };

Listing 1 and Listing 2 demonstrate an FA-BSP program
with HClib-Actor. In this program, each processing element
in OpenSHMEM (coined as PE) sends N messages to arbitrary
destinations, incrementing a target element of a remote array

1600

Figure 2: System Design of ActorProf

by one. In Listing 1, each PE first allocates a local array
larray (Line 2). Second, each PE instantiates an actor
instance (Line 3). Third, each PE starts the actor (Line 5)
and sends N asynchronous messages to random destinations
(Line 9). The done API (Line 11) informs the runtime that the
current PE will not send any more messages to aid the runtime
with overall application termination. The code in Listing 2
defines an actor class that includes the message handler (Line
5). It is important to note that no atomics are required on
Line 6 when updating larray because the runtime processes
incoming messages one at a time. Each PE is single-threaded.
The finish construct is used to wait until all outgoing
messages are sent and all incoming messages are processed.

B. Conveyors

Conveyors is a standalone library that can be built on top
of either OpenSHMEM, MPI, or UPC. It aims to address the
single-threaded producer-consumer problem by developing a
push-style aggregation policy with multi-hop routing, making
it memory-frugal and exploiting better network bandwidth
utilization. The adoption of one-sided puts in a performant
manner was shown in 2019 by Conveyors on OpenSHMEM
by overcoming the bottlenecks of past libraries that attempted
to perform aggregation - exstack (global synchronization
problem), exstack2 (memory scalability of buffers), TRAM
from Charm++ [16] (does not support intra-node network
optimizations), and YGM [17](restricted to only one mailbox).
Adoption of Conveyors by run-time system HClib as HClib-
Actor in 2022 offered FA-BSP programming model, thereby
enabling nesting of Conveyors objects such that multiple
Conveyors objects can communicate with each other using
a partitioned mailbox. Note that Conveyors is just an aggre-

gation library that does not have a binding to any programming
model.

III. SYSTEM DESIGN AND IMPLEMENTATION

The end-to-end system design of ActorProf is illustrated
in Figure 2.

For ActorProf "trace-collection": The user application in
a multi-node environment requires compile flags to be enabled,
as listed below:

• -DENABLE_TRACE for logical trace (Section III-A)
• -DENABLE_TCOMM_PROFILING for Overall profile (Sec-

tion III-B)
• -DENABLE_TRACE_PHYSICAL for physical trace (Sec-

tion III-C)
ActorProf begins the trace generation by using tracing

hooks placed inside run-time system HClib-Actor, and the
aggregation library Conveyors. Software trace APIs record
source, destination, buffer/message sizes (in bytes), and local
timestamp if needed. HWPC API’s record various architecture
dependent PAPI counters and utilize the region-specific fea-
tures: PAPI_start and PAPI_stop to record during asyn-
chronous communication.
ActorProf "visualization": This step requires the com-

pletion of "trace generation." ActorProf generates heatmap
and different styles of bar-graph. The user is required to run
ActorProf with run-time flags:

• -l for logical trace (▲) heatmap.
• -lp for PAPI trace (△) bar graph for four PAPI

counters in one run.
• -s for Overall trace (■) stacked bar graph for both

absolute and relative execution time.
• -p for physical trace (•) heatmap.

1601

A. Logical Trace

Logical trace (▲) records the "user application-fed"
source and destination records. Moreover, it also records the
logical mapping between nodes/PEs/threads of the cluster
and actor. HPC algorithm designers can comprehend the
communication pattern based on the respective input/internal
data-structure distributions.

Refer to the terminologies in Table I. HWPC in ActorProf
(△) provides overall profiling of segments of a user appli-

cation, where a user can utilize HClib-Actor tracing func-
tions. Segments refer to the culmination of functions that do
not involve any asynchronous communication. In addition,
ActorProf also performs region-specific profiling for two
regions - MAIN is the segment of constructing a message &
any local computation, and PROC is the segment responsible
for the message handling/recv part. ActorProf only allows
up to four concurrent recording events with the limitation
from PAPI. This form of profiling helps the user separate
the measurement of the counters during the context switch
between the send and the recv task.

This feature benefits both HPC algorithm designers and
HPC run-time designers, since the former can experiment
and deduce the resource bottleneck bounds of their implemen-
tation and suitability of the run-time system HClib-Actor from
the perspective of FA-BSP model, and the latter, can obtain
the suite/common patterns of algorithms that could potentially
degrade their system’s performance, as on degradation for
instance, memory (data and instruction) counters in PAPI
indicate cache/TLB thrashing; information on loads/stores and
branch prediction stalls; data prefetch cache misses counters -
a concept highly useful for exploiting overlap; retired instruc-
tion profiling; Vector/SIMD profiling if user-application such
as in [18] utilizes the vectorization feature.
Implementation: This feature creates two types of files per
PE, PEi_send.csv and PEi_PAPI.csv, where each line of
the file represents the trace information of a single send
operation in the following formats:

• PEi_send.csv: Logical trace for PE i.
– source node, source PE, destination node,

destination PE, message size

• PEi_PAPI.csv: PAPI-based message trace for PE i.
– source node, source PE, dst node, dst

PE, pkt size, MAILBOXID, NUM_SENDS,

PAPI_TOT_INS, PAPI_LST_INS

We used PAPI_TOT_INS as one of the PAPI counters in
the case study, which records the total number of instructions
within the region specified.

B. Overall profiling

This profile (■) aims at distinguishing the time taken
solely due to communication from the time taken by "user-
provided" send/recv functions. Refer to the terminologies:
MAIN and PROC in Table I. HClib primarily involves three sub-
parts: (1) T_MAIN, The time taken by the application to gen-
erate a message and append it to the mailbox; (2) T_COMM,

The time taken in communication (derived); and (3) T_PROC,
The time taken by user-provided message handler to process
the pulled messages. We derive (2) by Total-(1)-(3),
which is solely responsible for communication by Conveyors.
We denote the total time taken by T_TOTAL. This feature
of profiling guides the HPC programmers to optimize their
implementations in case (1) and (3) are observed as a bottle-
neck, else HPC algorithm designers need to brainstorm the
opportunity to exploit more overlap between computation and
communication.
Implementation: This feature generates a overall.txt file
where each line of the file indicates the absolute and relative
time of a single Selector in the following formats.

• overall.txt: physical message trace for all PEs.
Absolute [PEi] TCOMM_PROFILING (T_MAIN, T_COMM,

T_PROC)

Relative [PEi] TCOMM_PROFILING (T_MAIN/T_TOTAL,

T_COMM/T_TOTAL, T_PROC/T_TOTAL)

Note that rdtsc x86-instruction is used to record the time.

C. Physical Trace

Physical trace (•) records the network-fed route
source and destination traces which are dictated by the topol-
ogy of Conveyors- 1D Linear/2D Mesh/3D Cube topology
[11] [4], which consists of a static/fixed route of communica-
tion for a pair of source and destination. ActorProf traces
the following communication calls in Conveyors:

• local_send: All PEs on the same node (Intra-Node)
perform std::memcpy using shmem_ptr.

• nonblock_send: Inter-Node send is initiated and
marked for send by the network layer uses non-blocking
shmem_putmem_nbi.

• nonblock_progress: Inter-Node completion of sends
to all destinations is mandated for the sender PE such that
the data sent is visible to all PEs. It uses shmem_quiet
followed by shmem_put for signaling the destination
PE.

This feature enables fine-grain profiling for the FA-BSP
model (i.e., HClib-Actor + Conveyors), which benefits both
HPC algorithm designers and HPC run-time designers,
since the former can experiment and deduce the suitability of
the FA-BSP model, and the latter can obtain number/patterns
of the network communication that could potentially degrade
their system’s performance.
Implementation: This feature generates a physical.txt file
where each line of the file indicates the single send operation
recorded from instrumentation in Conveyors, in the following
formats:

• physical.txt: physical trace for all PEs.
– send type, buffer (network-packet) size,

source PE, destination PE

Note that the send type includes local_send,
nonblock_send, and nonblock_progress.

1602

D. Trace Visualization

ActorProf Visualization utility is inspired by CrayPat’s
feature - "Mosaic Report," which depicts the matrix of com-
munication between the source and destination PEs, using the
colored blocks based on the number of sends. Our utility ex-
tends further and offers insights into the relative performance
of time, and HWPC for every PE, load imbalance of "actors"
due to application sends (wrt to actor PEs), and hotspots of
"node" from the network sends.

We offer various visual interpretations, such as Heatmap,
Quartile Violin plot, and Bar Graph with additional support
for stacked columns. Bar Graphs can be used to identify the
stragglers in the system and study trends of time/counters
for all or user-specific regimes of HClib-Actor programs.
Furthermore, heatmaps showcase communication patterns (for
both virtual and network s/w library topology) along with the
number of sends between each pair of source and destination
and total outgoing send/recv for every PE, represented in
the last row and the last column. Violin plots are used for
inferring the quartiles for total send/recv traces.
Implementation: This feature generates different graphs for
different types of traces using python scripts and inputs as
follows:

• logical.py: Generate heatmap from logical message
trace file PEi_send.csv

• physical.py: Generate heatmap from physical message
trace file physical.txt

• papi.py: Generate bar graph from papi message trace
file PEi_PAPI.csv

• Overall.py: Generate bar graph from message trace file
Overall.txt

ActorProf Visualizer use python modules: numpy, pan-
das and matplotlib. The input data format is .txt for
physical.py / Overall.py and .csv for logical.py /
papi.py. Note that all graph generation scripts take the path
to the corresponding trace file(s) directory as a positional
argument and the total number of PEs used num_PEs as
additional input argument.

IV. CASE STUDY: DISTRIBUTED TRIANGLE COUNTING

A. Usage

We are actively using ActorProf in our workloads, to
name a few - Influence Maximization [19], Jaccard Similar-
ity [7] etc., for profiling and performance bottleneck iden-
tifications. More demonstrating examples can be found at
https://hclib-actor.com.

B. Purposes

The purpose of this study is to 1) discuss a scenario where
a choice of data distribution of vertices causes load imbalance
due to the power law distribution nature of an input R-MAT
graph, and to 2) discuss how ActorProf helps the user
identify such load imbalance.

1) Distributed Triangle Algorithm: Triangle Counting is a
classic graph application that counts all possible numbers of
triangles in a graph. Algorithm 1 shows an FA-BSP implemen-
tation. The input for the algorithm is the lower triangular part
of a global adjacency matrix (L) for a graph. The output is
the total number of triangles in the graph. Each actor (Actorp
on rank rp) iterates over the neighbors of each local vertex
i and identifies two distinct neighbors (edges lij and lik s.t.
k < j). To check if there is an edge ljk, it sends a non-blocking
message to the (possibly) remote actor that owns an edge ljk.
Upon receiving the message and if such an edge exists, a local
triangle count on that rank will be incremented by 1.

2) Data Distributions: A data distribution decides which
data resides on which rank. Two distributions were used in this
experiment: 1D Cyclic and 1D Range. 1D Cyclic uniformly
distributes the rows so that each rank has a similar number
of vertices, whereas 1D Range non-uniformly distributes the
rows to make each rank have a similar number of edges.

In this algorithm, each actor performs O
(
N2

)
sends for

each local vertex, where N is the number of its neighbors.
Depending on an input graph and data distribution, a heavy
load imbalance can occur in terms of the number of sends per
PE.

C. Experimental Setup

We conducted experiments on the NERSC Perlmutter su-
percomputer at Lawrence Berkeley National Lab [20]. Each
CPU node of Perlmutter consists of dual-socket AMD EPYC
7763 (Milan) processors with 64 physical cores per socket,
512 GB of memory, and a single network card connected to
an HPE Cray Slingshot 11 network. Cray-SHMEM modules,
i.e., cray-openshmemx/11.5.8 and cray-pmi/6.1.10,
CC compiler, were used during the experiment and trace data
was placed on the LUSTRE filesystem for efficient I/O reads.
The input graph is a lower triangular undirected, unweighted
matrix generated on a scale of 16 with R-MAT parameters of
A = 57.0, B = C = 19.0, D = 5.0, and an edge factor of 16,
following graph500 benchmark standards [21]. We compared
the load-balance performance between the 1D Cyclic and
1D Range versions while keeping all other variants below
the same. Both versions take the same input graph on 1/2
node with 16/32 PEs. We have validated the experiments by
using assertion, which verified [22] the number of triangles
obtained by the application with the theoretical answer, also
calculated by the application.

D. Preliminary Results

We only profile the primary part of the application, i.e., the
Triangle Counting kernel, and leave the reading of the graph
and validation of results out of the scope of this section. The
heatmap in ActorProf can yield three points of observation:

• Observe the number of sends in the heatmap and observe
the last column/row, indicating the total send/recv per PE
across all destination PEs.

1603

Algorithm 1 Triangle counting using actors (SPMD).

1: function COUNTTRIANGLESACTOR(L)
2: Let L be the lower triangular part of an adjacency matrix. lij ∈ L indicates whether there is an edge from vertex i to

vertex j s.t. j < i. lij = 1 means there is an edge.
3: Let rp denote the local process’s rank as a 1-D coordinate in a logical 0 . . . p− 1 array.
4: Let Lp be the local rows of L owned by rp, cp be the local counter owned by rp, and Actorp denote the actor instance

that is running on rp.
5: for {lij , lik ∈ Lp | lij = lik = 1, k < j < i} do ▷ Find two distinct neighbors of vertex i
6: Let pe← FINDOWNER(ljk) ▷ Find a rank that owns ljk
7: Actorp.send(pe, j, k) ▷ Send an active message (non-blocking)
8: WAIT() ▷ Wait until outgoing messages are sent and incoming messages are processed
9: return ALLREDUCE(cp)

10: function ACTORPROCESS(j, k) on rp ▷ The message handler: j is row number, and k is col number
11: if {ljk ∈ Lp | ljk = 1} then cp += 1
12: function FINDOWNER(ljk) ▷ Returns a rank that is responsible for row
13: return j % p ▷ 1-D Cyclic distribution in this case

• Observe the violin plot that indicates the quartile of
send/recv trace across PEs. The application has good load
balance as the plot tends to be fatter and vice versa.

• Observe the distribution of communication, i.e., the shape
of the overall matrix.

Logical Trace Heatmap In this section, we first discuss the
communication load and its distribution. Then, we explain and
reason the shape/pattern of communication.

Figure 3 and Figure 4 shows the number of "messages" sent
by a source PE (row-id) to the destination PE (column-id) for
1D Cyclic and 1D Range data distribution for one node and
two nodes respectively. For 1D Cyclic distribution for both
the heatmaps, PE0 incurs more communication with a specific
set of PEs (∼ 3-4 in number) relative to the rest of the pair of
PEs. Further, we show the Quartile using violin plots for the
total number of sends/recvs in Figure 5. The violin plot shows
1) the distribution of the data with the density plot (colored
shape) where wider sections indicate higher data density, 2)
the median in a white dot, and 3) the maximum outlier with
the farthest point on the top of the colored shape. In one node,
the maximum 1D Cyclic recv is 33% more than the sends, and
in two nodes, the maximum send is ∼ 200% more than the
maximum recv. This clearly indicates an imbalance in the total
sends/recvs across PEs.

Contrasting and comparing 1D Cyclic with 1D Range,
we observe that only a few PEs ∼3-4 incur a large number
of recvs, while sends are relatively fairly distributed. This
observation can be corroborated by Figure 5 range worded x-
axis, whose outlier of sends are relatively less than or almost
equal to recvs. Further, in comparison, 1D Cyclic performs a
maximum of ∼6x sends and ∼2x recvs.

Therefore, although 1D Range alleviates the problem of
load imbalance in sends, it does not eliminate the problem
of load imbalance. We encourage users from here now to try
more distributions, such as Edge Cut, Cartesian Vertex-Cut,
and many more [23]. And definitively, 1D Range is a better-
suited distribution than 1D Cyclic for "fairly-distributed"

communication load.
In addition, the 1D Cyclic version has its communication

distributed irregularly across all PEs, as expected, whereas
the 1D Range has a lower triangular(L) shape. We coin this
observation in 1D Range as (L) observation.

The goal of range distribution is to "evenly" distribute
edges amongst PEs. We take an example to demonstrate the
scenario: Suppose PE0 is responsible for the rows of input
matrix indexed from [0. . . i]. Since the input matrix is lower
triangular, rows [0. . . i] will have the non-zero entries (#nnz)
in the columns indexed from [0. . . i] such that row[0] can have
atmost 1 #nnz, row[1] can have atmost 2 #nnz · · · row[i] can
have atmost (i+1) #nnz. Similarly, suppose PE1 is responsible
for rows of input matrix indexed from [(i+1). . . j], edges with
the column indices of [0. . . i] belong to PE0, edges with the
column indices [(i+1) . . . (j-1)] belong to PE1 and so on. Note
that i, j . . . are chosen such that PEs have an equal number
of #nnz.

Therefore, if PE1 has to communicate, it only communicates
with PE0 or PE1. A similar extrapolation for any q, PEq would
store edges in portions which belong to PE0 . . . (q − 1), as
shown in the Figure 6. Since the triangle counting application
traverses the neighbor list and sends a message to its neighbor,
we validate the observation of the lower triangular(L) shape’s
communication in the heatmap. In addition, Figure 6 also
suggests a "very likely" situation such that the total number of
incoming communications by PE0 > PE1 > PE2 and so on.
Observe the "monotonically decreasing fashion" recvs, i.e., the
last row of heatmaps in Figure 3 and Figure 4.
Conclusion: The heatmap for 1D Cyclic data distribution

clearly shows the heavy load-imbalance in terms of both
sends/recvs. While 1D Range data distribution mitigates the
load imbalance by sends, the load imbalance by recvs still
persists. Therefore, the Logical Trace Heatmap helps users
examine and devise better-suited distributions.
Physical Trace Heatmap

Figure 8 and Figure 9 show the Conveyors dictated number

1604

Figure 3: Logical Trace Heatmap for 1 node
(LHS: 1D Cyclic, RHS: 1D Range)

Figure 4: Logical Trace Heatmap for 2 nodes
(LHS: 1D Cyclic, RHS: 1D Range)

Figure 5: Violin plot for Logical Trace
(LHS: 1 node, RHS: 2 nodes)

1605

Figure 6: (L) observation. Note that i, j . . . are chosen such that PEs
have an equal number of #nnz and should not be confused with the drawing
scale shown. The ’0’ in bold represents #nnz = 0

Figure 7: Violin plot for Physical Trace (UP: 1 node, DOWN:
2 nodes)

of "buffers" sent by a PE to the other/destination PE for 1D
Cyclic and 1D Range data distribution. Figure 7 indicates the
quartile violin plot for physical trace for 1D Cyclic and 1D
Range on 1&2 nodes. Sends in 1D Cyclic are worse than
those of 1D Range by ∼2-4x. Similarly, recvs in 1D Cyclic
are worse than those of 1D Range by ∼5-15%. 1D Range
can still hold a spike, marginally smaller than 1D Cyclic recv.
Therefore, 1D Range is an incomplete solution to the overall
load-imbalance problem. This is indeed what we observed and
concluded for the Logical Trace aforementioned.

Conveyors for one node follow 1D Linear topology, and
for two nodes follow 2D Mesh topology, where every PE is
restricted to communicate with its row and column member
PEs. In mesh topology, PEs use local_send along the row
and nonblock_send along the column. The shape of the
heatmaps (1&2 nodes) for local_send and nonblock_send

in 1D Cyclic reflects the underlying topology. For 1D Range,
it reflects the (L) observation.

Note for self-sends: Excluding this subsection, self-sends
have been considered throughout the paper.
One may expect that Conveyors should treat a self-send
special by bypassing the network stack. In other words, a
maximum of two data copy operations should be incurred,
one for copying from the user application to Conveyors send
and the other for copying back from Conveyors recv to
the user application. However, such nuanced treatments are
not as trivial to implement as they seem. Some algorithms
may require a sense of order for their arrival messages to
guarantee approximation bounds. For such a space of al-
gorithms, any bypass for self-sends will likely cause "out-
of-order" execution. Therefore, ActorProf avoids confusion
(such as conclusions drawn in Figure 3 with (0,0)) and collects
the profile information of sends with/without self separately -
Logical trace with self-sends and Physical without self-
sends.

Conclusion: Stays the same as the logical trace. Moreover,
an interesting angle originates for HPC run-time designers to
improve their design and gain more performance; Conveyors
can incur up to six std::memcpy ops for a single self-
send before being delivered to itself, stated in [11] for the
abovementioned reason.
PAPI Bar Graph

Figure 11 and Figure 10 compare the total number of
instructions sent per PE for 1D Cyclic1 and 1D Range data
distribution. In this experiment, we instrument the regime of
user-provided code and exclude the Conveyors and HClib-
Actor system from the measurement by carefully placing
start and stop PAPI APIs. 1D Cyclic version for both one
and two node experiments, show that PE0 suffers from an
imbalance (upto ∼5x) in the number of instructions compared
with other PEs. This is attributed to the last row/column
from Figure 3 and Figure 4, where PE0 shows the maximum
sends/recvs amongst all PEs, indicating the the measure-
ment for user-code executed in send/recv to be the maximum
on PE0.
Conclusion: PE0 for 1D Cyclic has an imbalance in the total
number of instructions, with the worst-case observed up to
∼4-5x. Similarly, the measurement of other available PAPI
counters can help gain such inferences, whose documentation
is a continual work-in-progress (inspired from Intel®Vtune™
official documentation on HPC) and is scoped as the future
work.
Overall stacked bar graph

Figure 12 and Figure 13 compare the time taken by regimes,
i.e., MAIN, PROC and COMM for HClib-Actor application. COMM
regime is the bottleneck for both 1D Cyclic and 1D Range.
For both setups of different nodes, 1D Range distribution
performs ∼2x better in total time, as it takes ∼300k cycles,
while 1D Cyclic takes ∼600k cycles. Further, MAIN constitutes

1 In 1D Cyclic, a few PEs do not show any value on the x-axis due to
relatively small quantities. The minimum is roughly three to four orders of
magnitude lower than the highest, but they are not absolute zeros.

1606

Figure 8: Physical Trace Heatmap for 1 node
(LHS: 1D Cyclic, RHS: 1D Range)

Figure 9: Physical Trace Heatmap for 2 nodes
(UP: 1D Cyclic, BOTTOM: 1D Range)

1607

Figure 10: Total Number of Instructions vs PEi for 1 node
(LHS: 1D Cyclic 1, RHS: 1D Range)

Figure 11: Total Number of Instructions vs PEi for 2 nodes
(LHS: 1D Cyclic 1, RHS: 1D Range)

Figure 12: Overall Profiling for 1 node (LHS: 1D Cyclic,
RHS: 1D Range)

Figure 13: Overall Profiling for 2 nodes (LHS: 1D Cyclic,
RHS: 1D Range)

for ≤5% of the total time taken for 1D Cyclic and 1D Range
over 1&2 nodes. PROC in 1D Cyclic is ≤5% whereas for 1D
Range is ∼20-24% of the total time taken. Therefore, we can
infer that although 1D Range is better than 1D Cyclic, it still
faces the problem of load-imbalance in recv. Further, time
taken in PROC + MAIN accounts for up to 33% of the total.
Therefore, the ∼2x gain in the total time is primarily from
the gain in the time taken in COMM regime. Since changing the
distribution improved the performance, ActorProf suggests
experimenting with data-distributions as an opportunity for
improvement.
Conclusion: Triangle counting algorithm is bounded by the
time taken by COMM regime. Apart from new distributions,
clever techniques could be employed to exploit more overlap
between communication and computation in a performant
fashion.

E. Overhead of ActorProf Tracing

The FA-BSP model inherently enables the user to send a
massive number of messages, potentially bloating the size of
logical and physical traces. We discuss the memory problem
of logs in Section VI. Additionally, any inferences made
from the timestamp information might not be necessarily
accurate - Conveyors implements a lazy-send policy whose
ordering guarantees are only restricted for a pair of PEs,
i.e., if PE0 sends a buffer to PE1 and PE2 sends a buffer
to PE1, then PE1 has no way of distinguishing which buffer
came first. Furthermore, the inclusion of logical clock setup
and its communication in Conveyors/HClib-Actor is costly,
as memory-copy/network send overheads are directly pro-
portional to the number of send/recv operations (orders of
billion) invoked within the target profiling region.

For Overall profiling, we intentionally used rdtsc so the
measurement does not flush the CPU pipeline like rdtscp.
While this minimizes profiling overhead, the measured cycles
can include cycles taken to execute instructions before or after
the measurement. We refrain from using any OS-specific
timers and rely on the x86 instruction set instead.

V. DISCUSSION AND RELATED WORK

A. Programming Model- & Runtime- Aware Profiling/Tracing

To the best of our knowledge, there are not many profilers
designed to capture programming model-specific and runtime-
specific information. Chplvis [24] targets Chapel [25] and
enables profiling and visualizing tasking and communication
information in Chapel programs. Projections [26] is a
Java-based performance visualization and analysis tool which
targets Charm++ [27] programs. Legion Prof [28], [29] is
a task-level profiler that targets the GASNet communication
system on Legion [30] programming system. It enables the
profiling and visualizing CPU utilization, scheduling, and
"happen-before" dependencies between various tasks in Le-
gion programs. Arm Forge [31] profiles MPI and OpenMP
programs on conventional HPC architectures - Intel, 64-bit
Arm, AMD, OpenPOWER, NVIDIA GPU, and AMD GPU
hardware. Similarly, ActorProf targets the FA-BSP model,

1608

which mainly targets irregular applications, involving heavy
context-switching, and aims to bridge the gap between
OpenSHMEM-level communication routines invoked from the
runtime and fine-grained asynchronous messaging routines
invoked from the user.

B. Communication API-level Profiling/Tracing

There are plenty of well-established profilers that can
directly profile/trace MPI or OpenSHMEM routines, such
as score-p, TAU(τ), CrayPat, Intel®Vtune™, and
HPCToolkit. However, none of them support OpenSHMEM
non-blocking routines, which led us to enable Physical Trace
in Section III-C. Here are additional details that explain why
this is the case:

1) score-p: We received an email acknowledgment from
the score-p team stating that they currently do not
support and have no plans to support non-blocking
routines.

2) TAU(τ): Non-blocking routines are excluded in
exclude_list.openshmem, which is in TAU’s source
directory tau-2.33.2/src/wrappers/shmem/.
APEX [32] by HPX employs TAU(τ) profiler for their
visualization utility.

3) CrayPat: We profiled all the bale kernels [22] using
CrayPat with "-T" option enabled, which is supposed
to show any OpenSHMEM routines invoked during
the execution. However, shmem_putmem_nbi does not
show up even though Conveyors frequently uses the
routine.

4) Intel®Vtune™: We consulted the official
Intel®Vtune™ User Guide in the section titled
"Contents of Trace Files" [33]. It mentions that it is
experimental and utilizes a Fabric Profiler, which only
uses shmem_put calls on Page 371.

SKaMPI-OpenSHMEM [34] offers an alternative to measuring
non-blocking asynchronous point-to-point communication, but
one of the limitations of the model is the measurement of
shmem_quiet for a fixed buffer size. SKaMPI-OpenSHMEM
(Page5) - "In the preamble of the measurement routine, we
measure the time to perform a complete non-blocking com-
munication (including the call to shmem_quiet) for the same
buffer size.", which assumes after every fixed count of puts
of fixed size, the library should call shmem_quiet. However,
in Conveyors, the trigger of shmem_quiet occurs when the
second buffer in the double buffering technique is full for a
particular destination. But the semantics of shmem_quiet
dictate that the caller PE has to guarantee the completion of
all outstanding puts for all the remote destinations before
the previous call. Therefore, Conveyors does not hold the
assumption of the SKaMPI-OpenSHMEM tool. We discuss the
challenges and the future work for the precise measurement
of shmem_quiet in Conveyors.

Another potential approach is the OpenSHMEM Profiling
Interface, which is analogous to MPI’s PMPI profiling inter-
face. We may create a wrapper function for non-blocking

routines and collect/record any information related to these
routines.

VI. CONCLUSION AND FUTURE WORK

This paper designs and implements a profiling and visual-
ization framework called ActorProf. The framework enables
1) asynchronous point-to-point message-aware profiling with
hardware performance counters, 2) overall performance break-
down that is aware of FA-BSP execution, and 3) visualization
of these profiling results. We use an FA-BSP version of
distributed triangle counting to demonstrate how ActorProf
helps the user analyze the application.

In our future work, besides exploring the possibility of
enabling FA-BSP-aware profiling in existing profilers, we
intend to investigate more efficient profiling and visualization
techniques (and their inferences) that can handle large traces of
orders of 100GB. Since the FA-BSP model inherently enables
the user to send a massive number of messages, managing the
size of traces becomes challenging, as explained in [35], and
it is a key area for future research. Moreover, a feature where
ActorProf can concurrently generate the trace graph with
the program’s execution along with the adoption of OTF [36]
and Google Trace Events [37] format, is currently being
investigated.

Furthermore, we have found some intriguing methods for
setting the standard for profiling upcoming programming mod-
els. One such method is the use of a Declarative Language,
which can reduce the overhead caused by a profiler and can
be easily integrated with any run-time system written in a
procedural language (e.g., C) as pointed out by [38]. Finally,
intelligent sampling of traces and identifying hotspots using
performance modeling can serve as an alternative approach to
interpreting applications compared to ActorProf.

ACKNOWLEDGMENT

This research is based upon work supported by the Office
of the Director of National Intelligence (ODNI), Intelligence
Advanced Research Projects Activity (IARPA), through the
Advanced Graphical Intelligence Logical Computing Envi-
ronment (AGILE) research program, under Army Research
Office (ARO) contract number W911NF22C0083. The views
and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of the ODNI, IARPA, or the U.S. Government.

REFERENCES

[1] L. G. Valiant, “A bridging model for parallel computation,” Commun.
ACM, vol. 33, no. 8, p. 103–111, aug 1990. [Online]. Available:
https://doi.org/10.1145/79173.79181

[2] B. Chapman, T. Curtis, S. Pophale, S. Poole, J. Kuehn, C. Koelbel, and
L. Smith, “Introducing openshmem: Shmem for the pgas community,”
in Proceedings of the Fourth Conference on Partitioned Global Address
Space Programming Model, ser. PGAS ’10. New York, NY, USA:
Association for Computing Machinery, 2010. [Online]. Available:
https://doi.org/10.1145/2020373.2020375

[3] M. P. Forum, “Mpi: A message-passing interface standard,” USA, Tech.
Rep., 1994.

1609

[4] F. M. Maley and J. G. DeVinney, “Conveyors for streaming many-to-
many communication,” in 2019 IEEE/ACM 9th Workshop on Irregular
Applications: Architectures and Algorithms (IA3), 2019, pp. 1–8.

[5] S. R. Paul, A. Hayashi, K. Chen, Y. Elmougy, and V. Sarkar,
“A fine-grained asynchronous bulk synchronous parallelism model
for pgas applications,” Journal of Computational Science, vol. 69,
p. 102014, 2023. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S1877750323000741

[6] A. Hayashi, J. Yang, and Y. Elmougy, “Hclib-actor documentation,”
Georgia Institute of Technology, Tech. Rep., 2022. [Online]. Available:
https://hclib-actor.com

[7] Y. Elmougy, A. Hayashi, and V. Sarkar, “Asynchronous distributed
actor-based approach to jaccard similarity for genome comparisons,”
in ISC High Performance 2024 Research Paper Proceedings (39th
International Conference), 2024, pp. 1–11.

[8] Y. Elmougy, A. Hayashi, and V. Sarkar, “Highly scalable large-scale
asynchronous graph processing using actors,” in 2023 IEEE/ACM 23rd
International Symposium on Cluster, Cloud and Internet Computing
Workshops (CCGridW), 2023, pp. 242–248.

[9] Y. Elmougy, A. Hayashi, and V. Sarkar, “A Distributed, Asynchronous
Algorithm for Large-Scale Internet Network Topology Analysis,” in
2024 IEEE/ACM 24th International Symposium on Cluster, Cloud and
Internet Computing Workshops (CCGridW), 2024.

[10] U. o. T. Innovative Computing Laboratory (ICL), Performance
Application Programming Interface (PAPI), last Accessed: July 28th,
2024. [Online]. Available: https://icl.utk.edu/papi/

[11] S. Singhal, A. Hayashi, and V. Sarkar, “Bottleneck scenarios in use of
the conveyors message aggregation library,” in 2024 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).
Los Alamitos, CA, USA: IEEE Computer Society, may 2024, pp.
322–324. [Online]. Available: https://doi.ieeecomputersociety.org/10.
1109/ISPASS61541.2024.00045

[12] M. Grossman, V. Kumar, N. Vrvilo, Z. Budimlic, and V. Sarkar, “A
pluggable framework for composable hpc scheduling libraries,” in 2017
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2017, pp. 723–732.

[13] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: an object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’05. New York,
NY, USA: Association for Computing Machinery, 2005, p. 519–538.
[Online]. Available: https://doi.org/10.1145/1094811.1094852

[14] G. Agha, Actors: a model of concurrent computation in distributed
systems. Cambridge, MA, USA: MIT Press, 1986.

[15] S. M. Imam and V. Sarkar, “Selectors: Actors with multiple guarded
mailboxes,” in Proceedings of the 4th International Workshop on
Programming Based on Actors Agents & Decentralized Control, ser.
AGERE! ’14. New York, NY, USA: Association for Computing
Machinery, 2014, p. 1–14. [Online]. Available: https://doi.org/10.1145/
2687357.2687360

[16] L. Wesolowski, R. Venkataraman, A. Gupta, J.-S. Yeom, K. Bisset,
Y. Sun, P. Jetley, T. R. Quinn, and L. V. Kale, “Tram: Optimizing fine-
grained communication with topological routing and aggregation of mes-
sages,” in 2014 43rd International Conference on Parallel Processing,
2014, pp. 211–220.

[17] B. Priest, T. Steil, G. Sanders, and R. Pearce, “You’ve got mail (ygm):
Building missing asynchronous communication primitives,” in 2019
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), 2019, pp. 221–230.

[18] A. Mysore, K. Ravichandran, Y. Elmougy, A. Hayashi, and V. Sarkar,
“Accelerating actor-based distributed triangle counting,” Supercomputing
Conferece, 2023.

[19] S. P. Singhal, S. Hati, J. Young, V. Sarkar, A. Hayashi, and R. Vuduc,
“Asynchronous Distributed-Memory Parallel Algorithms for Influence
Maximization,” in 37th International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2024.

[20] NERSC, Perlmutter HPE supercomputer. [Online]. Available: https:
//docs.nersc.gov/systems/perlmutter/architecture/

[21] graph500, graph500, last Accessed: July 28th, 2024. [Online].
Available: http://www.graph500.org/

[22] “bale/ package,” last Accessed: July 28th, 2024. [On-
line]. Available: https://github.com/jdevinney/bale/blob/master/docs/
Bale-StGirons-Final.pdf

[23] G. Gill, R. Dathathri, L. Hoang, and K. Pingali, “A study of partitioning
policies for graph analytics on large-scale distributed platforms,” Proc.
VLDB Endow., vol. 12, no. 4, p. 321–334, dec 2018. [Online].
Available: https://doi.org/10.14778/3297753.3297754

[24] P. A. Nelson and G. Titus, “Chplvis: A communication and task
visualization tool for chapel,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2016, pp.
1578–1585.

[25] B. L. Chamberlain, “Chapel (cray inc. HPCS language),” in Encyclope-
dia of Parallel Computing, 2011, pp. 249–256.

[26] L. Kalé and A. Sinha, “Projections: A preliminary performance tool
for charm,” in Parallel Systems Fair, International Parallel Processing
Symposium, Newport Beach, CA, April 1993, pp. 108–114.

[27] L. V. Kalé, Charm++. Boston, MA: Springer US, 2011, pp. 256–264.
[Online]. Available: https://doi.org/10.1007/978-0-387-09766-4_242

[28] Stanford, N. A. Laboratory, L. A. N. Laboratory, and NVIDIA,
Legion: Performance Profiling and Tuning. [Online]. Available:
https://legion.stanford.edu/profiling/

[29] A. Heirich, E. Slaughter, M. Papadakis, W. Lee, T. Biedert, and
A. Aiken, “In situ visualization with task-based parallelism,” in
Proceedings of the In Situ Infrastructures on Enabling Extreme-Scale
Analysis and Visualization, ser. ISAV’17. New York, NY, USA:
Association for Computing Machinery, 2017, p. 17–21. [Online].
Available: https://doi.org/10.1145/3144769.3144771

[30] M. Bauer, S. Treichler, E. Slaughter, and A. Aiken, “Legion: expressing
locality and independence with logical regions,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis, ser. SC ’12. Washington, DC, USA: IEEE
Computer Society Press, 2012.

[31] Arm, Introduction to Arm Forge. [Online].
Available: https://developer.arm.com/documentation/101136/22-1/
Arm-Forge/Introduction-to-Arm-Forge

[32] K. A. Huck, A. Porterfield, N. Chaimov, H. Kaiser, A. D.
Malony, T. Sterling, and R. Fowler, “An autonomic performance
environment for exascale,” Supercomputing Frontiers and Innovations,
vol. 2, no. 3, p. 49–66, Nov. 2015. [Online]. Available: https:
//superfri.org/index.php/superfri/article/view/64

[33] Intel, Intel Vtune Code Analysis with Fabric Pro-
filer, last Accessed: July 28th, 2024. [Online]. Avail-
able: https://www.intel.com/content/www/us/en/docs/vtune-profiler/
user-guide/2023-0/openshmem-code-analysis-with-fabric-profiler.html

[34] C. Coti and A. D. Malony, “Skampi-openshmem: Measuring openshmem
communication routines,” in OpenSHMEM and Related Technologies.
OpenSHMEM in the Era of Exascale and Smart Networks: 8th
Workshop on OpenSHMEM and Related Technologies, OpenSHMEM
2021, Virtual Event, September 14–16, 2021, Revised Selected
Papers. Berlin, Heidelberg: Springer-Verlag, 2021, p. 63–80. [Online].
Available: https://doi.org/10.1007/978-3-031-04888-3_4

[35] J. E. McClure, M. A. Berrill, J. F. Prins, and C. T. Miller, “Asynchronous
in situ connected-components analysis for complex fluid flows,” in
Proceedings of the 2nd Workshop on In Situ Infrastructures for Enabling
Extreme-Scale Analysis and Visualization, ser. ISAV ’16. IEEE Press,
2016, p. 12–17.

[36] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, and W. E. Nagel, “Introduc-
ing the open trace format (otf),” in Computational Science – ICCS 2006,
V. N. Alexandrov, G. D. van Albada, P. M. A. Sloot, and J. Dongarra,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 526–
533.

[37] Google, Google Trace Event. [On-
line]. Available: https://docs.google.com/document/d/
1CvAClvFfyA5R-PhYUmn5OOQtYMH4h6I0nSsKchNAySU/preview#
heading=h.yr4qxyxotyw

[38] Q. Wu, T. Neuroth, O. Igouchkine, K. Aditya, J. H. Chen, and K.-L. Ma,
“Diva: A declarative and reactive language for in situ visualization,” in
2020 IEEE 10th Symposium on Large Data Analysis and Visualization
(LDAV), 2020, pp. 1–11.

1610

