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Abstract—Row-scale Composable Disaggregated Infrastructure
(CDI) is a heterogeneous high performance computing (HPC)
architecture that relocates the GPUs to a single chassis which
CPU nodes can then request compute resources from. This is
a distinctly different architecture from rack-scaled CDI as the
GPUs are accessed over a network rather than existing in the
same PCIe domain as the CPUs. Row-scale CDI expands the
benefits and flexibility of rack-scaled CDI, while introducing new
challenges. For example, with row-scale CDI, one must account for
the effects of "slack", a latency in the CPU-to-GPU communication
times due to network delays. This work seeks to assess potential
challenges with row-scale CDI to determine which factors are most
important to consider when deploying a CDI system. Our strong
scaling application analyses reveal that there are two types of HPC
workloads that may benefit from row-scale CDI; those that are
CPU dominant and periodically call on the GPU to do highly
parallel tasks and those that are GPU dominant and primarily rely
on the CPU to coordinate work. We perform comparisons between
the kernel and data transfer characteristics of each application to
a slack proxy application which allowed for the development of a
mathematical model to predict the performance penalty different
applications can face as a result of slack. To illustrate this we profile
two applications using our proposed method and find that they
pessimistically would see a less than a 1% performance penalty
above the effects of crossing the network in an environment which
induced 100 µs of slack, or a distance of 20 km at the speed of
light in a fibre optic network cable. This demonstrates that both
row-scale and cluster-scale CDI are viable technologies from an
application performance perspective.

I. INTRODUCTION

Recent high demand for heterogeneous clusters (those with
both CPUs and GPUs) has brought to light the pain points caused
by traditional node-based high-performance computing (HPC)
architectures. Traditional node architectures are constrained by
physical requirements, there are only so many devices that can
be attached to a physical node. For example, the number of
PCIe expansion slots available to a CPU are limited, making
4 or 8 accelerators the maximum number that can be installed
in a node. What if the user doesn’t want or need all of the
resources in a node? Compute node ratios of CPU to GPU make
it impossible to perfectly match users’ compute ratio needs [1],
[2] at all times. This leads to complications when scheduling
resources due to the 2-dimensional nature of heterogeneity [3].
The power draw of consumption of the system is inefficient as
the "trapped" idle devices can’t be turned off or scheduled for
other jobs [1], [2]. Composable Disaggregated Infrastructure
(CDI) is an emerging solution to these issues which separates
the accelerators (GPUs) from the traditional node design to a

pool of resources which can be composed to meet user needs.
CDI allows the exact compute needs of the application to be met
on-demand and enables GPUs to be to be powered down when
not in use [1], [2]. This can lead to increased system efficiency
for job throughput and time to solution and could also reduce
the power consumption of HPC and allows more science to be
performed per dollar.

Current vendor CDI solutions on the market include those
from Liqid [4] and GigaIO [5] which primarily offer rack-scale
disaggregated solutions (a GPU chassis only services a single
rack) where the GPUs are still within the same PCIe domain.
This method creates issues for scalability as rack-scale is the limit
of PCIe extension technology. This limitation is admissible in
smaller runtime environments such as commodity cloud services,
but the scaling of HPC applications such as LLMs and large
scale simulations demands a row-scale or cluster-scale (a chassis
services multiple racks in one or more rows) CDI solution [1].
Row-scale disaggregation solutions like Cerio’s CDI product
or GigaIO’s FabreX network can extend to row-scale distances.
Both introduce longer paths between host CPUs and accelerators,
with potential ramifications thereof.

Row-scaled CDI (henceforth CDI) is not without its drawbacks
however as moving the GPUs off-node introduces a latency in
the communication times between the CPUs and the GPUs as the
messages now need to travel a further distance [6]. This specific
type of latency as a result of CDI we define as "slack". The
degree to which a specific application is impacted by slack and
how much absolute slack it can tolerate, is a key question in what
applications may be best suited for deployment in a CDI system.
The trade-off between the performance benefits of configuring
the ratio of CPUs-to-GPUs to match an application’s needs and
the performance hit from slack is a key metric analysing the
viability of scalable CDI to row-scale and cluster-scale.

The key contributions of this paper include:
• A demonstration of the impacts of “slack” on GPU perfor-

mance tested on a real system
• An analysis of the key metrics for CDI performance profiling
• A method for how the CDI metrics of an arbitrary application

can be extracted without specialty hardware or any knowledge
of the source code

• CDI profiles of two production HPC application’s, one each
from the scientific and AI/ML domains

• A discussion of the implications of the results on CDI system
design and use
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II. BACKGROUND AND RELATED WORK

CDI is an approach to architecting computing systems where
the equipment in a single compute node can be dynamically
composed. Composing components means connecting them in
arbitrary ways to meet the needs of a user at a given time.
Instead of allocating resources as nodes in a resource manager
like slurm, users instead can describe the exact resources they
need and they can be composed for them in exactly the required
quantities.

PCIe (Peripheral Component Interconnect Express) is an
expansion bus technology. As such it has high speed and multiple
lanes to connect devices to a motherboard. This means PCIe is
designed for local connections of components, not long-range
inter-system connections like a computer network would provide.
PCIe has challenges for expansion to long-range communication,
it has timeouts for transmissions, although these are long enough
to potentially be avoided in today’s ultra high-speed network.
Another challenge is with bus enumeration as PCIe was designed
to have a limited number of expansion components attached at
any given time, one can run out of enumeration space on the
bus. CDI providers must address these issues and have several
techniques for bus enumeration either by using the entire Bus
ID, device and memory space for PCIe or by abstracting them
into separate PCIe domains through bus and address translation
to avoid large PCIe enumerations.

Compute accelerators like GPUs are popular additions to
traditional CPU node architectures as they provide methods for
highly parallel data processing. GPUs are connected to hosts
via PCIe connections and some vendors provide alternative
intra-GPU connectivity like Nvidia’s NVLink. GPUs function
best with large amounts of work queued up at their scheduler,
allowing the GPU to be constantly engaged in work and hide
latencies associated with work setup through constant work
scheduling and retirement. Latency hiding is accomplished best
with plenty of work for the GPU being available, which requires
host to GPU communication be fast enough to keep the GPU
fed with compute (kernels).

A. Related Work

In the area of disaggregated GPUs, effort have primarily been
in the field of AI for cloud computing [2], [6]. One study [6]
looked in-depth at the CPU-GPU communication patterns of
various AI applications and what the implications would be
for their rack-scale CDI solution. The fundamental difference
between cloud and HPC is the outlook on scalability with the
latter requiring the full system to work efficiently as a single unit
to solve the world’s most important issues, such as COVID-19
therapeutics [7]. As a result, HPC could take advantages of
row-scale disaggregation for the scalability of its workloads and
the ability to support applications that fall both in and out of
AI’s domain [1].

Row-scale disaggregation is a new concept with one work
[1] which addresses the topic directly. This work states the
importance of row-scale CDI and how it can benefit the HPC
community. Another work [8] looks at whether the statistical
likelihood that intra-rack disaggregation is sufficient. The findings

were that going beyond rack-scale would not be necessary, but
the statistics were based on the daily use of a specific production
system with a wide spread of use-cases. The authors admit in
their discussion section that the contributions of the work is best
attributed to their process which others can use as a framework
for their own analyses.

Modeling has been done on how the disaggregation of scientific
workloads can effect system utilization in HPC [9]. This modeling
included LAMMPS, one of the applications in this paper, but
achieved its results through mathematical extrapolation rather
than experimental results. This was useful in the context of their
paper which yielded a comparison of disaggregated performance
in relation to other emerging architectures. This work instead
seeks to mimic the delays seen in a CDI environment to analyse
the secondary performance impacts that result from starving the
GPU of work. The result is a better understanding of CDI’s
potential limitations as a technology.

GPU API remoting solutions such as rCUDA [10] can be used
to run GPUs from hosts which are not in the same PCIe domain.
The issue with using a remoting solution for the analysis of slack
effects in a system is that they don’t allow for a granular level of
control over the network delays experienced. This is ultimately
the result variation in the number of and time required for hops
in a network being system dependent along with uncontrollable
variation in network noise due to other users. rCUDA specifically
is also no longer maintained under a publicly available license.

III. EXPERIMENTATION METHODOLOGY

The goal of experimentation in this work is to expose the
implications of CPU-to-GPU ratio scaling and the tolerance
an application has for additional latency in CPU-GPU com-
munication times added due to disaggregation (slack). The
additional latency slack adds is due to the delays associated with
traversing the network, as illustrated in Figure 1. The CPU-to-
GPU ratio used by an application is important to understand as
it provides insight into how the available compute composition
is reflected in the application’s performance and how traditional
node architectures can under-utilize resources (both problems
CDI aims to solve). Slack introduces a potential performance
penalty through uncovering the latency the GPU attempts to hide
behind its scheduling queue. This has the potential to counteract
the benefits of a composable CPU-to-GPU ratio which is why
it is important to analyse under what conditions the latency is
uncovered and to what extent this can impact an application’s
performance.

The goal of these experiments is predictive in two aspects.
The first is that row-scaled CDI hardware does not yet exist so
this is predictive of the validity for CDI’s value proposition. The
second is that the methods used can be repeated by those who
wish to implement CDI into their systems in order to predict
how their specific workloads will behave in a CDI environment.
To be useful for others to profile their workloads for CDI, the
slack insertion model used must be implemented in software on
a traditional node architecture as that is what most users will
have access to. This therefore rules out using hardware methods
to insert slack.
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Fig. 1: An illustration of traditional and CDI CPU-to-GPU
communication times. Slack is the time added by passing
through the NICs and traversing network, as demonstrated by
the annotation.

A. Hardware

The Digital Research Alliance of Canada’s (DRAC’s) Narval
cluster was used which has heterogeneous nodes consisting of
two AMD EPIC Milan 7413 CPUs and four NVIDIA A100SXM4
GPUs (40 GiB version) [11], [12]. The CPUs have 24 cores
each for a total of 48 cores per node (12 cores per GPU). Entire
nodes were reserved for experiments, even if only a portion of
them would be utilized, to eliminate noise from other users [13].
All experiments were also averaged across 5 runs to account
for other random effects in a system. The relevant NVIDIA
ecosystem and terminologies are used in this paper as appropriate
as an artifact of NVIDIA GPUs being used, but the concepts
described are in no way limited to NVIDIA’s GPU environment.

The point of interest for these experiments is the relation
between the CPU and GPU. Therefore, a single node is used as
it allows for a greater degree of control over the slack insertion.
Only the ratio of the two resource types is considered, not the
absolute quantity of either, which means that a single GPU
can be used for developing the method. This is a result of
synchronizations on the CPU side being agnostic of the GPU
and vise-versa. This method is valid under the assumption that
added latencies due to network channel congestion is a non-issue.
The experiments that follow are designed in a way such that the
worst case scenario can be considered as the total latency is the
focal point.

B. Experiments

To profile the CPU-to-GPU ratio scaling of an application’s
performance, an application’s natural affinity for each type of
resource needs to be analysed on a case-by-case basis. With a
single GPU and fixed problem size, we can study this by varying
the number of CPU cores used. Since the problem size is fixed,
this provides a basic unit of CPU-to-GPU resources can inform
weak scaling for large scale production applications as the best
basic CPU-to-GPU ratio.

In order to test an application’s slack tolerance, we need a
way of inserting slack that is scalable and easily transferable
to arbitrary applications. We can achieve this by inserting an
artificial delay on each CUDA API call which requires host to
device (H2D) or device to host (D2H) communications. Inserting
these delays manually in the source code is a prohibitively
laborious and error prone process as it would need to be repeated

every time a new application were to be profiled. An alternate
solution is to use LD_PRELOAD which is an environment
variable that allows a shared object to be loaded by the dynamic
linker, ld.so, before any other shared libraries. This can be used
to insert an artificial delay which mimics slack before calling a
target function. Unfortunately, this approach is also not viable
as it does not work for applications that rely on statically linked
libraries to optimize runtime performance.

Our generalizable approach in this work is to develop a proxy
application (proxy) to emulate how applications use CUDA.
This allows slack to be inserted in a controlled environment
where all variables can be considered. Applications can then
be profiled for their slack tolerance based on where their GPU
utilization characteristics fall into a spectrum of responses seen
by the proxy. This requires the proxy to take inputs to control for
targeted variable of interest which will be covered next. Traces
of application GPU utilization characteristics are also required.
NVIDIA’s NSight Systems (NSys), a part of NVIDIA’S NSight
suite of developer tools, [14] was used to this end. NSys was
used as it is the vendor recommended tool for profiling the GPU
given the variables under observation.

In order to develop a proxy for this purpose, both the CPU-
GPU programming paradigm and how applications can work
within it need to be explored. The typical paradigm for GPU
applications is to perform compute on the CPU, transfer data to
the GPU, performing compute on the GPU, transfer data to the
CPU, and repeat the process. Within this paradigm, applications
have the freedom to do any combination of these operations
in series or parallel and to vary the amount of compute or
data transfers being done. The GPU-side operations can also
be done asynchronously of the CPU, but synchronous is used
to capture the pessimistic case. Understanding this behavior
means examining the size of a CUDA kernel, how frequently the
kernels are launched, how many kernels are launched in parallel,
and what the temporal offset is between parallel launches of
kernels. Varying these factors will capture the range of GPU
use cases seen in applications.

C. Slack Proxy Application Design

The proxy application runs a simple matrix multiplication
kernel (AxB=C) using square matrices of floats. Varying the size
of the matrices allows for a way to control the kernel runtimes
and data transfer sizes. The main compute loop consists of
copying matrix A and B to the GPU, computing C, then copying
C back to the CPU. The loop is run serially for N iterations with
OpenMP threads being used to implement an easy to control
parallel aspect. This is done to provide complete control over
the degree of the parallel component. The slack is inserted after
every CUDA API call with sleep operations.

The proxy first randomly generates matrices A and B, then
does a preliminary timing of the kernel to get a baseline for how
long it runs. This baseline is then used to calculate work for
approximately 30 seconds of raw compute on the GPU. Iteration
count bounds were set to a floor of 5 and a ceiling of 1000.
These parameters were placed to account for smaller kernels
having larger proportional variations in runtime. The proxy uses
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CPU-side control for sleeps and GPU-side control for timing.
It was experimentally determined that the timing differences
between the CPU and GPU side were statistically insignificant.

An additional consideration for analysing the effects of slack
is the expected delay that is inserted directly by the network.
This is a known effect that is experienced even in inter-node
communications such as MPI collectives. The true goal of
analysing application tolerance for slack is to see if there are
additional delays in compute due to the GPU being starved for
work. To isolate for this property, the total amount of slack
inserted in the proxy needs to be removed when analysing the
degradation in runtime. This is achieved by applying Equation 1
to the runtime of the main compute loop with slack and taking
the delta between it and a baseline run where no slack is inserted.
The number of CUDA calls per iteration of the main compute
loop is 5 for the proxy as that is how many CUDA APIs are
delayed (3 matrix data transfers, matrix multiplication kernel,
host-device synchronization).

TimeNoSlack = Time− (numCUDAcalls)∗ (Slackcall) (1)

D. Production Applications

In this study there are general categories of applications: CPU
only, GPU/CPU, and GPU dominant. The case of CPU only
applications is important for CDI as trapping of GPU resources
would traditionally occur with these jobs. However, no slack
exists in CPU jobs as there is no accelerator. For CPU/GPU,
LAMMPS was selected as the example as it is a CPU-heavy GPU
enabled heterogeneous application. CosmoFlow is chosen as the
GPU-dominant application. Both are production applications
which are run on HPC systems and they provide comparisons
for the typical case of traditional scientific applications and AI
applications in an HPC environment.

1) LAMMPS: The Large-scale Atomic/Molecular Massively
Parallel Simulator (LAMMPS) [15] is a molecular dynamics
simulator that simulates the bonds and forces between atoms
and molecules in a crystal or container. The Lennard-Jones (LJ)
benchmark was used for analysis which models short-range
force interactions between identical atoms in a liquid state. LJ’s
simulation size is defined in 32,000 atom repeatable cubic units.
The dimensions of "box size" used in later sections refers to
the number of cubic units used in each Cartesian plane with a
box size of 20 containing the aforementioned 32,000 units (ex.
a box size of 60 is a 3x3x3 grid of 32,000 atom cubes for a
total of 288,000 atoms). LJ was run for 5,000 simulation time
steps in all analyses. LAMMPS was compiled with the GPU
package [16]–[21] and with CUDA and OpenMPI enabled.

2) CosmoFlow: CosmoFlow [22] is a machine learning
application that describes the physical model of the universe
and is maintained as part of the MLPerf HPC Benchmark Suite
[23]. CosmoFlow uses the TensorFlow AI/ML framework [24]
to process large 3D cosmology datasets with convolutional
neural networks [22]. CosmoFlow utilizes Horovod [25] for
efficient communication between GPUs with MPI semantics.
CosmoFlow’s "mini" dataset was used, containing 1024 training
and 1024 validation items, and was run for 5 epochs in all

analyses. As will be seen in Section IV-B, smaller data transfers
result in an application having a lower tolerance for slack which
is why the mini dataset was chosen: to examine pessimistic
performance case for CDI.

IV. EXPERIMENTAL RESULTS

A. CPU-to-GPU Ratio

LAMMPS’s affinity for CPU usage is analysed first to see
to what extent a heterogeneous application’s performance can
rely on the CPU resources provided at a constant problem size.
Figure 2 displays the results for scaling MPI processes from 1
to 24 without OpenMP threads. The runtimes are normalized
in order to allow a comparison between workload sizes and
to analyse the changes as a percentage. The baseline runtimes
used as the normalization reference point can be seen in Table I.
A box size of 20 was selected as the lower bound as it is the
developers’ recommended default box size for LJ. A box size
of 120 was selected as the upper bound as this is the largest a
single CPU core is capable of supply the GPU with data for
(note the GPU’s memory is not saturated at this box size).
TABLE I: Data for the different LAMMPS box sizes running
with 1 process and 1 thread.

Box Size Total Atoms Runtime [s]
20 32k 5.473
60 288k 66.523
80 2,048k 160.703

100 4,000k 312.185
120 6,912k 541.452

Fig. 2: LAMMPS strong scaling effects for a single GPU with
an increasing number of CPUs. Note the line break corresponds
to a change in scale and that the values are normalized on the
y-axis.

From the results in Figure 2, a box size of 20 demonstrates
the case where the problem is not large enough to see the benefit
of using multiple processes as the overhead for communication
is greater than the speedup of parallel compute. A box size of 60
is when this no longer becomes the case with 8 processes seeing
a decrease in runtime of 17.2%. A box size of 120 benefits
from 24 processes at a 55.6% decrease in runtime, although the
results are diminishing after 16 processes.
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The next step was to implement OpenMP threads in order to
further push the upper bound of CPU utilization. 1 to 6 threads
per process were tested for box sizes of 60 and up at a static 8
processes. Hyper-threading was not used so 6 threads resulted
in all the cores being used. The results show that larger problem
sizes saw performance benefits from using more CPU cores.
The extreme for this was the box size of 120 seeing a 52.3%
decrease in runtime at 6 threads versus 1; an aggregate benefit
of a 76.4% decrease in runtime over the single core case.

The general trend seen from LAMMPS is that a larger problem
size yields a greater need for CPU resources, but this leaves
the question of what the upper bound is. An additional test
was run at a box size of 200 as this saturated the GPU’s
memory (the way LAMMPS should be run to optimize GPU
utilization in a production system). LAMMPS saw a performance
increase of 24.3% with 48 CPU cores over the 24 cores case
at 2 threads per process. Due to the limitations of traditional
node architectures, LAMMPS would either need to run with
48 cores on 1 GPU which wastes GPU resources, or 12 cores
per GPU which decreases LAMMPS performance for the CPU
computation portion of the application. A CDI architecture would
allow LAMMPS to request entire CPU nodes which can then
each request a single GPU from a chassis thus maximizing the
utilization of both resource types.

Studying the extent to which a GPU dominant application
(CosmoFlow) utilizes its CPUs saw absolutely no benefits from
increasing the number of processes or threads. CosmoFlow
requires 2 cores to run, discovered by limiting the resources
available to it. The reasons for this is hidden in the intricacies
of how Python, TensorFlow and Horovod work as the reason
is not directly apparent in CosmoFlow’s source code and over
1000 different CPU threads were found to be in use in the
application’s NSys traces.

Looking again at the limitations of traditional node architec-
tures, ComsoFlow running on four GPUs would only use up to
8 CPU cores. This wastes 40 cores which could be directed to
CPU-heavy compute tasks. A CDI architecture would therefore
allow for a 48 core CPU node to request up to 24 GPUs from a
chassis.

B. Matrix Multiplication Slack

To start the analysis of how slack effects production applica-
tions, baseline characteristics for how and why heterogeneous
applications are effected by slack needs to be extracted from
the proxy. A 2D matrix size of 215 squared was selected as the
upper bound for proxy testing due to larger matrices not fitting
on the GPU (recall from Section III-C that 3 matrices of this
size are required). 1 µs of slack was chosen as the lower bound
as it reflects the half-round-trip time of HPC networks with
similar signalling rates as the target disaggregated technology
[26], [27]. The lower bound for matrix size and upper bound for
slack were determined experimentally from there. Slack insertion
was run at 1 µs and the matrix sizes were decreased in multiples
of 22 until the effects of slack were seen, thus resulting in a
lower bound matrix size of 29. To find the upper bound for
testing slack insertion, sweeps were performed at each matrix

size starting at 1 µs and scaling up by orders of magnitude until
slack effects above 1% were observed. The final value settled
on was 10 ms at which point a matrix size of 213 saw it’s first
increase in runtime at 10%. No slack insertion value up to 1 s
was found to effect a matrix size of 215.

Table II shows the specification for the matrix sizes, the time
taken for a single kernel to execute, the iteration (N) count, and
the baseline runtime for the main compute loop to execute. Figure
3a) shows the slack sweep results at varying matrix sizes with a
single OpenMP thread. Equation 1 is applied to the runtimes
which are then normalized to the zero slack insertion case to
analyse the GPU starvation effects outlined in Section III-C.
Figure 3b) and c) use 2 and 8 OpenMP threads respectively to
display the effects of parallelization on an application’s tolerance
to slack. The same data was also collected for 4 threads, but
the plot is excluded for space constraints. A matrix size of 215

does not fit on the GPU with 4 or 8 OpenMP threads due to
each receiving their own copy of the matrices ((3 ∗ 4 GiB) ∗
4 threads > 40 GiB) and is therefore excluded from the
respective figures. Experiments were also done with offsetting
the time between each thread’s launch and increasing the spacing
between iterations of the main compute loop, but they showed
no correlation to the slack performance penalty.

The key trends demonstrated in Figure 3 are that longer
running kernels are more resilient to the effects of slack insertion
and that the number of kernels being given to the GPU in parallel
is proportional to an increase in an application’s slack tolerance.
Another apparent characteristic is that the "drop-off" point where
slack degrades an application’s performance by a large degree
becomes more sharp as the slack increases.

Now that an understanding has been developed for the
impacts of slack on the proxy, real applications need to be
analysed to draw conclusions on how they will be impacted.
This requires profiling of the applications’ kernel and data
movement characteristics to understand how they behave. Once
this is complete, the applications can then be cross-analysed
against the proxy’s slack response characteristics.

C. Application Compute Data

To extract their characteristics for comparison to the proxy,
runs of LAMMPS and CosmoFlow were profiled using NSys
with LAMMPS using 8 processes and 1 OpenMP thread at a
box size of 120 and CosmoFlow using a batch size of 4. Traces
of the proxy running at varying matrix sizes and parallel thread
counts were also captured to have a sanity check to compare
the application traces against. In this configuration, LAMMPS
ran for 173 s and CosmoFlow for 705 s. The key metrics of
interest, as seen by the proxy results in Section IV-B, were the
matrix size and degree of kernel parallelization. The impact of
the matrix size can be broken into its components as the kernel
and data transfer portions of the main compute loop. Kernels
are best characterized by their runtime whereas data transfers
by the amount of data being moved.

When profiling the parallel portion of heterogeneous appli-
cations, the metric of interest is the rate at which the CPU is
able to push instructions (kernels) to the GPU as the kernels
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TABLE II: Data collected for the proxy running different matrix sizes. Matrix sizes and kernel runtimes are for a single matrix and
single kernel. Compute loop runtime is for N executions of the main compute loop.

2D Matrix Dimensions Matrix Size [MiB] Kernel Runtime [us] Serial Kernels (N) Compute Loop Runtime [s]
29 1 120 1000 0.382
211 16 4,714 1000 8.121
213 256 362,710 83 35.112
215 4096 23,150,700 5 120.679

a) 1 parallel thread. b) 2 parallel threads. c) 8 parallel threads.

Fig. 3: Matrix multiplication results for varying OpenMP thread counts.

are queued for execution on the GPU side. The launching of
kernels is done by LAMMPS with parallel processes, 8 of them
in the traces collected (which is still a small number as seen
in Section IV-A). The processes start the kernels then wait for
them to complete. CosmoFlow queues its processes in a different
manner, using a small number of cores. CosmoFlow submits a
large number of varying sized kernels in quick succession which
then form an instruction sequence. The CPU then performs
other tasks in the background and waits for the sequence to
complete. The launching of the kernels takes approximately
1/7th the duration of the sequence (these happen in parallel) so a
pessimistic parallelization of 4 will be used for the comparison
in Section IV-D.

The distribution of each application’s kernel durations is shown
in Figure 4. The distributions are shown for each kernel as well
as the total for all kernels to gain more insight into the frequency
and duration of each of the application’s operations. Only the top
five kernels are shown for CosmoFlow as it executes dozens of
different ones. These five account for 49.9% of the total runtime
with the aggregate effects of the remainder being captured in
"Total" as seen in Figure 4.

Figure 5 shows the distributions of data transfer sizes for each
of the applications. The memory behaviour of both applications
is consistent with the expectations set by the kernel distributions
and trends seen in the NSys traces.

D. Application to Proxy Comparison

Now that the proxy and applications are characterized for
their kernel durations and data transfer sizes, a model can
be developed for how to predict the performance penalty an
application could see with a CDI network. This model is captured
in Equation 2 where the kernel and memory slack penalties (SP)
are drawn from comparing the proxy results to those of the
applications and where the % runtimes are the proportion of the

applications’ runtime where kernel and memory operations are
being performed respectively.

SPTotal = % RuntimeKernel ∗ SPKernel

+%RuntimeMemory ∗ SPMemory (2)

To compare the data transfer sizes in Figure 5 to the matrix
size values in Table II, a binning of the application transfer
sizes can be done as presented in Table III. This is also done
for the kernel runtimes in Figure 4, but was excluded due
to space constraints. Equation 3 uses this binned data as the
element counts for each matrix size and the slack penalty for
each matrix size from Figure 3(a-c). As discussed in Section
IV-D, LAMMPS uses 8 parallel process and CosmoFlow has
the equivalent queuing effect of 4 processes so the slack penalty
values are drawn from Figures 3(c) and the data that wasn’t
plotted for 4 parallel threads respectively.

SPKernel|Memory =
∑

MatrixSizes

SPMatrix_Size

∗ ElementsMatrix_Size / Total Elements

(3)

TABLE III: A binning of the data transfer sizes for LAMMPS
and CosmoFlow in MiB.

< 1 < 16 < 256 < 4096 > 4096 Mean
LAMMPS 2264 42016 40008 0 0 16.85

CosmoFlow 8186 668 335 640 0 34.49

The final results of entering all of these values into Equations
2 and 3 are shown in Table IV. There are two total slack penalty
values due to the binning of applications’ data falling in a range
between two matrix sizes. This results in a lower and upper

1611



Fig. 4: Violin plots for the kernel durations of LAMMPS (left) and CosmoFlow (right).

TABLE IV: The upper and lower total slack penalty results for LAMMPS and CosmoFlow at varying slack values.

Slack [us] 1 10 100 1000 10000
LAMMPS Total

Slack Penalty
Lower Value 1.000 1.008 1.009 1.025 1.417
Upper Value 1.011 1.014 1.009 1.539 11.486

CosmoFlow Total
Slack Penalty

Lower Value 1.002 1.002 1.004 2.871 24.501
Upper Value 1.004 1.004 1.005 3.384 30.772

Fig. 5: Violin plots for memcpy sizes.

value for the slack penalty for each application depending on if
the matrix size equivalents are rounded up or down respectively.

This methodology for comparing the applications to the proxy
was validated using the proxy NSys traces and seeing how
closely the traces predicted their own performance. The final
results for the single threaded runs were that the lower value
was within 0.005 the actual and the upper value resulted in a
severely pessimistic estimate of the slack penalty. The more
threads that were added the less pessimistic the upper value
became as the exponential slack response became less of a
factor. Preliminary tests were also done with the LD_PRELOAD
method for artificial slack insertion described in Section III-B
from which the results generally agreed with those seen from
the methods we used, but as mentioned previously complete

confidence in coverage of API calls is difficult.
The main takeaway from Table IV is that both applications

can pessimistically see a less than a 1% decrease in performance
from 100 µs of slack. This is a very high bar for a penalty given
that the half-round-trip time of a modern HPC network is on
the order of 1 µs. Looking at the time from another perspective,
light can travel up to 20 km in a fibre optic cable in this amount
of time which suggests that newly emerging CDI solutions could
be datacenter scale instead of just rack or row scale if the other
challenges with enumerating large numbers of devices can be
overcome.

V. DISCUSSION

In this section we answer some outstanding questions regarding
CDI and the implications of the results.

Why does the slack performance cost follow an exponential
curve? Amdahl’s Law. The cost to do parallel compute increases
with CDI so the fall-off point for the performance benefits
decreases the longer the serial barrier (slack) becomes. The
extreme example of this is would be if the slack were so large
that the GPU became completely idle while waiting on the
CPU. In this case, the GPU can’t reap from the benefits of
pipelining its operations. This is the same reason why Equation
1 was used to remove the direct effects of the delay; the cost
of communicating over the network is admissible, but the point
at which the GPU is starved for work is when the benefits of
parallelization are lost.

I thought CDI was bad for performance? The benefit of
CDI is in the ability to configure the system to the exact compute
needs of the application. There can be a performance benefit
associated with this when GPUs are located physically close to
one another, but incurs overheads in CPU to GPU communication.

1612



In the case of LAMMPS, there’s a need for a large number
of CPUs in proportion to GPUs for which the results of have
been measured. In the case of CosmoFlow, the want is for as
many GPUs as possible to accelerate the task. Where fitting 16
GPUs in a single node is not possible with a traditional node
architecture, CDI can allow for this to be the case in a single
GPU chassis, which can greatly increase the performance of
CPU asynchronous operations such as GPU-to-GPU collective
operations.

Why use CDI for GPUs? GPUs are the most expensive aspect
of the nodes in a heterogeneous system and require peripheral
components to be added such as CPUs. CDI provides the architect
with a choice with how to allocate their resources based on
their needs. Add another M racks of heterogeneous nodes to
the system, each with N GPUs and their respective peripherals,
or disperse M chassis throughout the system with 2N GPUs
each to provide additional GPU resources on-demand. As PCIe
chassis can be inexpensive per PCIe slot compared to traditional
node architecture, this provides a compelling alternative system
architecture.

Why do LAMMPS and CosmoFlow perform differently?
The difference in the application’s performance fundamentally
come down to the problem each is solving. LAMMPS is
performing scientific operations which are mostly serial compute
on the CPU side, but can benefit from offloading largely parallel
tasks in the pipeline to the GPU. CosmoFlow on the other hand
is propagating data through convolutional neural networks which
is a GPU oriented task.

Both applications can ultimately benefit from CDI through
the optimized scheduling of resources. Taking an example where
40 GPUs and 20 CPUs, each with 24 cores, are available in
a system and both LAMMPS and CosmoFlow want 20 GPUs.
A traditional node architecture would schedule both LAMMPS
and CosmoFlow with 120 CPUs per node. A CDI architecture
would instead be able to allocate CosmoFlow with 4 CPUs to
control its 20 GPUs in a chassis. This enables CosmoFlow’s
GPU-to-GPU collectives to perform faster as the GPUs are more
closely coupled. This would leave LAMMPS with the remaining
16 CPUs which makes the CPU-to-GPU ratio 5:4, much better
for LAMMPS compute needs than the previous 1:2.

VI. CONCLUSIONS

Row-scale CDI is a developing technology that allows for
CPUs and GPUs to be configured in a ratio which best optimizes
application performance and compute resource utilization. This
paper presented a method for testing the validity of CDI as
a technology by exploring the advantages and drawbacks it
offers for the performance of production applications. The
method provided is executable in software on any traditional
node architecture without administrative access which provides
prospective adopters of CDI with the ability to test the value
proposition of it for the specifics of their use case. The findings
were that the benefits of CDI outweigh the performance penalty
introduced by slack when the CPU is able to provide the GPU
with a sufficient amount of work. This can be achieved through
the use of proportionally long running kernels or by sending

a large number of short running kernels to the GPU. Both
production applications studied were able to achieve this up to
100 µs of slack.

These results demonstrate that a GPU does not rely as heavily
on tight coupling to its CPUs as was once believed. This opens
the question from beyond rack-scale to cluster-scaled CDI as
the speed of light limitation for 100 µs results in a distance of
20 km before accounting for other network effects. Future work
seeks to validate the results of this method through testing on
CDI hardware once the technology is available. Testing will also
be required for the characteristics of CDI which may bottleneck
application performance outside of the compute characteristics
explored in this work.
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