
Towards Disaggregated NDP Architectures for
Large-scale Graph Analytics

Suyeon Lee*, Vishal Rao*, Ada Gavrilovska
Georgia Institute of Technology, Atlanta, USA

sylee0506@gatech.edu, vrao79@gatech.edu, ada@cc.gatech.edu

Abstract—The performance of large-scale graph analytics is
limited by the capacity and performance of the memory sub-
system on the platforms on which they execute. In this paper,
we first discuss the limitations of existing approaches to scaling
graph processing, and describe how they can be addressed via the
use of disaggregated solutions with near-data processing (NDP)
capabilities. Using observations from experimental analysis of
the trade-offs for different types of graphs and analytics kernels,
we identify the systems-level mechanisms that will be required
by future graph analytics frameworks for disaggregated NDP
architectures.

Index Terms—graph analytics, disaggregated systems, near-
data processing, computational memory

I. INTRODUCTION

The unprecedented growth of interconnected data has made
graph analytics a vital component in domains ranging from
social-network analytics to bioinformatics [1]. Traditionally,
large-scale graph analytics has relied on distributed graph
processing systems on a cluster of homogeneous general-
purpose severs [2]–[5]. However, distributed graph processing
has high overheads due to the significant amount of data
movement and entailed synchronization phases.

To address these costs, recent research has explored the use
of near-memory accelerators [6]–[8]. Graph applications are
often memory bound and exhibit low computational complex-
ity, as they traverse vertex and edge data within every loop in
nested iterations. Therefore, their performance largely depends
on memory capabilities such as access latency and bandwidth.
This makes them an excellent candidate to benefit from solu-
tions based on near-memory acceleration, by allowing graph
operations to be performed with lower latency and increased
memory bandwidth (i.e., memory-capacity-proportional band-
width [6]). However, when the graph size scales to trillions
of vertices and edges, these solutions still suffer from high
communication and synchronization overheads. In addition,
since the compute and memory resources are tightly coupled
in the distributed setup, memory-intensive large-scale graph
processing leads to skewed cluster resource utilization.

New technologies for disaggregated memory systems offer
opportunities for better balanced and more efficient systems for
these workloads, where memory capacity demand is provided
via large (shared) remote memory pools [9]–[11]. Figure 1(a)
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Fig. 1: Graph analytics on top of (a) disaggregated architec-
tures vs. (b) disaggregated NDP architectures.

illustrates how graph processing works on top of such dis-
aggregated architecture. Using the CSR graph representation,
the hosts maintain the vertex list and vertex properties in
local memory, while the much larger edge lists are kept in
the remote memory pool. For every iteration of the graph
processing, the host CPUs fetch edge data from the remote
memory and process three functions locally to update the
vertex properties: Traverse, Apply, and Update. Since the
compute is only happening at the centralized local servers, the
synchronization overhead is low. Additionally, disaggregation
allows independent memory scaling for balanced resource
utilization [12]. However, high data movement overheads
persist, as a huge amount of edge data needs to be moved
within every loop.

A more recent trend enabled by these disaggregation trends
and standardization efforts such as CXL [18], is new classes
of computational memory devices, which allow for processing
functionality to be embedded near remote memory pools.
Several such computational memory systems have recently
been demonstrated [13], [14], [19]–[23]. These technologies
present opportunities for high bandwidth and low latency
communication between the memory units and computation,
drastic data movement reductions, and better balanced system
configurations, offering potential for significant improvements
in end-to-end performance and system efficiency for graph
workloads. Coupled with other components for in-network
processing, via programmable switches and interfaces [24],
[25], the current technology landscape presents opportunities
for platforms with near data processing capabilities, where
processing logic is applied near data, in memory, or in net-
work. Such disaggregated NDP architectures present oppor-
tunities to address the communication overhead between local
and remote memory and to effectively resolve the problem
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TABLE I: Diverse characteristics of sample hardware with NDP capabilities.

Device Class Examples Device Capabilities Target Functionality
Near-Memory Processing (PNM) CXL-CMS [13] High internal memory bandwidth (∼1.1 TB/s)

CXL-PNM [14] Matrix/Vector computing units High memory bandwidth helps scale performance
Support for FP operations Simple vector computations that are memory-

Processing In-Memory (PIM) UPMEM [15] High aggregate memory bandwidth (∼1.7 TB/s) bandwidth bound
1000s of in-order processing units (DPUs) FP-support increases range of supported workloads
Primitive support for FP operations

In-Network Computing (INC) SwitchML [16] Custom/Configurable ASICs Simple filter/aggregation operations
SHARP [17] ALUs with FP-support FP-support increases range of supported workloads

of distribution-based systems. Figure 1(b) demonstrates its
operations. For example, NDP units located close to memory,
either on the remote memory or switch, allow the offload of
memory-intensive graph functions such as Traverse and Apply.
Disaggregated NDP architectures cover all the advantages of
previous systems, including near-memory acceleration with
higher bandwidth (from NDP), low synchronization overhead
(from localizing shared data processing to fewer nodes), and
balanced resource utilization (from disaggregation), but they
also incur low communication overheads by reducing data that
needs to be moved across the system interconnect.

However, although there is evidence of the benefits of NDP
acceleration for graph analytics workloads, the current tech-
nology landscape introduces a number of different hardware
design points. Realizing the NDP benefits for arbitrary graph
workloads, is therefore not trivial. For instance, the processing
capabilities impact the type of operations that can and should
be offloaded. This can further be impacted by the details
of the graph topology and how it is distributed (partitioned)
across the system, and the consequent data movement and/or
synchronization costs. Finally, graph workloads are known to
exhibit irregular access patterns and dynamic behavior, pre-
senting additional challenges to making efficient deployment
decisions.

The goal of this work is to provide insights into the missing
capabilities of future graph analytics frameworks, in order to
realize the benefits that NDP technologies can provide for
these workloads. We discuss the tradeoffs associated with
existing architecture designs, and the opportunities to address
their limitations via a disaggregated NDP solution. We then
use data from experimental analysis of the tradeoffs for
different types of graphs and analytics kernels on an emulated
NDP system, to identify the systems-level mechanisms that
will be required by future graph analytics frameworks for
disaggregated NDP architectures.

II. EMERGING NDP HARDWARE

Before proceeding with the discussion of the requirements
of graph analytics frameworks, we first briefly summarize
a few hardware designs, some of which are commercially
available (Table I). The goal is to highlight some of the
key features of this emerging hardware tier that will make
them a good fit for disaggregated NDP architecture for graph
analytics.

Two types of devices are a good fit for the NDP-enabled
memory pools: Processing Near-Memory (PNM) and Pro-
cessing In-Memory (PIM). These classes of devices provide
high-bandwidth capabilities required to scale the traversal
phase of the graph workload. CXL-PNM [14] and CXL-
CMS [13] are PNM prototypes with good support for floating-
point operations, making it viable to deploy more complex
graph workloads such as pagerank and betweenness-centrality.
UPMEM [15] is a commercially available PIM solution that
offers very high aggregate bandwidth across the PIM cores.
However, the limited support for complex integer operations
(multiplies/divides) and floating point operations may restrict
its usability for certain workloads.

In-network computing (INC) capabilities have been com-
mercially available for a while now [26]–[28], and their
utility has been demonstrated for a range of use cases [29].
SHARP [17] is an INC solution suitable for graph work-
loads. It uses the Mellanox SwitchIB-2 ASIC to perform
the MPI_AllReduce() operation which can be used by
graph runtimes to aggregate partial results from multiple
sources. SwitchML [16] is an INC solution that uses the
Intel Tofino [26] ASICs to reduce data-movement costs in
distributed machine-learning applications by performing in-
network aggregation. These ASICs can also be a good fit for
aggregation operations in graph workloads.

III. ALTERNATIVES FOR SCALING LARGE-SCALE GRAPH
ANALYTICS

As the scale of graph analytics applications and graph data
continues to rise, it is hard for a single general-purpose server
to accommodate the scale of modern graphs. Large-scale
graphs with billions of vertices and trillions of edges need
to be partitioned and distributed across multiple machines,
which leads to overheads and inefficiencies at scale. In this
section, we outline the main system architectures currently
used to tackle challenges related to large-scale graph pro-
cessing using different approaches. The systems we explore
commonly deploy graph workloads iteratively, wherein each
iteration consists of a traversal phase and an update phase.
Operations in these phases are applied on the graph frontier,
i.e., the set of vertices that need to be processed in the current
iteration. The traversal phase involves traversing the large
edge list of the graph and performing simple computations
to generate updates. The update phase involves applying these
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Fig. 2: Typical graph analytics on top of distributed archi-
tectures supporting graph partitioning and synchronized state
across partitions.

updates to the structure of vertex properties and can comprise
more complex computations.

A. Distributed Processing Architecture

Approaches based on distributed systems [2]–[5] enable
large-scale graph processing by partitioning the graph structure
across multiple servers. Gluon [2] is one such system that
uses the concept of masters and mirrors to deal with graph
partitioning as shown in Figure 2. The partitioning policy
assigns each vertex to a host in the cluster. The master vertices
on the host are the set of vertices that have been assigned to
that host and they store the latest properties of the vertex.
Mirror vertices are proxies of masters owned by other nodes,
with their values updated by the connected master vertex. A
master can have multiple mirrors and the number of mirrors
depends on how the graph is partitioned. There are two types
of communication patterns in this model as shown in Figure 2.
During the traversal phase, the master propagates updates to its
value to all its mirrors. During the apply phase, all the mirrors
propagate vertex updates back to their master. A high number
of mirrors results in high communication and synchronization
overheads which degrades the overall performance.

Gluon uses partitioning policies and partitioning invariants
to reduce the impact of these overheads, but performance
can potentially degrade significantly when graphs are highly
connected. In addition to the high communication and synchro-
nization overheads, these systems have two main shortcom-
ings. They fail to fully utilize the cluster compute capabilities
leading to resource under-utilization [3], [30]. The traversal
phase is bandwidth-intensive, which limits performance scal-
ability as bandwidth does not increase with memory capacity
in general-purpose servers.

B. Distributed Near-data Processing Architecture

Near-data processing (NDP) architectures [6]–[8], [31] for
large-scale graph workloads are highly effective in handling
the memory bandwidth limitation of general-purpose servers.
For example, GraphQ [6] is an NDP solution that scales to
multiple nodes. It uses specialized processing units for the
different phases of the graph workload, given that each phase
has different processing needs. As shown in Figure 3, GraphQ
uses Process Units for the traversal phase and Apply Units

GraphQ PIM-Node 1
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C D
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E F
Op:Traversal

Op:ApplyUpdate

Process Unit

Apply Unit

GraphQ PIM-Node 2

Fig. 3: Typical graph analytics on top of distributed NDP
(PIM) architectures leveraging heterogeneous processing re-
sources and near-memory acceleration for different graph
operations.

for the update phase. By supporting near-memory acceler-
ation with specialized hardware, these architectures provide
memory-capacity-proportional bandwidth which enables the
workload performance to scale with memory. They can also
be designed to be more energy efficient than general-purpose
servers [8].

NDP over distributed environments accelerates graph oper-
ations within individual nodes, however, the design does not
fundamentally change inter-node data movement. Therefore,
this architecture continues to exhibit high communication
overhead. GraphQ uses a hybrid execution model that over-
laps computations with inter-node communication to hide the
communication overhead, however, they cannot eliminate it.
For example, in cases where there are few computations to
perform, the overlap can be minimal. These systems also
suffer from resource under-utilization due to the tight coupling
between memory and compute. As shown in Figure 4, different
graphs and workloads have vastly varying needs as described
in section III-C. Tight coupling between memory and compute
does not provide the flexibility to adjust the resource alloca-
tions to match these needs.

C. Disaggregated Processing Architecture

Solutions based on disaggregated architectures [9]–[11] for
graph processing aim to solve the resource flexibility issue
seen in the previous systems based on distributed designs. A
disaggregated architecture, shown in Figure 1(a), consists of
separate pools of compute and memory nodes, where multiple
host servers can be connected to a shared remote memory
pool. Remote memory is a second-tier resource compared to
the local host memory in terms of access latency. Therefore,
prior works on top of disaggregated systems focus on data
tiering and reducing the overhead of data movement between
different tiers.

Resource disaggregation between memory and compute
allows independent resource provisioning and scaling to meet
the unique needs of different workloads. We observe that com-
pute and memory requirements vary according to the graph
kernel and graph data; thereby, requiring the independent
scaling of compute and memory resources. Figure 4 shows the
compute and memory requirements for four graph kernels (PR,
CC, SSSP, BFS) on two real-world graphs (uk-2005, twitter7).
The points in the orange box show how different kernels can
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TABLE II: Comparison between previous works vs. disaggregated NDP solution to process large-scale graph analytics.
Communication overhead is directly related to the amount of data movement. Synchronization overhead is related to the
time delay while waiting for the partial results to be fetched over the network for a final update.

System Architecture Near-Memory
Acceleration

Communication
Overhead

Synchronization
Overhead

Resource
Utilization

Distributed [2]–[5] ✗ High High Skewed
Distributed NDP/PIM [6] ✓ High High Skewed
Disaggregated [9]–[11] ✗ High Low Balanced
Disaggregated NDP [this work] ✓ Low Low Balanced
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Fig. 4: Varying compute-memory resource requirements for
different graph workloads. (i) Orange box shows how work-
loads can have similar compute needs but different memory
needs. (ii) Purple box shows how workloads with similar
memory needs can have different computing needs.

have similar computing needs while having different memory
needs. The points in the purple box show how different
kernels can have similar memory needs while having different
computing needs. The results indicate that deploying graph
workloads will necessitate an unbalanced usage between dif-
ferent resources. Since distributed systems with general servers
have tightly coupled compute and memory, running large-
scale graph analytics will lead to skewed resource utilization,
wasting either compute or memory. Resource disaggregation
provides a solution to the skewed resource utilization problem,
which persists even for distributed systems with integrated
NDP components, by decoupling the resource hierarchies of
compute and memory. It enables systems to achieve balanced
resource utilization with a lower total cost of ownership.

Another benefit of these approaches is lower synchroniza-
tion overheads across the fewer compute nodes as they are not
waiting for any processing to complete on the remote memory
node(s) which only store data. During the deployment of the
graph workload, synchronization is required when the vertex
updates from the mirrors are applied to the masters during the
compute phase. This happens on all the nodes in a distributed
deployment, whereas it only happens on the compute nodes
in a disaggregated deployment, resulting in lower synchroniza-
tion overheads than the distributed deployments.

Existing solutions for graph processing over disaggregated
systems [9]–[11] are based on the observation that vertex and

edge data have different usage patterns: vertex data is accessed
more frequently and the edge data is read-only. Therefore,
they store edge data on a slower but larger second tier of
memory while vertex data is primarily stored in fast host
memory. During the traversal phase, the required subset of
the edge data is fetched from disaggregated memory to be
consecutively processed on the host. However, they still suffer
from large communication overheads due to significant data
movement, proportional to the amount of edge data that needs
to be pulled from remote memory during every iteration. This
is exacerbated for highly connected graphs, where all neighbor
vertices and edges need to be fetched whenever an update has
to be made. For example, FAM-Graph [9] shows that large
graphs often have vertices with outgoing degrees in the order
of hundreds of thousands of edges. Some works [10], [11]
mitigate the data movement time by overlapping computation
and communication, but the fundamental data movement costs
are still not addressed.

D. THIS WORK: Disaggregated NDP Architecture

Table II summarizes the limitations of the previous sys-
tem architectures to process large-scale graph analytics. We
point out that none of the existing works that deploy graph
workloads on distributed, distributed NDP, and disaggregated
systems fully satisfy every benefit of each architecture. In addi-
tion, all systems have a high volume of data movement, where
the communication time is becoming a major bottleneck of
end-to-end performance. In this paper, we consider disaggre-
gated architectures with NDP support. As shown in Table II,
when used for graph analytics, such systems can provide for
both low communication and synchronization overhead, as
well as memory bandwidth expansion and balanced resource
utilization.

Several features of the disaggregated NDP architecture
shown in Figure 1(b) can reduce data movement overheads
compared to the distributed and disaggregated architectures
explained in the previous sections. Data transmitted from
the memory nodes to the compute nodes is reduced because
the number of per-vertex updates is generally smaller than
the edge lists that are fetched from the memory nodes in
the disaggregated architectures. The in-network compute units
aggregate partial updates to further reduce the data-movement
overheads that are otherwise incurred while transmitting up-
dates from the mirrors to the masters in the distributed
architectures. When deploying a computationally heavy graph
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workload using the distributed NDP architecture, a graph may
be partitioned among more nodes than necessary to account
for the computing needs of the workload. The disaggregated
architecture decouples the compute and memory to avoid
resource over-provisioning. This allows the graph to be par-
titioned on the necessary number of nodes, further curtailing
data movement costs.

At the same time, this design retains the benefits of accel-
eration via low-latency and high-bandwidth data access, data
processing on NDP devices, and the disaggregation benefits
of lower synchronization overheads and balanced resource
utilization.

In summary, disaggregated NDP architectures combine the
benefits of the existing approaches, while addressing their
limitations, and present a promising solution for platforms for
large-scale graph analytics.

IV. MISSING SYSTEMS FUNCTIONALITY FOR
DISAGGREGATED NDP ARCHITECTURES

Given the promise of disaggregated NDP architectures for
graph analytics, it is important to understand the system-level
functionality required to effectively deploy and execute graph
workloads on such systems. In this section, using empirical
evidence obtained from evaluating different graph application
deployments over an emulated NDP system, we make observa-
tions regarding the missing systems support for disaggregated
NDP graph frameworks. Concretely, we present evidence
of the need for programming and runtime mechanisms and
abstractions to control which graph operations to offload near-
data and when to switch to near-data processing, and to allow
for such decisions to be made dynamically, considering scale,
workload, and platform characteristics.

Our analysis is based on a common model for graph
analytics used in related work. Graphs are represented using
the CSR format, which consists of two data structures – the
list of vertices (and their properties) and the list of edges,
as shown in Figure 1. The latter can be orders of magnitude
larger than the former [9]. At scale, these structures need to be
distributed across multiple machines. Disaggregation can help
alleviate the overheads of distribution explained in Section III.
Two mechanisms help reduce the overheads of distribution in
the disaggregated deployment – NDP offload and in-network
aggregation.

The preliminary results presented in this section are ob-
tained from a prototype of the disaggregated model shown in
Figure 1(b). The prototype is designed using the Galois [32]
system and uses various data structures to keep track of the
graph partitions, message buffers, and partial updates while
simulating the distributed system. The prototype splits the
traversal and update phases and calculates the amount of data
moved between these phases during every iteration. Separate
buffers are used to store the vertex updates generated during
the traversal phase on each memory node. These buffers are
used to calculate the amount of data moved to propagate
the vertex updates to the compute nodes. The updates are
aggregated and applied to the vertex properties during the
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compute phase, after which the new frontier is generated. The
frontier size is used to calculate the amount of data moved to
propagate the updated vertex properties to the memory nodes.
The evaluation is performed on an Intel Skylake machine with
2 Intel Xeon Gold 6142 CPUs and 384 GB of DRAM, and
using several graph datasets: the Twitter7 Graph (41M Nodes,
1.4B Edges), UK-2005 Graph (39M Nodes, 936M Edges), and
com-LiveJournal Graph (3M Nodes, 69M Edges) [33].

A. Determining the NDP Offload Capabilities

The traversal phase of the graph workload is memory-
intensive and bandwidth-bound and the edge list is solely
accessed during this phase. Thus, the edge list is partitioned
across the nodes in the memory pool as shown in Figure 1.
If passive memory pools without any processing capabilities
were to be used to store the edge lists, the system would
incur large data movement overheads. To process each vertex,
the compute nodes would need to retrieve the neighbors. By
offloading the traversal operations, the compute nodes have to
retrieve one update per vertex mirror, incurring much lower
data movement costs, as shown in Figure 5.

However, simply providing a programming API to specify
the different types of operations (i.e., traverse vs. apply) is not
sufficient, since deciding which operations to offload is not a
trivial decision. For instance, Figure 5 shows that data move-
ment costs can also increase when traversals are offloaded,
as seen in the case of the wiki-Talk graph. This is because
data-movement is dependent upon the workload and the graph
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Fig. 7: Comparison of data movement trends per iteration with and without NDP.

topology. The topology of the wiki-Talk graph results in a large
number of intermediate updates which are 16 bytes in size for
the PageRank workload. These factors make fetching the edge
data, which requires 8 bytes per edge, the better alternative.
In summary, the benefits of offloading operations are non-
uniform and may depend on various factors such as the graph
workload and the graph itself. The runtime deploying graph
workloads on disaggregated NDP architectures must consider
all these factors and this motivates the need to explicitly
control different aspects of the offload mechanism.

B. Considering the Impact of Scale on NDP Offload

As the graphs increase in size, they need to be partitioned
across multiple memory nodes. As the number of partitions
increases, so does the volume of partial results generated by
the offloaded computations. If the impact of distribution is not
managed, the benefits of NDP will be overshadowed by the
volume of the partial results, as shown in Figure 6. Carefully
partitioning the graph to minimize the number of cross-edges
can greatly reduce the number of partial results, but this is
not a complete solution. The green plot in Figure 6 shows
the data movement trend after the graph has been partitioned
to minimize the number of partial updates using the METIS
library [34]. Although the communication overheads are sig-
nificantly reduced, the overheads of distribution still nullify
the benefits of NDP offload at higher degrees of distribution.
An effective graph runtime must incorporate mechanisms to
assess and navigate this tradeoff.

C. Mechanism for In-Network Aggregation

The traversal operations executed on the sub-graphs (or
graph partitions) on each memory node create partial updates
that need to be aggregated in the compute phase of the graph
workload. Near-data processing capabilities integrated in the
network elements in cluster systems (e.g., like the switch
shown in Figure 1(b)), can provide for in-transit/in-network
aggregation capabilities that help reduce these overheads. The
benefits of this are two-fold. First, data movement costs
between the switch and the compute node are reduced by
aggregating the updates. Second, the memory pressure on the
compute node is reduced as it has to receive and buffer fewer

updates. The aggregation operations are ideal for offloading
as they require very basic compute units, usually required
to perform simple min/max or arithmetic operations. The
brown line in Figure 6 illustrates the potential benefit of in-
network aggregation, which could reduce data movement by
up to 0.65× when applied to aggregate all partial results
in every iteration of the workload. This also restores the
benefit of data movement reduction from NDP offload which
was eliminated due to the scale of the graph distribution (as
seen in the green and blue lines in the plot). The benefits
of in-network aggregation are higher at higher degrees of
partitioning because the volume of partial updates increases
with the number of partitions. Note that the gains shown in this
figure are hypothetical and there are other factors to consider
such as the available buffer capacity of the switch. Regardless,
they illustrate an opportunity that future graph frameworks
should be able to exploit, in offering programming support to
execute aggregations on in-network elements, and in providing
the runtime mechanisms to understand the partitioning and the
scale at which processing is performed to adequately configure
where such operations should be deployed.

D. Need for Dynamic Decision Making
The decisions of which operations to offload, and where, are

not static. Interestingly, they can vary even across iterations of
the same graph application. Figure 7 shows the data movement
trends per iteration during the execution of different graph
workloads. The data movement reduction in the NDP offload
case stems from transferring vertex updates vs. edge sets for
each vertex in a frontier. Depending on the graph topology
and size of vertex properties, this difference changes.

These figures show that offload is not always the better
option. Graph frameworks can benefit from support to make
these decisions dynamically, during every iteration, to allow
the system to pick the best alternative and minimize data
movement costs. Heuristics such as the frontier size, the
number of cross-edges, and the degrees of the vertices in
the frontier can be used to determine the better alternative in
every iteration. These heuristics are a function of the graph
partitioning scheme and the workload and can be used to
reduce the data-movement costs.
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V. CONCLUSION

The performance of large-scale graph analytics is dependent
on fast access to large amounts of data, and is increasingly be-
coming limited by the performance of the underlying memory
system and the associated data movement and synchroniza-
tion overheads in distributed solutions. This paper considers
the limitations of existing approaches for these workloads,
and identifies an opportunity to address them via use of
disaggregated systems with emerging computational memory
and network devices. Such systems benefit from the near-
data processing capabilities offered by these new types of
devices, which allow for accelerated execution of certain
classes of graph operations that process data “in-place” and
drastically reduce communication overheads associated with
data movement. At the same time, they also benefit from
disaggregation to achieve reduced synchronization overheads
and more balanced resource utilization. However, existing
graph frameworks lack support to fully leverage the capa-
bilities provided via these disaggregated systems with NDP.
By analyzing the data movement associated with different
deployment strategies of several graph analytics kernels and
graphs, we identify the required functionality that needs to be
provided by the programming and runtime support in future
graph analytics frameworks.
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