
A Software Platform to Support Disaggregated
Quantum Accelerators

Ercüment Kaya‡†, Jorge Echavarria‡, Muhammad Nufail Farooqi‡, Aleksandra Swierkowska‡†, Patrick Hopf‡†⋄, Burak Mete‡†,
Lukas Burgholzer†, Robert Wille†, Laura Schulz‡, Martin Schulz‡†,

‡Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Garching, Germany
† Technical University of Munich (TUM), Munich, Germany

⋄ Ludwig-Maximilians-Universität München (LMU), Munich, Germany

Email: {ercuement.kaya, jorge.echavarria, muhammad.farooqi, aleksandra.swierkowska, patrick.hopf, burak.mete, laura.schulz}@lrz.de‡

{lukas.burgholzer, robert.wille, martin.w.j.schulz}@tum.de†

Abstract—Quantum computers are making their way into
High Performance Computing (HPC) centers as next-generation
accelerators. Due to their physical implementation as mostly
large appliances in separate racks, their number in typical data
centers is significantly lower than the number of nodes offloading
work to them, unlike the case with GPU accelerators. As a
consequence, they form large-scale disaggregated infrastructures
that pose a number of integration challenges due to their
diverse implementation technologies and their need to be used
as a shared resource for optimal utilization. Running hybrid
High Performance Computing-Quantum Computing (HPCQC)
applications in HPC environments, where the quantum portion
is offloaded to the quantum processing units (QPUs), requires
sophisticated resource management strategies to optimize re-
source utilization and performance. In this paper, we present
one aspect of the Munich Quantum Software Stack (MQSS) - a
Just-In-Time (JIT) compilation and execution software stack for
quantum and hybrid quantum-HPC workloads - beneficial for
integrating disaggregated quantum accelerators into traditional
HPC workflows. MQSS is centered around a series of novel
contributions aimed at optimizing the compilation process while
managing the disaggregated resources ensuring efficient utiliza-
tion of all available quantum resources. The key stages of our
JIT compilation stack involve hardware-agnostic optimizations,
quantum circuit cutting – when necessary – and a novel hardware
platform selection process. Included here is description of the use
of the MQSS’s Quantum Device Management Interface (QDMI),
a unified interface between the software stack and the quantum
accelerators, which allows connection to several, potentially
different, quantum resources. Our methodology demonstrates
notable advancements in HPCQC integration workflows, offering
researchers a powerful framework for leveraging quantum com-
putational capabilities. Overall, our work represents a significant
step towards the practical integration of disaggregated quantum
devices within the realm of supercomputing, unlocking new
avenues for computational exploration and discovery.

Index Terms—Quantum Systems, Quantum Computing,
HPCQC Integration, Disaggregated Infrastructures, Hybrid Soft-
ware Stacks

Ion-Trap
System

Superconducting
System

Compute
Racks

Control
Racks

Fig. 1: A view into the Quantum Integration Centre (QIC)
at LRZ/Munich showing a superconducting system (left), an
ion-trap system (middle) and HPC racks covering the classic
compute. The result is a strongly disaggregated infrastructure
combing classical HPC clusters with large-scale accelerator
appliances, which nevertheless need to operate as a seemless,
single system.

I. INTRODUCTION

The decreased performance pace caused by the end of
Dennard scaling and the looming conclusion to Moore’s law
strongly contrasts the rapidly increasing computation demands
for many critical applications in science and technology lever-
aging HPC and AI methods. While GPUs and other specialized
accelerators somewhat alleviate this pressure, they do not
fundamentally solve the situation at hand.

Quantum Computing could potentially offer some relieve,
emerging as a promising path towards new algorithms capable
of solving computational problems using lower complexity
classes. However, quantum computing targets only specific
problems suitable for quantum formulation, requires classical
(i.e., HPC) systems for their control and I/O, and relies

This work was funded by the German Federal Ministry of Education and
Research (BMBF) under the funding program Quantum Technologies - From
Basic Research to Market under contract numbers 13N16078, 13N15689,
13N16187 and 13N16087, as well as from the Munich Quantum Val-
ley (MQV), which is supported by the Bavarian State Government with funds
from the Hightech Agenda Bayern.

1639979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00205

on computationally demanding algorithms for compilation,
optimization and place and route. Consequently, quantum
computing works only as an accelerator technology in close
connection with classic HPC, forming hybrid systems. A tight,
low-latency connection is therefore imperative both to reduce
round-trip latencies for iterative algorithms, like QAOA ap-
proaches, and to ensure an efficient usage during compilation
and execution.

Quantum systems, however, differ in form from usual ac-
celerators, like GPUs or FPGAs, as typically large systems
in separate cabinets, some connected to cryogenic fridges,
and with their need for separate racks of electronics for laser
and/or microwave control1. Figure 1 gives a small view into
such a shared HPC and QC installation. As a consequence,
hybrid HPCQC systems are, by their nature, disaggregated and
require a mapping of one (or ideally, few) quantum resources
to a large number of compute nodes.

Operating such hybrid HPCQC systems, therefore, requires
a carefully structured software infrastructure able to manage
the disaggregated structure and support the efficient execution
of quantum codes from within classic nodes. This requires
new techniques for scheduling, dynamic and on-demand com-
putation, dynamic backend resource selection, triggering and
control of circuit execution, as well as run time measurements
and processing.

The Munich Quantum Software Stack (MQSS) [1] provides
such a solution, enabling the execution of quantum kernels,
possibly embedded in native HPC applications, on disaggre-
gated quantum infrastructures that are connected to large scale
HPC systems. Its core infrastructure can be executed either
within a cloud or cloud-like servers or directly on the HPC
node that triggers the quantum kernel. It applies dynamic
scheduling and device selection using properties of the quan-
tum kernel, triggers the needed dynamic compilation using
an LLVM-inspired and Quantum Intermediate Representation
(QIR)-based [2] compilation framework, transfers it via a
portable interface to the respective backend, and then processes
and transmits back the result of the execution. This offers
a flexible, extendable and efficient solution to integrate and
operate HPCQC systems and notably enables the use of a
range of different, disaggregated backends.

In particular, we make the following contributions:
• We describe the properties of hybrid HPCQC systems as

disaggrated accelerators (Section II)
• We introduce concrete requirements for the needed soft-

ware stack and introduce the MQSS (Section III-A).
• We detail the implementation of the MQSS framework

and its components (Section III).
• We provide a quantitative evaluation of the MQSS and

the minimal overheads it creates (Section IV).
Overall, we present a flexible solution that helps data centers

support disaggregated infrastructures combing HPC and large-
scale quantum systems. It provides a flexible solution, covering

1It should be noted that concepts of quantum systems on PCI cards exist
– typically using diamond-vacancy techniques – but those are very limited in
size and functionality.

scheduling, compilation, optimization and execution, of hybrid
HPCQC applications.

II. QUANTUM COMPUTERS AS DISAGGREGATED
RESOURCE

Quantum computers offer a radically different accelerator
technology with the potential to change the complexity class
of several problems from factorization to optimization, from
quantum linear solvers to quantum machine learning. With this
potential power, however, comes new requirements on users,
compute centers and software developers.

A. Quantum Computing

Quantum computing builds on qubits as its basic type of
information. It draws its power from the fact that qubits
can represent any state of its two states |0 > and |1 >
simultaneously (superposition) and that two or more qubits can
be combined (entangled) in a way that their state cannot be
represented by the same number of individual qubits anymore;
hence, they can be manipulated together. This foundation
enables the creation of new algorithms that can explore large
parameter spaces concurrently and ultimately will allow the
implementation of NP-hard problems in polynomial time. For
more details on quantum computing, please refer to Kaye
et al. [3].

Quantum computers leveraging these properties can be
implemented in different ways; the most common of these
modalities are superconducting qubits (SC), trapped ions (IT),
and neutral (or cold) atoms (NA). Each has quite different
execution properties in terms of execution speed, number of
supportable qubits, physical environment, fidelity and coher-
ence times. Which modality proves most advantageous is still
an open research question and current assumption is that it
will depend on the targeted quantum kernel and its properties.
This then necessitates the support of many modalities within
one HPC infrastructure.

In all cases, qubits are implemented using a respective
medium and then manipulated by an external control sys-
tem. The latter uses, in most cases, pulses either based on
microwaves (for SC systems) or lasers (for IT or NA systems)
directed at the qubits which manipulate their state to entangle
them and to measure their current state. Each pulse sequence
is represented by a gate, which are operations that manipulate
qubit state. Gates are then combined into sequences, called
circuits, which form the currently most common abstraction
level for quantum programs.

B. Quantum Acceleration as Part of HPC

What the modalities all have in common, though, is the
fact that they are only suitable for very specialized problems
that are in a high complexity class for classic computing, and
that can be represented by quantum algorithms so that the
computational complexity can be reduced. They are suitable
for neither general computation nor polynomial problems as
the sheer size of classic systems ensures they will outperform

1640

Evolution from network integration to system image integration to on-node integration

Control
Network

HPC System

High-speed
Interconnect

QC
System

Front-End Front-End

Facility Backbone/Internet

HPC System

High-speed
Interconnect

Front-End

Facility Backbone

Control
Network

QC
System

QAN

Facility Backbone

HPC System

High-speed
Interconnect

Front-End

Control
System

QC
System

Fig. 2: Different options to combine HPC and QC resources: from loose coupling (left) with HPC and QC systems only
connected via a backbone, to network-level integration (middle) by pulling the QC system into the HPC high speed network,
and to a full integration into a single system (right).

any quantum solution2. This means they are a specialized
accelerator solution. At the same time, the preparation of quan-
tum circuits (compilation, optimization and transpilation to
native gate sets) as well as the needed execution environment
(in terms of I/O and control) requires strong classic systems.

Several models for integration exist [4, 5], ranging from
loose coupling using remote access to tightly coupled on-
premise solutions (see also Figure 2, which illustrates this
spectrum). We are particularly aiming at tightly coupled so-
lutions (right side of the figure), which enables us to treat
the entire accelerated system with a single-system view and
operation. This has not only the advantage of low latencies
for kernel offloads, but also allows the software stack to be
executed in physical and logical proximity to the quantum
systems.

C. Disaggregated Infrastructure

As a consequence, the operation of quantum systems must
rely on a tight connection with HPC or HPC-like classic
systems that support the development environment and that act
as the host for the acceleration. At the same time, however,
quantum systems are typically large-scale appliances. What
started as physics experiments in laboratory environments has
morphed to more condensed solutions in rack form, but often
still requires significant engineering features like cryogenic
systems or anti-vibration suspensions. Figure 1 shows the
Quantum Integration Centre (QIC) at LRZ in Munich to
illustrate the issues with the physical setup.

The result is a strongly disaggregated infrastructure, even
within the same room, but which needs to be operated as
a single, tightly coupled system from the users’ perspective.
This requires new software efforts to schedule, allocate and
execute the quantum kernels while maintaining efficiency for
the coupled HPC components.

2At least for the foreseeable future.

III. THE MUNICH QUANTUM SOFTWARE STACK

The Munich Quantum Software Stack (MQSS) [1] is a
comprehensive framework we have designed to seamlessly
integrate quantum acceleration into the HPC ecosystems. It
forms a bridge between the HPC system, which serves as
a host, and one or more disaggregated large-scale quantum
appliances. The software stack itself is highly flexible and
extensible, supports any kind of quantum technology via a
plug-in concept, and is intended to be deployed within the
HPC systems whether as a stand-alone or as a cloud solution.
With that, it offers a novel approach to harnessing the power
of quantum computing systems within existing computational
infrastructures.

A. Guiding Design Principles

The design of the MQSS was governed by several re-
quirements, which were collected from vendor partners, users,
quantum developers and system software experts. This then
translated into the following design principles:

• The software stack is designed to offer different pro-
gramming models and abstractions on top of the same
software infrastructure core. It does so by decoupling
the abstraction from the compilation system, rather than
building end-to-end stacks per abstraction and/or system.

• Abstractions must support both existing, quantum-only
models, but also HPCQC models that enable execution
directly from the HPC node.

• Scheduling is critical to support disaggregated execution
efficiently. In particular, it must be distinct from the
HPC job scheduler, typically designed to block resources
for the entire application run time. Instead, we require
a multi-level resource management scheme that enables
efficient sharing of the disaggregated resources among
multiple processes, jobs or users.

• Quantum computing requires most of the development
environment (in particular the compiler) to be executed at
run time, after the quantum kernel is generated and before
its execution. This requires separately available resources

1641

QCs &
Simulators

Wide User
Communities Web-Portal

Access

Hy
br

id
/Q

ua
nt

um
 P

ro
gr

am
m

in
g

To
ol

ki
ts

 /
LI

br
ar

ie
s

Enabling Domain User Communities to Compute on Quantum Devices

HPC
System

With
Quantum

Accelerator

Sc
he

du
lin

g
Re

so
ur

ce
 M

an
ag

em
en

t

Quantum Compiler
based on QIR

Comprehensive
Toolkits,

Optimizers,
Verifiers,

Simulators Q
DM

I =

Q
ua

nt
um

 B
ac

ke
ne

d
In

te
rf

ac
e

SW-Emulation

Figures of Merit
and Constraints

AtomsOpen Infrastructure

Specific
Abstraction
(optional)

Selector
Plugin

Compiler
Pass

Compiler
Pass

Compiler
PassCompiler
PassCompiler
Pass

FoMaC
Calc.
FoMaC
Calc.
FoMaC
Calc.
FoMaC
Calc.
FoMaC
Calc.
FoMaC
Calc.

Backend
Impl.

Backend
Impl.

Mapping
To

Pulses

Ion Traps

Neutral Atoms
Backend
Impl.

Ion TrapGeneric

Fig. 3: A schematic overview of the Munich Quantum Software Stack (MQSS), connecting the end users in science domains
(left) with one or more quantum systems (right). In between, the MQSS provides the needed workflow for specifying programs
using abstraction, to provisioning and scheduling, to compilation, and finally deployment. The system is extensible via plugins,
which can be platform neutral or they can support a particular modality (from Schulz et al. [1]).

that must be considered when scheduling and that must
be sufficiently powerful to avoid high compilation times.

• While the number of quantum appliances will be signifi-
cantly smaller than the number of HPC nodes deployed,
large centers are expected to host several such systems,
ideally with different modalities. The MQSS must be
designed to support this and to support flexible decisions
on which system to use.

• Finally, the system must be extensible, both to grow with
the still nascent technology, but also to be adaptable and
specializable for different modalities and vendors.

B. Architectural Overview

Following these design guidelines, we develop the
MQSS [1]. We use different programming languages and
libraries. Even though C++ is the primary used language, C
and Python are also used. To support specific infrastructures,
the LLVM and RabbitMQ libraries are used. Its main goal is to
connect end users in the traditional HPC science domains to a
set of quantum systems available either at, or through, the site
to facilitate the execution of hybrid HPCQC applications. An
overview of this concept is shown in Figure 3. It consists of an
open-core infrastructure that implements the workflow along
with a set of plugins that enable us to dynamically customize
the infrastructure for specific modalities or systems, integrate
new compiler techniques, or to add programming abstractions.
Further, at the backend, it features a new interface, the
Quantum Device Managament Interface (QDMI) [6], which
can be used to integrate any number and type of quantum
device into the infrastructure.

C. Components and Workflow

The MQSS supports the entire workflow from the end user
(left in the figure) to the systems (right in the figure) and back.
The user specifies their quantum kernel either directly in the
form of a quantum circuit or using a higher-level abstraction.
In general, the MQSS is compatible with any programming
model as a frontend that can translate a quantum algorithm
into the Intermediate Representations (IRs) that it supports,
that is, MLIR [7] and QIR [2].

Currently, we support three programming interfaces as
frontends, QPI [8], CUDA-Q [9], and a custom Qiskit
Provider [10]. Combined, they demonstrate the broad spectrum
of supported solutions: from ones that are available as native
C libraries and, hence, are capable of in-code HPC integration,
to ones that are designed for existing QC workflows and
experimental studies based on Python.

The frontends transform the quantum circuit to QIR. From
there, it is passed to the Quantum Resource Manager (QRM)
with its distinct stages, each of them designed to tackle the NP-
completeness inherent in combinatorial problems encountered
in quantum acceleration. The first stage, the Target-Agnostic
Optimization Stage, aims to streamline the submitted quan-
tum circuit, reducing computational complexity and paving
the way for subsequent processing. This stage consists of the
selection of the optimization passes and running the selected
passes. At the current time, the selection of the optimization
passes is fixed, which means the same passes are executed on
each quantum circuit. To improve this situation, MQSS will
adopt a smarter pass selector [11]. Following this, the Genera-
tion Stage divides a parent circuit into child circuits, ensuring
it fits into available quantum accelerators. The Scheduling

1642

Algorithm 1 Simplified version of the Quantum Resource
Manager (QRM) optimization stages

1 void qrm(Module *qirmod, QDMI_Device dev,
↪→ int numshots)

2 {
3 QDMI_Fragment frag;
4 QDMI_Job job;
5 QDMI_status status;
6
7 QIR_pass_t *pass = NULL;
8
9 QRM_agnostic_selector(selector_a, pass);

10 pass = NULL;
11 while(pass = next_pass(pass))
12 pass->run(qirmod);
13
14 QRM_specific_selector(selector_s, pass);
15 pass = NULL;
16 while(pass = next_pass(pass))
17 pass->run(dev, qirmod);
18
19 QDMI_control_pack_qir(qirmod, &frag);
20 QDMI_control_submit(dev, frag, numshots,

↪→ &job);
21 QDMI_control_wait(dev, job, &status);
22 //...
23 }

Stage comes right after the Generation Stage and assigns a
target device to each generated child circuit. Currently, the
scheduler assigned the first available device to the given task.
An ideal scheduler needs to communicate with the available
target devices and assign tasks based on the availability and
characteristics of the circuit. To ensure this, the MQSS will
adopt a more sophisticated scheduler. Once the scheduler has
selected a target architecture for each child circuit, the Target-
Specific Optimization Stage performs additional transforma-
tions to ensure compliance with the chosen accelerator. This
process guarantees that each circuit is expressed exclusively
with gates supported by the target device and properly mapped
to its topology. Both the Target-Agnostic and Target-Specific
Optimization Stages are illustrated in Alg. 1. Each of the stages
is driven by a set of compiler, optimization, or analysis passes
that are loaded into the QRM dynamically as plugins.

The result of the MQSS process is an optimized quantum
circuit in the native form of the targeted accelerator, which
is offloaded to the assinged backend through the QDMI. The
QDMI [6] is an open interface orchestrating the hand-of with
the respective backend. It consists of several interfaces: most
importantly is a control interface that uses a set of queues and
to submit circuits coupled with flexible measurements. These
are then gathered, analyzed and at the end passed to the end
user.

D. Deployment Options

The MQSS is a flexible stack that can be deployed in
different forms, depending on the underlying infrastructure and
the site’s needs. At LRZ, the MQSS is currently deployed

Algorithm 2 Bell state implementation with QPI

1 #include <qpi.h>
2
3 int main(){
4 QCircuit circuit;
5 int numshots = 100;
6 qCircuitBegin(&circuit);
7
8 QClassicalRegisters cr;
9 qInitClassicalRegisters(&cr, 2);

10
11 qH(0);
12 qCX(0, 1);
13 qMeasure(0, cr, 0);
14 qMeasure(1, cr, 1);
15
16 qCircuitEnd();
17
18 int isErr = qExecute(circuit, numshots);
19 if(!isErr) {
20 QuantumResult* results = qRead(circuit);
21 while(results){
22 printf("%s %d\n", results->state,

↪→ results->count);
23 results = results->next;
24 }
25 }
26
27 qCircuitFree(circuit);
28
29 return 0
30 }

as a cloud-like service on a separate machine, so that the
QC system is ready and available when needed. Ultimately,
though, we will migrate the MQSS onto the HPC nodes
themselves, so it can be activated with local access when a
programmer indicates that a job will use quantum resources.

On the other hand, it is also possible to run the stack
separately for single user instances, be it on the HPC system
or on local systems. This facilitates testing and development
and enables small infrastructures.

Which form the MQSS will take is decided during instal-
lation. At that time, the system can be configured to either
establish the entire MQSS as a single block, or to decouple
some components and replace their interface with a remote
execution option. In this way, a user of the MQSS can
customize the setup directly to the site’s needs.

IV. EXPERIMENTAL SETUP

To demonstrate and evaluate the MQSS, we use the setup at
LRZ, which features several classical and quantum systems.
We show that the MQSS can successfully target multiple
backends within the larger disaggregated infrastructure and we
evaluate the overhead induced by the infrastructure itself.

For this purpose, we install the QRM component of the
MQSS in the Compute Cloud resources at the Leibniz Super-
computing Centre (LRZ) as a service, which can be accessed
by any system, including from the HPC nodes of our testbed

1643

Accelerator QExa20 QLM Q20 Q5

Circuit Creation 0.013 0.012 0.013 0.013
Agnostic Opt. 2,039.492 2,002.971 2,026.1 2,074.573
Generator 56.715 56.075 54.768 53.25
Scheduler 49.412 43.38 48.001 49.565
Execution 4,671.053 2,703.299 5,990.4 6,285.92

QRM Execution 7,532.667 5,233.634 8,217.7 8,562.327
Total Execution 7,550.254 5,251.331 8,234.8 8,580.013

TABLE I: Average creation and execution time of the sections
in milliseconds.

cluster. The virtual node used for the QRM has 18 GB of
memory and features four virtual CPUs.

On the quantum side, we target four quantum systems,
which are available at LRZ:

• The Q-Exa system, a 20-qubit superconducting quantum
device from IQM (QExa20) installed in LRZ’s production
environment and intended for continuous operation.

• A 38-qubit Qaptiva quantum systems emulator from
Eviden (QLM).

• A second 20-qubit superconducting quantum device from
IQM, installed in the Quantum Integration Centre (QIC)
intended for more experimental purposes (Q20).

• A 5-qubit superconducting quantum device from IQM,
also installed in the QIC (Q5).

This diversity of systems represents the targeted disag-
gregated infrastructure very well, in which multiple devices
of different capabilities are available, but their number is
significantly less than the number of nodes, jobs, or processes.

On the benchmark side, we use a very simple, synthetic
quantum circuit that creates a Bell State. It is implemented
using the QPI interface. The implementation is given in the
Alg. 2. By using a simple code, we reduce the time spent on
work directly for the code, which allows us to emphasize – for
demonstration purposes – the time spent in the infrastructure
itself.

V. EXPERIMENTAL RESULTS

We execute the Bell state code ten times and measure the
execution times of the different stages in the MQSS. For this
purpose, we instrument the QRM code in a way that we can
distinguish the phases circuit creation, generator, scheduler,
agnostic optimization, and execution on the target quantum
system. We measure the execution time of each individual
phase, along with the overall execution time of the QRM.
Furthermore, we also assess the total execution time of the Bell
state application. The latter two full end to end measurements
enable us, in comparison with per-phase measurements, to
identify possibly hidden overheads not covered in the phases.

Table I shows the average execution times of sections,
along with the overall execution time of the QRM and the
application. All results are in milliseconds and round up to 3-
digit precision. This first of all demonstrates that MQSS can
target a wide range of resources – in the same room but also

remotely – and can successfully orchestrate this distributed
execution on disaggregated resources.

Looking at the quantitative data, we observe that – com-
paring the devices – the most significant difference is the
execution time on the QPU, which is not surprising. The
difference is expected since the QExa20 is a real quantum
device and the QLM is a quantum systems emulator. The other
differences are negligible.

Besides the execution on the quantum systems, the most
time-consuming section is the agnostic optimization. During
this section, we execute 24 LLVM passes, i.e., 24 optimization
and transformation steps that take the initial code to a final
quantum circuit to be executed. Similar to classical compilers,
it is not clear that all passes are helpful in all scenarios, which
offers one avenue for improvement. To address this issue, we
are working on more intelligent pass-selection algorithms. This
is, however, independent of the MQSS core infrastructure, as
such a selection can simply be loaded as a plugin.

The remaining phases of the QRM show only minimal
overhead, demonstrating the efficiency of the chosen approach.
However, it should be noted that we are currently only using a
very small circuit, which reduces the actual processing times
and with that emphasizes the overheads of the infrastructure.
This will change, as circuits grow in width and depth, as
this will lead to more computational requirements for the
actual processing, while the management overhead in MQSS
is expected to remain more or less constant. This stresses the
need for improved processing algorithms as well as their im-
plementation using HPC techniques, e.g., parallelization. The
MQSS supports these options and hence improved processing
passes can easily be deployed.

VI. RELATED WORK

The integration of QC resources within traditional HPC
ecosystems has gained significant attention in recent litera-
ture [12]. One of the early works is ScaffCC compiler [13]
for the quantum programming language named Scaffold [14].
Similar to MQSS, this compiler is also LLVM-based, however,
both the classical and the quantum parts are translated to
QASM. Moreover, unlike MQSS, ScaffCC only supports its
programming language.

Qiskit [15] is the most popular quantum toolkit. Users can
send quantum circuits to the IBM Quantum cloud platform or
simulate them locally. However, it only allows users to create
hybrid applications using Python programming language.

Amy and Gheorghiu [16] present staq, a comprehensive
solution offering a full-stack approach to quantum optimiza-
tion, transpilation, and device mapping. Similar to MQSS, staq
leverages the power of standard C++ and comprises a suite
of tools, each designed to tackle specific tasks using state-of-
the-art methodologies. However, one difference and advantage
of MQSS is its tailored approach to HPCQC by relying on
the community standard QIR, while staq opts for the more
specialized and proprietary QASM (from IBM). Further, it
lacks customization abilities for HPC environments. Although
staq provides a robust toolkit for quantum circuit processing,

1644

its reliance on Quantum Assembly Language (QASM) and
lack of optimisation for HPC environments will limit its
applicability in certain contexts.

Despite notable progress in HPCQC integration frameworks
and the development of JIT (Just-in-Time) compilation and
optimization techniques, several gaps remain in the exist-
ing literature. One prominent gap, for example, pertains to
the comprehensive management of quantum resources within
heterogeneous computing environments. Existing approaches
often lack robust mechanisms for orchestrating quantum job
submissions, optimizing resource allocation, and dynamically
adapting compilation strategies to evolving device character-
istics. The MQSS is desiged from the ground up to cover
these issues and can be extended with plugins to improve pass
performance.

VII. SUMMARY

After decades of hard work in physics laboratories, both
academia and industry are interested in quantum computers.
While the developments in quantum computers are highly
promising, quantum computers show improvements in certain
problems, especially problems that would require exponential
resources to solve for their classical counterparts.

It is highly expected that quantum computers will provide
significant improvements in artificial intelligence and machine
learning due to their high resource usage.

With their unique computing paradigm, they can serve as an
accelerator for HPC systems. Due to their nature, many come
as large-scale appliances, lending to a setup as disaggregated
resources. Regardless, we must operate them as a single
system with a unified software environment.

To tackle this issue, this paper presented the capabilities
of the Munich Quantum Software Stack (MQSS) to support
disaggregated quantum acceleration infrastructures. It is de-
signed to connect domain end users to one or more quantum
systems, covers the entire workflow from end-to-end, and
is designed to be expandable by offering a comprehensive
plugin infrastructure. Further, it can be deployed in different
configurations from a stand-alone setup to a cloud-based
service solution and ultimately on the HPC nodes themselves
for lowest latency.

We demonstrated the operation of the MQSS using the
infrastructure at the Leibniz Supercomputing Centre (LRZ),
which features three different quantum accelerators plus a
commercial grade simulator, all of which can be addressed
via the MQSS. Our experiments have shown that the overhead
of the infrastructure itself is small, but also that it will be
essential in the future to focus on performance optimizations
of the plugins deployed as part of the MQSS.

Overall, the MQSS offers a comprehensive software infras-
tructure that can be used to drive hybrid HPCQC systems,
hiding their physical disaggregation from the users. This opens
the path to efficient use of HPCQC and with that offers new
paths for applications to exploit this new technology.

ACKNOWLEDGMENTS

We kindly thank our partners in the Munich Quantum Valley
(MQV), in particular the Q-DESSI and QACI projects, for
many inspiring discussions and common effort on the MQSS.

REFERENCES

[1] M. Schulz, L. Schulz, M. Ruefenacht, and R. Wille,
“Towards the munich quantum software stack: Enabling
efficient access and tool support for quantum computers,”
in 2023 IEEE International Conference on Quantum
Computing and Engineering (QCE), Bellevue, WA,
USA, September 2023, pp. 399–400. [Online]. Available:
https://doi.org/10.1109/QCE57702.2023.10301

[2] QIR Alliance, QIR Specification, 2021, also see https:
//qir-alliance.org. [Online]. Available: https://github.com/
qir-alliance/qir-spec

[3] P. Kaye, R. Laflamme, and M. Mosca, An Introduction to
Quantum Computing. Oxford Academic, 2006. [Online].
Available: https://doi.org/10.1093/oso/9780198570004.
002.0001

[4] A. Elsharkawy, X.-T. M. To, P. Seitz, Y. Chen, Y. Stade,
M. Geiger, Q. Huang, X. Guo, M. A. Ansari, C. B.
Mendl, D. Kranzlmüller, and M. Schulz, “Integration of
quantum accelerators with high performance computing
– a review of quantum programming tools,” 2023,
accepted for publication by ACM Transactions on
Quantum Computing (TQC). [Online]. Available: https:
//arxiv.org/abs/2309.06167

[5] A. Elsharkawy, X.-T. M. To, P. Seitz, Y. Chen, Y. Stade,
M. Geiger, Q. Huang, X. Guo, M. A. Ansari, M. Rue-
fenacht, L. Schulz, S. Karlsson, C. B. Mendl, D. Kran-
zlmüller, and M. Schulz, “Challenges in hpcqc integra-
tion,” in 2023 IEEE International Conference on Quan-
tum Computing and Engineering (QCE), vol. 02, 2023,
pp. 405–406.

[6] R. Wille, L. Schmid, Y. Stade, J. Echavarria, M. Schulz,
L. Schulz, and L. Burgholzer, “Qdmi – quantum device
management interface: Hardware-software interface for
the munich quantum software stack,” in 2024 IEEE
International Conference on Quantum Computing and
Engineering (QCE), Montreal, Canada, September 2024.

[7] The CUDA-Q development team, “CUDA-Q.” [Online].
Available: https://github.com/NVIDIA/cuda-quantum/
blob/main/include/cudaq/Optimizer/Dialect/Quake/
QuakeOps.td

[8] E. Kaya, B. Mete, L. Schulz, M. N. Farooqi, J. Echavar-
ria, and M. Schulz, “Qpi: A programming interface for
quantum computers,” 2024, accepted for publication by
The Third International Workshop on Integrating High-
Performance and Quantum Computing at 2024 IEEE
International Conference on Quantum Computing and
Engineering (QCE).

[9] NVIDIA, CUDA-Q, 2024, also see https://nvidia.github.
io/cuda-quantum/latest/index.html. [Online]. Available:
https://developer.nvidia.com/cuda-q#

1645

[10] MQSS, “MQPProvider.” [Online]. Available: https:
//pypi.org/project/mqp-qiskit-provider/

[11] A. Swierkowska, J. Echavarria, L. Schulz, and M. Schulz,
“Achieving pareto-optimality in quantum circuit compi-
lation via a multi-objective heuristic optimization ap-
proach,” 2024, accepted for publication by The Third
International Workshop on Integrating High-Performance
and Quantum Computing at 2024 IEEE International
Conference on Quantum Computing and Engineering
(QCE).

[12] A. Elsharkawy, X. M. To, P. Seitz, Y. Chen, Y. Stade,
M. Geiger, Q. Huang, X. Guo, M. A. Ansari, C. B.
Mendl, D. Kranzlmüller, and M. Schulz, “Integration
of Quantum Accelerators with High Performance
Computing - A Review of Quantum Programming
Tools,” CoRR, vol. abs/2309.06167, 2023. [Online].
Available: https://doi.org/10.48550/arXiv.2309.06167

[13] A. JavadiAbhari, S. Patil, D. Kudrow, J. Heckey, A. Lvov,
F. T. Chong, and M. Martonosi, “Scaffcc: Scalable com-
pilation and analysis of quantum programs,” Parallel
Computing, vol. 45, pp. 2–17, 2015.

[14] A. J. Abhari, A. Faruque, M. J. Dousti, L. Svec, O. Catu,
A. Chakrabati, C.-F. Chiang, S. Vanderwilt, J. Black,
F. Chong et al., “Scaffold: Quantum programming lan-
guage,” Princeton Univ NJ Dept of Computer Science,
2012.

[15] G. Aleksandrowicz, T. Alexander, P. Barkoutsos,
L. Bello, Y. Ben-Haim, D. Bucher, F. J. Cabrera-
Hernández, J. Carballo-Franquis, A. Chen, C.-F. Chen
et al., “Qiskit: An open-source framework for quantum
computing,” Accessed on: Mar, vol. 16, p. 61, 2019.

[16] M. Amy and V. Gheorghiu, “staq – A full-stack quantum
processing toolkit,” Quantum Science and Technology,
vol. 5, no. 3, p. 034016, Jun. 2020. [Online]. Available:
http://dx.doi.org/10.1088/2058-9565/ab9359

1646

