
Multi-Host Sharing of a Single-Function NVMe
Device in a PCIe Cluster

Jonas Markussen
Dolphin Interconnect Solutions

jonas@dolphinics.com

Lars Bjørlykke Kristiansen
Dolphin Interconnect Solutions

larsbk@dolphinics.com

Håkon Kvale Stensland
Simula Research Laboratory

University of Oslo
haakonks@simula.no

Pål Halvorsen
SimulaMet

Oslo Metropolitan University
paalh@simula.no

Abstract—Distributed cluster applications, including machine
learning tasks, database applications, and HPC workloads, often
rely on NVMe-oF using RDMA for fast, block-level access to
storage devices over a network. However, RDMA solutions add
extra latency by requiring software on the critical path. In this
paper, we present a distributed NVMe driver for sharing NVMe
storage devices across hosts in a PCIe cluster. By building on
PCIe shared memory capabilities, we demonstrate disaggregation
of NVMe controllers at the I/O queue level, allowing them to be
used in parallel by remote hosts without relying on RDMA. Our
experimental results prove that our PCIe-based solution reduces
network latency and is comparable to local access.

Index Terms—PCIe, NVMe, Storage, HPC

I. INTRODUCTION

Non-Volatile Memory Express (NVMe) [1] is an interface
specification for storage device controllers attached to the PCIe
bus, most commonly used for solid-state flash memory drives
(SSDs). Compared to traditional spinning hard disks, SSDs
have lower latency and can support a higher degree of par-
allelism. This parallelism is reflected in the design of NVMe
by relying on the inherent memory addressing capabilities of
PCIe devices, i.e., Direct Memory Access (DMA), to support
multiple independent I/O queues that operate in parallel. By
avoiding any form of locking or software synchronization
in the command submission and completion paths, NVMe
devices can perform I/O operations with very high throughput
and low latency.

In recent years, we have seen a convergence of high-
performance computing, big data, and machine learning prob-
lem areas, making distributed, high-volume storage a re-
quirement for workloads running on networked hosts in a
computing cluster [2], [3]. As NVMe SSDs are significantly
faster than traditional storage devices, the performance bottle-
neck in networked storage solutions is no longer the storage
devices but the network itself. To address this, NVMe over
Fabrics (NVMe-oF) has emerged as the industry standard for
accessing an NVMe controller over a network (“fabric”) [4].
By using Remote DMA (RDMA) zero-copy transfers, NVMe-
oF implementations extend the parallel design of NVMe over
a network. Individual I/O queues are “bound” to remote hosts,
allowing clients to enqueue commands directly in memory
on the server using RDMA. Thus, NVMe-oF using RDMA
enables direct access to remote storage devices at the block

level and eliminates almost all communication latency. How-
ever, as RDMA solutions are implemented at the application
level, software is still required to operate the server’s NVMe
controller. This inevitably leads to additional latency because
software is required in the critical path.

In this paper, we extend our previous work on dis-
tributed storage in PCIe-networked clusters without relying
on RDMA [5]. The Software Infrastructure Shared-Memory
Interconnect API (SISCI) [6] provides host-to-host shared-
memory communication in Dolphin PCIe clusters. This API
has been extended with device-oriented functionality, provid-
ing capabilities for mapping a shared global address space for a
PCIe device and allowing devices to use native DMA to access
shared memory regions. Using the functionality provided by
our extension, we have built a proof-of-concept kernel space
NVMe driver that combines storage I/O with shared-memory
functionality. We demonstrate how a single NVMe controller
may be shared in parallel by multiple hosts, by using shared-
memory regions to distribute I/O queues to remote hosts.

To demonstrate the strength of our approach, we have
conducted performance benchmarks using synthetic storage
workloads, demonstrating the latency benefits of native PCIe
compared to NVMe-oF. Whereas state-of-the-art NVMe-oF
implementations using RDMA can achieve bandwidth compa-
rable to local performance, they can increase access latency by
several microseconds (µs). In contrast, our experimental results
prove that by avoiding software in the path and relying on
native PCIe, network access latency is almost eliminated, and
our solution is comparable to that of accessing a local NVMe
device. In short, this paper makes the following contributions:

• We have implemented a proof-of-concept, distributed ker-
nel space NVMe driver using shared memory communi-
cation. Our driver allows a single NVMe controller to be
operated in parallel by multiple remote hosts, providing
them with direct block-level access.

• We provide an evaluation of the latency benefits of our
PCIe-based shared memory approach through a compar-
ative performance experiment using synthetic workloads.
Compared to NVMe-oF using RDMA, our solution has
minimal network access latency.

1631979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00204



NVMe SSD

Submission Queue
(SQ)

Completion Queue
(CQ)

Commands
(read and write blocks)

Completions

NVMe Controller

Executes commands

Paired
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Fig. 2: NVMe operation in a local host (left to right).

II. BACKGROUND AND MOTIVATION

An NVMe controller is associated with a single PCIe device
function [1]. Some NVMe SSDs may support multiple PCIe
device functions or implement Single-Root I/O Virtualization
(SR-IOV) [7] where the device appears to have multiple
(virtual) functions. Each virtual or physical function has its
own separate set of PCIe resources and memory regions and
implements a stand-alone NVMe controller with access to
the same underlying storage medium. However, due to the
complexity of implementing multiple device functions (either
physical or virtual) in hardware, few NVMe devices on the
market support this.

The NVMe standard [1] enables highly parallel operation
by using separate, asynchronous I/O queues for the command
submission and completion paths. As illustrated in Figure 1,
one or more Submission Queues (SQ) are associated (paired)
with a Completion Queue (CQ), allocated and configured by
driver software. Queues are implemented as ring buffers and
can be allocated anywhere in physical memory, entirely at the
discretion of the NVMe controller’s driver. Each queue has
an associated doorbell register, which driver software uses to
notify the controller. Figure 2 shows the basic operation of
an NVMe controller: The driver enqueues commands in an
SQ, for example, reading N number of blocks from storage
to a specified location in memory. It then notifies the NVMe
controller that commands are enqueued by “ringing” the SQ’s
doorbell register, and waits for corresponding completions to
be posted in the associated CQ by polling CQ memory or
waiting for a device-generated interrupt. When notified about
entries in the SQ, the controller fetches commands using
DMA, executes them, and then posts completions to the CQ.

NVMe-oF using RDMA [8] extends this parallelism over an
InfiniBand network. NVMe-oF implementations are composed
of a device-side “target” driver and a client-side “initiator”
driver. The target driver is responsible for managing the NVMe
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Fig. 3: Accessing remote storage using NVMe-oF vs. PCIe.

device, setting up queue pairs and facilitating asynchronous
access by allocating dedicated queue pairs for each initiator.
Similar to the SQ and CQ pairing mechanism, the underlying
InfiniBand transport layer also uses pairs of Work Queues
and Completion Queues. InfiniBand-capable network adapters
allow queues hosted in system memory, similar to NVMe,
which allows InfiniBand applications to post-work requests, ,
i.e., RDMA Send and Receive, and poll for completions
directly in memory. Additionally, this design maps very well
onto NVMe-oF architecture; the NVMe-oF target driver can
“bind” a Receive Work Queue to an NVMe SQ, allowing I/O
commands to be enqueued directly in memory on the target.
Therefore, the target driver can start I/O operations as soon
as commands are enqueued without requiring any processing.
Similarly, the NVMe CQ can be “bound” to a Send Work
Queue, allowing sending back completions to the initiator as
soon as the I/O operation completes. However, while RDMA
enables efficient, one-sided initiation of I/O operations over a
network, an inevitable latency penalty stems from involving
software in the data path (as illustrated in Figure 3). Some
network adapters implement an NVMe-oF target driver in
hardware or firmware (target offloading) to reduce CPU load
and latency. Another approach would be directly implementing
RDMA capabilities into device controllers, as proposed by
Daglis et al. [9]. However, this increases the complexity of
hardware implementations and, thus, limits their availability.

By using a special type of PCIe device called Non-
Transparent Bridge (NTB), separate computer systems can be
connected to the same shared PCIe network [5], [10], [11].
NTBs can be embedded as a CPU feature [12], but are more
commonly implemented in PCIe switch chips [13], allowing
independent computer systems to interconnect with plug-in
host adapter cards and external cables [14], [15]. The defining
feature of NTBs is that arbitrary memory address translations
can be configured, allowing segments of remote memory to be
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by distributing I/O queue pairs in a PCIe cluster.

memory-mapped for a local system, thus providing “windows”
into a remote system’s address space.

In the context of NVMe, we have previously built a proof-
of-concept implementation, showing that it is possible to
configure queues’ memory addresses through such “NTB win-
dows” and allow controllers to access remote memory directly
using native DMA [5]. Similarly, by mapping the PCIe device
function associated with the NVMe controller, each host has
access to device registers. Figure 4 shows how to distribute
queues in such PCIe clusters, allowing multiple remote hosts
to operate a single controller in parallel. Queues do not require
any form of synchronization and can be distributed to remote
hosts and used to operate the device independently. The NVMe
controller can fetch commands from the different SQs, post
completions to CQs, and load and store data in buffers using
native DMA.

III. PCIE SHARED-MEMORY CLUSTERING

PCIe [16] is the most widely used I/O bus standard for
connecting devices to a computer system. The defining feature
of PCIe is that devices are mapped into the same address
space as the CPU. When a system boots up, it enumerates all
the devices attached to the PCIe fabric. The system assigns a
memory address range for each device’s memory region and
writes them to its Base Address Register (BAR). As such,
“BAR” is used synonymously for individual regions of device
memory. Because this mapping exists, a CPU can read and
write to device memory the same way it would access system
memory, and it is called memory-mapped I/O (to distinguish it
from legacy port-based I/O). Likewise, if a device is capable
of DMA, it can read from and write to system memory. A
device may even access other devices on the fabric, as they
are mapped into the same address space. PCIe switches may
also be used in the fabric; memory transactions are routed
in the fabric based on their addresses, and since switch ports
are assigned the combined address range of their downstream
devices, memory transactions can be routed shortest path
(“peer-to-peer”).

Individual systems have separate PCIe address spaces, but
an NTB makes it possible to connect systems over PCIe
(Figure 5). An NTB appears as a regular device with associated
BARs that are assigned address ranges by the local system.

However, instead of being backed by memory or device regis-
ters, reads and writes to these BARs are forwarded from one
side of the NTB to the other, translating the memory addresses
in the process and enabling access to remote memory as if
it were local device memory. As illustrated in Figure 5, by
dividing the BAR into several ranges and using a different base
offset per range, it becomes possible to map arbitrary memory
regions in a remote system. The local address is stored with a
far-side address mapping in a look-up table on the NTB, thus
providing “windows” into remote address space. This allows
hosts to map parts of a remote host’s memory through their
local NTB using different base offsets.
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Fig. 5: Two independent systems connected with NTBs.

IV. SHARED-MEMORY API EXTENSION

By mapping remote memory regions into local address
space, we can create a heterogeneous PCIe-networked cluster
using NTB adapter cards and NTB-capable cluster switches.
Multiple hosts may map the same parts of memory through
their respective NTB adapters, creating a global address space
shared by PCIe-interconnected hosts.

Using the SISCI API [6], applications are provided with a
high-level interface for configuring PCIe NTBs, thus enabling
shared-memory functionality for application software running
in such networks. Hosts may allocate linear contiguous regions
in physical system memory, called “segments”. Other hosts
can connect to these segments and map them through their
own local NTBs. The physical address range of these NTB
mappings can then be memory-mapped into the virtual address
space on the local host, effectively allowing software to read
and write to remote memory the same way they would read
and write to local system memory. Software running on
different hosts may map the same memory segments, thus
implementing distributed shared-memory applications.

We have extended the SISCI API with device-oriented
functionality. Figure 6 illustrates the main functionality of our
extension, specifically how device registers can be mapped for
a local CPU and how a shared memory segment is mapped
for a device. By exposing device BARs as shared memory
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segments, a process running on the local CPU can memory-
map the device registers of a remote device through the CPU-
side NTB. Likewise, by setting up mappings to shared memory
segments on a device-side NTB, a device can access remote
memory using its native DMA capabilities. To support this,
we have implemented the following functionality:

• A host abstraction service called SmartIO runs on all
hosts in the cluster. In SISCI, the application must be
aware of which host memory segments they reside in
to memory-map them through the local NTB. SmartIO
allows a user to register devices for use with our API
extension and assigns them a unique, cluster-wide iden-
tifier. Software running anywhere in the network can
uniquely identify devices regardless of which physical
hosts they are installed in. Devices that are registered
with our service automatically have their BARs exported
as SISCI segments, allowing them to be memory-mapped
into virtual address space. Moreover, our SmartIO service
tracks devices and which hosts they reside in, SmartIO
supports translating device-side physical addresses in the
different hosts, including device-side NTB mappings to
shared memory segments. This removes the complexity of
dealing with multiple physical address spaces in different
hosts, for example, when initiating a DMA transfer.

• API calls for dynamically acquiring and releasing a
device reference from a process. Acquiring a device
reference can either be exclusive, allowing only a sin-
gle process to manage the device at the time, or non-
exclusive, allowing several application instances to access
the device simultaneously. A single instance can first lock
the device to reset, initiate, and prepare the device before
allowing others to access the device. Furthermore, as our
SmartIO abstraction service distributes information about
devices to other hosts in the network, we also support
dynamically discovering devices registered with SmartIO.

• API calls for mapping SISCI segments on behalf of a
(remote) device, effectively setting up mappings over
the device-side NTB to memory regions. Segments can

be either local or remote to the device. We call such
mappings “DMA windows” as mapping SISCI segments
for a device allows it to use native DMA to read and
write to shared memory regions. Our SmartIO abstraction
service will automatically resolve device-side physical
addresses to (remote) memory segments under the hood,
allowing the same software to run on any cluster host and
remain agnostic about the specific address space layout
in other hosts.

• API calls for allocating SISCI segments using access
pattern hinting. While the original SISCI implementation
only allows hosts to allocate segments in local system
memory; we have added functionality for letting our
SmartIO service choose which host to allocate memory is
based on expected access patterns. By relying on hinting
rather than actively specifying which host to allocate
memory in, we can consider memory locality without
requiring awareness of the physical PCIe topology.

Our SISCI API extension effectively provides an abstraction
layer between hosts and their resources, , i.e., their devices
and memory. Consequently, our extension makes it possible
to implement a device driver that can run on any host in
the network, operating a remote device anywhere in the
cluster. The complexity of dealing with multiple (and different)
physical addresses space layouts are removed by providing
API calls to resolve memory addresses to remote memory
segments for a device. This allows a host to read and write to
registers and initiate native DMA transfers to shared memory
segments without being aware of the specific PCIe topology.

V. DISTRIBUTED NVME DRIVER IMPLEMENTATION

We have extended our previous proof-of-concept, user-space
NVMe driver [5] by implementing it as a kernel space module
instead of providing a shared NVMe device as a block device
in Linux. One of the motivations for implementing a block
device driver was to use shared disk file systems available on
Linux, such as Global File System (GFS) or Oracle Cluster
File System (OCFS). As mentioned in Section II, NVMe uses
a mechanism for paired submission and completion queues.
Both SQs and CQs are allocated in memory configured by
the device driver software, and the controller uses DMA to
both fetch commands and post completions. Each queue has
its dedicated doorbell register, which driver software writes to,
to notify the controller about new queue entries. This allows
driver software to operate queues in parallel and interact with
the controller without any form of locking or contention.

Since queues can be allocated anywhere in memory, entirely
at the discretion of the driver, we can use addresses that map
over an NTB for software operating the device. Figure 7 shows
how the device-oriented API extension described in Section IV
is used to extend NVMe operation out of a single computer
system, allowing multiple hosts to operate the same controller
simultaneously. We use the SmartIO abstraction service to
map queue memory and data buffers for the NVMe controller.
As the service handles device-side address space translation,
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Fig. 7: Distributed driver architecture: The NVMe controller accesses queues residing in memory segments on remote hosts
(DMA windows). Likewise, each host map device registers by mapping the BAR of the NVMe device through their respective
NTBs (BAR windows). All hosts see the same NVMe device as a local block device and can simultaneously read and write
to it.

we do not need to care about the physical address space on
the host where the device resides other than using resolved
addresses when setting up queues. Furthermore, as device
BARs are automatically exported as shared memory segments,
mapping device registers, i.e., queue doorbell registers, for a
local CPU is trivial.

While several I/O queues are supported in NVMe, there can
only be one pair of admin queues. Our implementation consists
of a “manager” kernel module and one or more “client”
kernel modules. The manager is responsible for initializing
the controller, setting up the admin queues, and performing
privileged tasks, such as creating and deleting I/O queue pairs,
on behalf of the clients. The manager also allocates a shared
memory segment associated with the controller with metadata
about the manager, such as which host it runs on. This informs
clients that the device is being managed and tells them how
to contact the manager.

A client module uses one or more I/O queue pairs to read or
write blocks from the NVMe controller and is also responsible
for registering a block device with the operating system. The
client bootstraps itself by reading the shared memory segment
created by the manager and requests an I/O queue pair from
the manager. Once the requested I/O queues are created, the
client uses them to operate the controller independently of the
manager and other clients. After creating an I/O queue pair,
the client maps this queue pair with the Linux kernel block
layer request queues and registers a block device.

Memory reads are non-posted transactions, as a read request
requires a completion (with the requested bytes) to be returned

to the requester. As such, reads are affected by the number
of switch chips in the path between requester and completer;
the longer the path between a device and the memory it reads
from, the higher the request-completion latency becomes. This
raises an issue with our implementation, as moving queue
memory out of the local device memory to the memory in
a different host entirely increases the distance the controller
needs to read across to fetch commands. However, as the
NVMe standard has no restrictions regarding memory loca-
tions for paired queues, any address a controller can use DMA
to is a valid queue memory location.

Figure 8 illustrates how an SQ hosted in device-side mem-
ory can be paired with a CQ in local memory. As described
in Section IV, our API extension supports specifying access
pattern hints when allocating memory segments. By specifying
that the CQ segment will be mostly read from the CPU
and only written to by the device, the underlying SmartIO
abstraction layer will prefer allocating the CQ segment to local
memory. Similarly, by specifying read access by the device
and only write access by the CPU for the SQ segment, the
system will prefer to allocate it in device-side memory. The SQ
memory segment is mapped through the local NTB, allowing
the local CPU to write commands directly into device-side
memory. As writes are posted transactions, the CPU can
immediately “ring” the doorbell register after writing the
commands. This notifies the NVMe controller, which can then
read commands from local memory rather than reaching over
the NTB. Once the commands are executed, the controller will
write completions to memory local to the CPU. As our SISCI
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API extension does not currently support device-generated
interrupts, the client driver can poll on local memory for CQ
events.

A significant difference from our previous user-space im-
plementation [5] is that while it was possible to map SISCI
shared-memory segments for the NVMe controller, allowing
an application to use these as DMA buffers directly, our driver
must instead handle I/O requests from the Linux block layer.
An I/O request contains a pointer to an arbitrary memory
buffer, where disk data should be written to or read from. Con-
figuring NTB mappings on the fly is not a feasible solution, as
this would cause a significant delay in the critical I/O path and
severely limit the number of I/O requests in flight. Instead, the
client driver registers a large DMA buffer segment mapped for
the NVMe controller. This buffer is partitioned so that each
I/O request has a dedicated, equal-sized partition of the buffer.
The driver uses this DMA buffer as a bounce buffer when
issuing NVMe I/O commands. The benefit of this approach is
that NVMe DMA descriptors can be programmed once since
the DMA buffer segment is constant. The downside of this
approach is that an extra memory copy is needed in either
the command submission path (writes) or the completion path
(reads). A future extension of the NVMe driver is to use the
I/O Memory Management Unit (IOMMU) to dynamically map
buffer addresses for each request instead of using a bounce
buffer.

VI. EVALUATION

The performance advantage of our implementation is that it
provides direct access to remote NVMe devices over native
PCIe. However, by using modern networking technologies,
such as InfiniBand and 100/200 Gb/s Ethernet, remote storage
solutions like NVMe-oF using RDMA can provide very high
throughput, which is comparable to that of local PCIe [8].
As such, our evaluation compares our driver implementation
to NVMe-oF using RDMA. Our presented experiments focus
on latency measurements, as we argue this is where the main
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Fig. 9: The scenarios used in our latency benchmark evalu-
ation: stock Linux drivers for a local device and NVMe-oF
initiator were compared to using our driver implementation.

performance benefit of our solution lies. We have performed a
synthetic random read/write benchmark using the Flexible I/O
Tester (FIO) [17], version 3.28. Tests ran for 60 seconds, using
4 kB read/write size, with a queue depth of 1 to evaluate the
network latency rather than disk performance. All tests were
run on Ubuntu 22.04 (kernel 5.15.0-122). We used an Intel
Optane P4800X NVMe as our target disk to avoid caching
effects, as its latency is very consistent.

Figure 9 shows the two scenarios used in our experiment:
• Using Linux drivers (Figure 9a): we ran the read/write

benchmark on a local host using the stock Linux NVMe
driver to get a local baseline for the NVMe-oF com-
parison. A second host was connected using NVIDIA
ConnectX-5 network cards and running OFED version
24.07-0.6.1.0. We configured NVMe-oF using RDMA
as transport. As the initiator, we used the stock ker-
nel’s NVMe driver. On the target side, we used Stor-
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Fig. 10: I/O command completion latency for our benchmarking scenarios. Since our driver is not as mature as the kernel’s
NVMe driver, it has a higher baseline latency. However, our driver has less network overhead than NVMe-oF using RDMA,
only adding the difference from the increased distance between the CPU and the NVMe device in the PCIe path.

age Performance Development Kit (SPDK) [18] version
g09cc66129 as the driver to minimize latency and
provide the best performance. It should also be mentioned
that we also attempted target offloading, but this only
appeared to reduce CPU usage and did not affect latency.

• Using our driver (Figure 9b): similar to the Linux drivers
scenario above, we first used our own driver for a local
NVMe device to get a local baseline. Then, we connected
a second host using Dolphin MXH932 adapters and an
MXS924 NTB cluster switch and repeated the experiment
for a remote NVMe. In the remote scenario, the NVMe
device is farther from the CPU using it: each PCIe switch
chip in the path adds between 100 and 150 nanoseconds
delay (in one direction) for each PCIe transaction [5],
[10].

Note that while our evaluation focuses on the difference
between accessing a local and remote NVMe device using
only two hosts, the sharing allows multiple hosts to use the
device simultaneously. The P4800X used in our experiments
supports up to 32 queue pairs (where one pair is reserved
for the admin queues), and we have confirmed that it can be
shared by up to 31 hosts simultaneously using our previous
user-space implementation.

Figure 10 depicts the latency measurements for all four tests
as boxplots. The whiskers depict the range from the minimum
to the 99th percentile. Compared to the stock Linux driver,
our driver implementation is naive. For example, we rely on
polling instead of using interrupts. Additionally, as mentioned
in Section V, our driver uses a bounce buffer as a workaround
for NTB mapping constraints and, consequently, needs to do
an additional memory copy in the critical path. However, the
intention of our NVMe driver is not to outperform the Linux
NVMe driver. Rather, the goal is to utilize NTB capabilities to
enable low-latency sharing of NVMe devices. NVMe-oF has
a significant network latency overhead compared to PCIe. The
difference in minimum read latency is 7.7 µs for NVMe-oF vs.
local, while it is around 1 µs for our implementation. For write,

the difference in the minimum latency is 7.5 µs for NVMe-oF
vs. local and around 2 µs for our implementation. The very
low latency for remote in the tests of our own implementation
corresponds with the increased distance between CPU and
device and more PCIe switch chips in the path. While being a
naive implementation and having some software overhead in
general, we argue that our implementation does not add any
additional overhead when operating a remote device beyond
what is expected from native PCIe.

VII. RELATED WORK

With our extension to the SISCI API, we have extended our
previous work and implemented a working proof-of-concept
kernel space NVMe driver, as described in Section V. Several
PCIe-based solutions disaggregate devices at the function
level, allowing the distribution of individual (virtual) functions
to multiple hosts [13], [10], [19], [20]. Multi-Root I/O Virtu-
alization (MR-IOV) [21] was an early attempt to allow PCIe
devices to operate in multiple PCIe fabrics simultaneously, but
it never saw any widespread adoption. More recent solutions
are based on virtualization capabilities built into PCIe switch
chips, such as those from Microsemi [20] and Broadcom [19].
These solutions allow stand-alone devices and computer hosts
to be attached to a shared PCIe fabric. The switches’ capabil-
ities allow the PCIe fabric to be logically partitioned between
the CPUs so that individual device functions can become
dynamically hot-added or hot-removed while all systems are
running. However, due to the complexity of implementing
multiple device functions (either physical or virtual) in hard-
ware, few NVMe devices on the market support this.

To the best of our knowledge, our driver is unique as it
distributes individual I/O queues of a single-function NVMe
device to remote systems in a cluster without using RDMA.
By allowing multiple remote hosts to operate a single NVMe
controller simultaneously, our distributed driver is, in practice,
“software-enabled MR-IOV”. Similar ideas for sharing an
NVMe device at the queue level for user-space applications
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running on the same local system can be found in sev-
eral implementations, including SPDK [18]. Peng et al. [22]
implements a para-virtualized NVMe driver for assigning
individual I/O queues to virtual machines. Similarly to our
implementation, the authors rely on polling instead of device-
generated interrupts for CQ interrupts. Kim et al. [23] extend
the Linux NVMe driver with a dedicated queue management
kernel module that is responsible for creating and deleting
SQs and CQs, as well as mapping DMA buffers and doorbell
registers for a user-space application. This way, the application
is given control over queue memory and can submit I/O
commands and poll for completions directly, without going
through the kernel block layer. This solution is conceptually
very similar to how our driver is implemented, but we support
assigning queues to remote hosts as well. Supporting this kind
of flexibility while allowing software to remain agnostic about
the underlying PCIe topology is, to the best of our knowledge,
a novel contribution.

VIII. CONCLUSION

In this paper, we have presented our NVMe driver imple-
mentation for sharing single-function NVMe devices among
remote hosts in a PCIe cluster without using RDMA. By using
shared memory segments to distribute I/O queues, we allow
hosts to operate a remote NVMe in parallel. This could be
useful for embedded systems where power and cost constraints
make multiple drives infeasible.

Moreover, our experimental results show that by enabling
direct access over PCIe, there is a significant latency benfit.
However, the performance evaluation also showed that our
naive driver lacks the same performance optimizations as the
kernel NVMe driver. Therefore, a candidate for future work is
to perform a thorough evaluation of the implementation and
investigate performance bottlenecks and possible optimiza-
tions. Additionally, performing experiments using our driver
for more general use, such as measuring performance when
using a file system and realistic workloads, would contribute
to validating our solution.

Finally, the upcoming Compute Express Link (CXL) stan-
dard could provide new opportunities and should be explored
once CXL implementations become more widely available.
Particularly, CXL 3.1 is interesting in the context of memory
disaggregation and device sharing, and many concepts are
similar to those of our SmartIO abstraction layer. For example,
byte-addressable storage devices are of interest with regard to
the memory-mapping capabilities of the SISCI API, which our
driver implementation builds on.
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