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Abstract—Load imbalance is a challenge for parallel appli-
cations in High Performance Computing (HPC). It is caused
by processes having different execution times or load values,
leading to idle or wait times at synchronization points, where
faster processes must wait for the slowest process to catch up.
To mitigate this issue, applications can employ load balancing
(LB) strategies, which migrate load between processes to even out
load. This is often referred to as the Load Rebalancing Problem
(LRP). While many approaches solving the LRP exist, they can
only be heuristics and hence further optimization potential exists.
In our work, we turn to a novel approach by using hybrid
classical-quantum approaches and present two versions of the
constrained quadratic model for solving the LRP; the two differ
in how they balance the number of qubits required with the types
of applied constraints. We compare the quantum-based methods
with classical methods using heuristic algorithms Greedy, Kar-
markar–Karp, and ProactLB. We evaluate our approaches using
imbalance ratio and speedup as metrics, as well as the number of
migrated tasks to indicate overhead caused by migrations. Our
results show that the quantum-based methods outperform the
classic methods. For example, we need only 1/4 of the number
of migrated tasks in a realistic use case compared with classical
methods, particularly Greedy and KK, to balance the load.

Index Terms—HPC, Quantum Computing, HPCQC integra-
tion, Load Rebalancing, CQM, task migration

I. INTRODUCTION

With the ever-increasing demand for computational power
in scientific research, High Performance Computing (HPC)
plays a vital role in the field of computational science. Nearly
all applications in HPC employ some form of task parallelism,
where many tasks are executed concurrently on shared and/or
distributed memory machines [1]. In such scenarios, load
imbalance poses a critical challenge, especially in task-based
parallel applications [2], leading to unwanted idle or wait
times. These issues can be mitigated with load balancing
(LB) approaches, which redistribute tasks to achieve a more
balanced execution thereby reducing idle times. LB methods
are categorized as static or dynamic, meaning they can be
applied before or during task execution [3]. We focus on the
Load Rebalancing Problem (LRP) [4], which assumes that

§These authors contributed equally.

tasks are already distributed on different machines using pre-
partitioning algorithms before execution. If the model used to
predict task execution times is not sufficiently accurate or task
lengths are unpredictable, imbalances can occur in the form of
load differences across machines. In such scenarios, migrating
tasks at runtime can help rebalance the load.

Aggarwal et al. [4] define the LRP as a problem where
N jobs (referred to as tasks) of different workloads are
assigned to M processors. Suppose the workloads per task are
w1, w2, ..., wN . The load on a processor is the sum of all w
values of its assigned tasks. Differences in these sums between
processes indicate load imbalance. Load rebalancing aims
to optimize overall performance by relocating tasks among
processors. An appropriate method guiding task migration is
the key to solving the LRP. With the constraint of migration
costs, LRP is formulated as an NP-hard problem that mini-
mizes imbalance with an additional limit on the number of
migrated tasks of ≤ k. In terms of optimization problems,
LRP can be turned to multi-way number partitioning [5];
N tasks with the corresponding workloads are interpreted
as numbers, M processes as partitions. Traditionally, many
classical algorithms/methods1 are proposed for number parti-
tioning problems. The most common algorithm is Greedy, a
variant of Graham’s algorithm [6].

In this work, we approach the Load Rebalancing Problem
Problem (LRP) with a novel method using quantum comput-
ing, which is known to be suitable for optimization challenges.
First, we formulate the LRP as a constrained quadratic model
(CQM)2. This CQM then serves as the input for the D-Wave
Leap hybrid solver, which is based on quantum annealing.
The solver’s output is a solution that guides task migration,
meaning it specifies how many tasks should be migrated and
how they are distributed among the processes involved.

Specifically, our paper offers the following contributions:

• We transform the LRP into a classical-quantum problem
that can be solved with quantum annealing.

1Algorithms and methods might be used interchangeably, while approaches
imply a scheme or a broader strategy in this paper.

2https://docs.ocean.dwavesys.com/en/stable/concepts/cqm.html#cqm-sdk
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Fig. 1. An illustration of the BSP model as iterative applications in HPC.

• We implement and execute our approach on both a
synthetic benchmark and a real-world application, the
Sam(oa)2 Tsunami simulation.

• We assess the influence of different LRP formulations on
the results achieved using a quantum device.

• We compare the proposed methods with classical coun-
terparts, i.e., Greedy, Karmarkar–Karp [7], ProactLB [8].

Our results show that, for the real-world benchmark, we are
able to achieve load balance by using a quarter of the needed
task migrations, substantially reducing overhead.

The remainder of the paper is organized as follows: Sec-
tion II introduces the problem statement and motivation.
Section III reviews related work. Section IV explains the
quantum transformation of LRP. In Section V, we discuss the
experiments and results of the proposed methods. Section VI
provides our analysis of the limits and challenges we face with
hybrid classical-quantum schemes, and suggests future work.
Lastly, Section VII concludes the paper.

II. PROBLEM STATEMENT AND MOTIVATION

We formulate the Load Rebalancing Problem (LRP) similar
to Aggarwal et al, [4], but with adjustments tailored for task-
based parallel applications. Specifically, we use:

• N tasks in a task-based parallel application are assigned
to M processes, assuming one process per node (i.e., M
indicates the number of compute nodes).

• Processes are indexed with the following notation:
{P1, P2, ..., PM}.

• The execution time of a task t indicates its length or so-
called load value, denoted by wt.

• The sum of all load values of all tasks assigned to one
process Pi indicates its total load value, Li.

• The maximum and average load values across all pro-
cesses are denoted by Lmax and Lavg .

• The imbalance level is calculated by a ratio,
Rimb =

Lmax−Lavg

Lavg
[9].

Using these definitions, the LPR is an optimization problem
aimed at reducing Lmax and Rimb, which can be achieved by
migrating tasks between processes. However, the migration
induces communication and with that overhead, in turn leading
to longer process load values. We, therefore, must consider
between an optimal Rimb and task migration overhead when
using LPR in HPC systems to achieve efficient execution.

One of the most commonly seen use cases for LRP can
be found in applications relying on the bulk synchronous
parallel (BSP) model [10]. BSP is a common parallel execution

model used in many scientific applications. In this model, the
execution behavior is iterative (typically in the form of an
outer time step loop) and each iteration consists of two phases:
computation followed by synchronization/communication. The
computation phase consists of task execution, followed by the
result synchronization before a new iteration starts. Figure 1
shows an example of BSP execution: 4 processes (P1 to P4)
are each assigned 5 tasks (N = 20 tasks in total). Each green
box indicates a task, and its length indicates the task’s load
value. All processes are synchronized in the communication
phase, leading to idle/wait times in which processes with
smaller load values have to wait for the process with Lmax to
catch up. The goal of LRP is to identify a solution for how
tasks should be migrated, i.e., which task should be moved
from one process to another.

In this paper, we study this problem using two applications.
One is a synthetic test case implementing a matrix multipli-
cation (MxM); the second is sam(oa)2 [11] [12], an Adaptive
Mesh Refinement (AMR)-based code for Tsunami simulation.
From both, we gather information on the number of assigned
tasks in each process and their lengths in the imbalanced case
and apply this as input for both the classical baselines and our
novel quantum-hybrid solutions. The implementation of MxM
and sam(oa)2 is ported to task-based parallel applications
by using Chameleon [13], a library for task-parallel MPI+X
applications (more details in Section V).

For MxM, we decompose the problem into individual MxM
kernels and use them as tasks. The load of each task then
depends on the number of kernels used and the size of the
original matrices. As Figure 1 shows, we can generate different
test cases demonstrating load imbalance. The green boxes
can represent MxM tasks with uniform load per process, but
different processes might have different task lengths.

For sam(oa)2, the framework supports the implementation
of numerical schemes, like partial differential equation (PDE)
systems, on dynamically adaptive, tree-structured triangular
meshes. Running on shared and distributed-memory systems,
sam(oa)2 partitions the mesh into sections, which define com-
putation tasks. The cells in a section are contiguous along a
Sierpinski space-filling-curve (so-called “Sierpinski” sections).
We use sam(oa)2 with the model for solving 2D shallow water
equations applied for oscillating lake and tsunami simulations.
Sam(oa)2 provides a finite volume solver as well as a high-
order discontinuous Galerkin scheme with a-posteriori limiting
(ADER-DG [11]). In ADER-DG, variations in computational
cost per element can be caused by the limiting procedure that
can lead to load imbalance. For this reason, sam(oa)2 has its
own load balancer based on an application specific cost predic-
tor; however, we assume an incorrect cost model to generate
imbalance use cases. We use an extension of sam(oa)2, which
supports distributed tasking with the Chameleon library [13].
Each compute node launches an MPI process with multiple
OpenMP threads to execute tasks, where we spawn a section
traversal in the time-stepping phase (ADER-DG + Finite
Volumes) as a task in Chameleon.

The LRP solution is important not only regarding where
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tasks are moved, but also the total number of migrated tasks.
Due to communication overhead, migrating too many tasks
can negatively impact performance. When applying classical
algorithms like Greedy or KK, task migration is purely consid-
ered a partitioning solution focused on achieving the correct
number of migrated tasks without considering the overheads
involved. This paper introduced and motivated a new solution
based on a hybrid classical-quantum approach, which aims to
reduce the number of task migrations and with that overhead.

III. RELATED WORK

Load balancing (LB) aims to assign each process (node)
an equal share of the total load [14]. LB can be solved
by static or dynamic approaches. A static approach usually
assumes prior knowledge, such as the number of tasks, load
values, and involved processes [15], while a dynamic ap-
proach (DLB) mainly works for on-the-fly load balancing
decisions [16] in which prior information is limited, such
as only current queue status. A common method for DLB
is work stealing [17], where idle processes steal tasks from
busier ones at runtime. In HPC systems, work stealing might
be delayed due to communication overhead [18]. To improve
this, Samfass et al. [19] propose a reactive task offloading
method. The reactive method is based on the most current
execution status among processes to make speculative and
reactive decisions on task migration. A further improvement
is from [8], introducing proactive load balancing (ProactLB),
which integrates a load predictor at runtime and guides task
migration with an appropriate number of tasks as well as
appropriate target processes.

In principle, static load balancing makes decisions once
before execution, while dynamic load balancing does so peri-
odically during execution. However, similar questions remain,
such as which process should migrate tasks, to where, and
with how many tasks. When this problem is approached as
a classical multi-way number partitioning problem [5], we
consider the task load values and their current assignment
to processes as the inputs. Further, we constrain the cost
of migrating tasks to a constraint, where the number of
migrated tasks should be ≤ a threshold (called the relocating
cost [4]). The applied classical algorithms can be divided into
approximation and optimal algorithms [20]. Approximation
algorithms, like Greed and KK, gain benefits in complexity
and provide an upper bound for optimal algorithms to help
prune the search space. Greedy first sorts the input (numbers)
and then considers placing them into the subset with the
smallest cumulative sum [21]. KK also first sorts the input,
but then iteratively replaces the largest two numbers of the
input with their difference [7]. In contrast, the algorithm in
ProactLB, as mentioned earlier, takes a more distributed view
by sorting the total load values of processes and then relying
on the difference in total load to search for enough tasks to
migrate. This approach aims at limiting migration cost.

LRP, being a combinatorial optimization problem, is well-
suited for exploration with quantum computing methods.
Rathore et al. [22] investigate quantum annealing (QA) for

HPC workload allocation, focusing on adaptive mesh re-
finement and smoothed particle hydrodynamics. The study
utilizes a recursive number partitioning to distribute tasks
across a power-of-2 number of processors and employs multi-
objective optimization to address the associated complexities.
In contrast, our study focuses on rebalancing tasks already
assigned with a different problem formulation tailored for
quantum devices. To our knowledge, this is the first application
of hybrid classical-quantum computing methods for the LRP.

IV. TRANSFORMATION OF LRP FOR HYBRID
CLASSICAL-QUANTUM SOLVERS

From the problem statement in Section II, we consider
the given input: N tasks distributed on M processes. We
assume each process is assigned an equal amount of n
tasks, n × M = N . Also, in our scope, all n tasks of a
process have (initially) uniform execution times. Let wi be the
execution time of the task originally assigned to process Pi,
i ∈ {1, . . . ,M}. The sum of all task execution time values
assigned to a process indicates its total load value, Li. The
maximum load is Lmax = max(Li), which is the greatest load
among all involved processes. The average load is calculated
by Lavg = 1

M

∑
i Li.

Before rebalancing, the load on process Pi is Li = wi · n.
After rebalancing, the new load is given by L′

i =
∑M

j=1 wj ·
xi,j , where xi,j ∈ N0 represents the number of tasks moved to
process Pi from process Pj (for i = j it denotes the number
of tasks that are not relocated). To express this as a binary
quadratic model, which can be translated into CQM for the
hybrid classical-quantum solver, we need to convert the values
of x from non-negative integers to binary variables. For this
purpose, we utilize a non-standard binary representation:
C ∈

{
2l−1 | l = 1, 2, . . . , ⌊log2(n)⌋

}
∪
{
n− 2⌊log2(n)⌋ + 1

}
.

In this formulation, instead of representing numbers using
default binary coefficients, we use a set of coefficients that
precisely sum up to the number we want to represent. For
example, to express 1310, the coefficients are {20, 21, 22, 6},
allowing it to be represented as 1111C . The advantage of this
method for encoding task distribution among processes is that
if all coefficients are used and each process will have a total
number of tasks (both migrated and original) that adds up to
exactly n. Without any additional constraints this ensures the
solution’s correctness, as all tasks must either be migrated or
remain in their original process. The decision variable xi,j,l is
defined as a binary variable, taking the value of 1 if and only
if the amount of cl tasks should be moved to process i from
process j; otherwise xi,j,l = 0.

Objective function: Our objective is to minimize the maxi-
mum load, Lmax. In a scenario where the computational loads
are well balanced across all processes, each process’s load
closely approximates Lavg . Consequently, the difference be-
tween each individual load Li and Lavg can serve as a metric
to assess the imbalance ratio. We utilize the square of load
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differences to capture the contribution of both underloaded
and overloaded processes to this imbalance.

min
M∑
i=1

 M∑
j=1

wj ·
|C|∑
l=1

xi,j,l · cl

− Lavg

2

Constraints: LRP has several constraints: First, for each
process that contributed to the migrated load, the sum of
migrated and retained tasks must equal n → no task is lost.

M∑
i=1

|C|∑
l=1

xi,j,l · cl = n, ∀j ∈ {1, . . . ,M}

The second constraint is that on each process the new load
should not exceed the maximum load.

M∑
j=1

wj

|C|∑
l=1

xi,j,l · cl ≤ Lmax, ∀i ∈ {1, . . . ,M}

The final constraint is that no more than k tasks can be
moved in total, ensuring that LRP differs from task pre-
partitioning or task assignment. This is intended to cap and/or
save the migration costs on real HPC systems.

M∑
i=1

M∑
j=1,j ̸=i

|C|∑
l=1

xi,j,l · cl ≤ k

Using the formulation of the objective function and the
constraints described above, the required number of binary
variables for constructing CQM is M2 · (⌊log2(n)⌋+1). This
formulation involves M equality constraints and M + 1 in-
equality constraints. However, the number of binary variables
can be reduced to (M − 1)2 · (⌊log2(n)⌋ + 1) by inferring
the values of tasks that are not moved from process j based
on the number of tasks that are moved. Specifically, for each
process j, xj,j = n −

∑M
i=1,i̸=j

∑|C|
l=1 xi,j,l · cl. By adopting

this approach, the CQM can be reformulated to use fewer
variables, while maintaining the same number of constraints,
but all of the constraints will be the inequality constraints. For
the following experiments, we use two variants of the quantum
CQM formulation to indicate:

• Q CQM1: the formulation with the reduction in the
number of qubits, (M − 1)2 · (⌊log2(n)⌋+ 1).

• Q CQM2: the formulation without reduction in the num-
ber of qubits, M2 · (⌊log2(n)⌋+ 1).

We emphasize the significance of the number of binary
variables in the CQM, as it directly correlates with the number
of qubits required. Assuming that representing inequality
constraints does not require additional ancillary qubits, the
number of logical qubits needed is equivalent to the number of
binary variables. The CQM can be converted into a quadratic
unconstrained binary optimization (QUBO) problem outlined
by Glover et al, [23], who incorporates constraints into the
objective function using penalty coefficients. The number of
logical qubits for inequality constraints can remain unchanged
using unbalanced penalization [24]. However, this study fo-
cuses exclusively on applying the CQM formulation.
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Fig. 2. An overview of Chameleon execution flow with task-based parallel
applications, featuring an example of MxM tasks.

V. EXPERIMENTS

A. Experimental Setup

The imbalance inputs are from experiments of matrix mul-
tiplication (MxM) and sam(oa)2, which are performed on the
CoolMUC2 cluster at Leibniz Supercomputing Centre (LRZ)
featuring 28-way Intel Haswell-based nodes; 812 compute
nodes, 28 cores per node. MxM is a synthetic example and
Sam(oa)2 is a realistic HPC application for numerical simula-
tions. The experiments using the hybrid classical-quantum ap-
proach are conducted on D-Wave Cloud services using Leap’s
Hybrid CQM Solver, with access facilitated by Cyfronet AGH.

For MxM, the compute kernel A = B × C defines a task,
where the matrix size affects the execution time of tasks.
We can vary the task lengths by varying matrix sizes. Also,
the number of tasks assigned to processes can be varied. In
Subsection V-B, we show three groups of experiments:

• varying the imbalance ratios;
• varying the number of involved processes;
• varying the number of tasks assigned to each process.

The applied rebalancing methods are compared in speedup
calculated by the fraction of the maximum load values (Lmax)
between baseline (no rebalancing) and rebalancing, imbalance
ratio, the total number of migrated tasks, the average number
of migrated tasks per process, and runtime overhead.

For sam(oa)2, we run the simulation model of oscillating
lake. Its implementation is based on the concept of adap-
tive mesh refinement. The simulated problem is simplified
as a mesh, which is sub-partitioned into sections of cells.
Cell traversal is a computation unit defining a task. Both
sam(oa)2 and MxM are ported into task-based applications
using Chameleon. Conventionally, sam(oa)2 already has par-
titioning and balancing algorithms. However, we assume an
incorrect performance model at runtime, leading to an imbal-
ance during execution. Therefore, rebalancing is essential, and
task migration is mainly focused on rebalancing.

Chameleon: is a task-based parallel programming frame-
work for shared and distributed systems [13], which is imple-
mented as an extended library in C++. Parallel applications,
which follow a bulk-synchronous paradigm, can be supported
by Chameleon to enable overlapping computation and com-
munication phases. Chameleon uses hybrid MPI+OpenMP,
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TABLE I
AN OVERVIEW OF GENERAL COMPLEXITY AND LOGICAL QUBITS.

Algorithm Complexity Logical Qubits
Greedy O(N logN) - O(2N )

KK O(N logN) - O(2N )
ProactLB O(M2K)

Q CQM1 k1, k2 (M−1)2(⌊log2(MN )⌋+1)

Q CQM2 k1, k2 M2(⌊log2(MN )⌋+ 1)

where compute-bound tasks express computation units. We
can define independent tasks without side effects, such as
access to global variables by multiple tasks. In Figure 2, the y-
axis indicates one MPI process per node; a process can spawn
multiple threads to execute tasks (comp.threads), where
one thread is dedicated to communication (comm.threads).
The x-axis shows the iterative execution direction, where each
green box indicates a task; here, we denote an example of
MxM tasks. With the dedicated threads, we can perform task
migration overlapping with computation.

B. Complexity and Algorithmic Output

Table I shows the overview of the classical methods com-
pared to the quantum-based methods. Greedy and Karmarkar-
Karp (KK) are analyzed in time O(N logN) up to O(2N )
for the worst-case time complexity [20]. In our experiments,
the applied Greedy and KK purely focus on an optimal solu-
tion for partitioning tasks without considering migration cost.
Furthermore, “partitioning” emphasizes that Greedy and KK
consider imbalance inputs like multi-way number partitioning.
ProactLB proposed by Chung et al [8] aims at the distributed
view of load rebalancing that is more relevant to distributed
memory systems; therefore, the number of migrated tasks and
migration costs are taken into account (# migrated tasks in
ProactLB is less than in Greedy and KK). The complexity of
ProactLB depends on the number of involved processes (M ),
and K is supposed to be ≤ the number of tasks assigned to
a process. K also means the search space for selecting how
many tasks in a process should be migrated.

Regarding the hybrid classical-quantum methods, we ex-
plore two variants: Q CQM1 (with qubit reduction) and
Q CQM2 (without qubit reduction). The parameter k rep-
resents the constraint on the number of migrated tasks in
the CQM formulation, limiting the migration to ≤ k tasks.
Finding an appropriate value for k is essential. In this study,
we apply two values, k1 and k2, based on the number of
migrated tasks determined by classical algorithms, which are
run first to guide the hybrid experiments. Specifically, k1
corresponds to the tasks migrated using ProactLB, while k2
reflects the count from Greedy and KK. The experiments
distinguish between these cases using k1 and k2 as postfixes. If
using only the classical-quantum approach, a parameter study
could be conducted by testing multiple values of k, as it is a
discrete, bounded parameter. However, this requires the use of
a large amount of hybrid resources.

1) Varying imbalance levels: This group of experiments
includes different imbalance levels. We generate the tests on

TABLE II
COMPARISON OF THE AVERAGE NUMBERS OF TOTAL TASKS MIGRATED,

TASKS MIGRATED PER PROCESS, AND RUNTIME OVERHEAD.

Algorithm # total mig.
tasks (avg)

# mig. tasks per
process (avg)

Runtime
(ms)

Greedy 351.8 43.98 0.5012
KK 351.4 43.93 2.5876
ProactLB 60.4 7.55 0.4490
Q CQM* k1 60.4 7.55 5231.02
Q CQM* k2 316.0 39.50 5246.67

eight compute nodes with one MPI process per node. Each
node is assigned 50 tasks, and tasks assigned to a node
have a uniform load. The matrix size of tasks on different
nodes is different, which we exploit to generate different
imbalance cases. The matrix sizes of tasks are in the range
of {128, 192, 256, . . . , 512}.

Figure 3 shows the imbalance and speedup results after
applying the rebalancing methods, where the x-axis denotes
imbalance cases increasing from Imb.0 to Imb.4, the y-axis
of the left sub-figure shows imbalance ratios (Rimb), while
the right sub-figure shows speedup values. Rimb and speedup
are calculated from the rebalancing solution of the applied
methods, which tasks should be migrated to which processes.
Imb.0 represents no imbalance, allowing for the assessment
of different methods on whether or not to make task migration
decisions. Overall, all methods help to reduce the imbalance
close to 0. Q CQM1 k2 reaches a balance similar to Greedy
and KK. For speedup, all quantum-based methods also obtain
results equivalent to those of classical methods.

In Table II, we show in detail the total number of migrated
tasks (# total mig. tasks) and the number of migrated tasks
per process (# mig. tasks per process) in average (avg)
corresponding to the results of 5 imbalance cases shown in
Figure 3. Column “Runtime” shows the average runtime when
performing each algorithm. Although Greedy and KK obtain
the optimal results, we have to move many tasks. In contrast,
the number of migrated tasks in ProactLB is reduced because
it takes migration overhead into account. With the quantum-
based methods, Q CQM* k1 points to the number of migrated
tasks and runtime on average for both Q CQM1 k1 and
Q CQM2 k1 because they have the same problem size and the
constraint of k1. Their runtime values are not much different.
Similarly, Q CQM* k2 represents both Q CQM1 k2 and
Q CQM2 k2. Interestingly, with ≤ k1 migrated tasks, where
k1 refers to the total number of migrated tasks in ProactLB, the
performance is equal and even slightly better than the classical
methods. In the case of k2, the constraint of migrated tasks
is relaxed as k2 > k1. Thereby, the performance is improved
while the number of migrated tasks is still less than Greedy,
KK. For the runtime measurement of the classical methods, we
simply set a timer before and after the algorithm is finished.
In Q CQM* k1 and Q CQM* k2, the runtime indicates
both CPU and QPU time, which charges for the time that
the quantum annealing-based solvers run our problems. The
runtime is quite large compared to the classical algorithms.
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Fig. 3. A comparison of imbalance ratio and speedup in various imbalance levels.

TABLE III
THE TOTAL NUMBER OF MIGRATED TASKS IN VARYING NODE SCALES.

Algorithm 4 nodes 8 nodes 16 nodes 32 nodes 64 nodes
Greedy 300 700 1499 3105 6302
KK 300 700 1501 3098 6302
ProactLB 90 163 350 644 2353
Q CQM1 k1 89 163 350 644 2353
Q CQM1 k2 285 681 1482 3053 6298
Q CQM2 k1 79 163 338 644 2353
Q CQM2 k2 284 634 1434 3084 6300

2) Varying the number of compute nodes: This group of
experiments is set up by varying the number of compute nodes.
Each node is assigned the same number of 100 uniform tasks.
The different matrix sizes are again used to give the total load
value of processes and imbalance levels.

Figure 4 depicts the imbalance and speedup results based on
the outputs from the applied methods. Q CQM1 k2 achieves
results better than or equal to classical algorithms. The
speedup values of Q CQM1 k2 are competitive in the cases
scaling up to 32 and 64 nodes. Q CQM1 k1 and Q CQM2 k2
also have positive results, while Q CQM2 k1 is the worst. It
uses more qubits (without qubit reduction), and k1 refers to
the number of migrated tasks based on ProactLB.

Table III shows the total number of migrated tasks of each
scale. Keeping the same number of tasks per node but increas-
ing the number of processes affects the applied methods. For
instance, the total number of migrated tasks is increased from
300 to over 6000 in the case of applying Greedy, KK. When
setting the constraints k1, k2, the number of tasks migrated in
the quantum-based methods is less than or equal. Furthermore,
they perform better, especially in Q CQM1 k2, as Figure 4
shows. This shows that the decision of the quantum-based
methods on task selection can be clever.

3) Varying the number of tasks per node: In this group of
experiments, we increase the number of tasks per node. We
keep the experiments with the number of 8 nodes, while the
number of assigned tasks per each varies from 8 to 2048.

Figure 5 also shows the imbalance ratio and speedup results
calculated by the applied method’s outputs. Q CQM1 k1
(qubit reduction) slightly fluctuates when the number of
assigned tasks is increased. Q CQM1 k2 obtains good re-
sults close to KK and Greedy, especially in the cases 512,

TABLE IV
THE TOTAL NUMBER OF MIGRATED TASKS IN VARYING # TASKS.

Algorithm 8 16 32 64 128 256 512 1024 2048
Greedy 56 112 224 448 896 1792 3584 7168 14336
KK 56 112 224 448 896 1792 3584 7168 14336
ProactLB 11 53 43 87 196 349 696 1407 2800
Q CQM1 k1 11 53 43 87 196 349 696 1407 2800
Q CQM1 k2 54 102 211 447 855 1781 3501 7049 14248
Q CQM2 k1 11 51 43 76 194 333 694 1405 2758
Q CQM2 k2 54 107 206 414 809 1584 3365 6657 11473

TABLE V
EXPERIMENTAL RESULTS FROM THE IMBALANCE USE CASE OF SAM(OA)2 .

Algorithm Rimb Speedup # mig. tasks Runtime (ms)
CPU QPU

Baseline 4.19940 1.0
Greedy 0.00007 5.19905 6447 8.14
KK 0.00001 5.19938 6447 109.63
ProactLB 0.00944 5.15076 1568 1.32
Q CQM1 k1 0.0001 5.1990 1567 19349.3 32.1
Q CQM1 k2 0.0001 5.1990 6418 19359.1 32.0
Q CQM2 k1 2.3192 1.5664 1550 19965.8 32.0
Q CQM2 k2 0.0001 5.1989 6440 19372.3 32.1

1024, 2048 tasks. Q CQM2 k1 (without qubit reduction) is
the worst, while the same variant with k2 keeps positive
performance. The quantum-based methods with more qubits
introduce instability. The speedup values of all methods look
approximately equal, except for Q CQM2 k1. In Table IV,
we show the total number of migrated tasks corresponding
to each case. The constraint of k1 produces the same output
as ProactLB. However, for k2, although the limit is relaxed,
the final output of Q CQM1 k2 and Q CQM2 k2 is slightly
better than KK and Greedy in terms of migration cost.

C. Application in Realistic Use Case

This experiment uses the imbalance input from a realistic
use case, sam(oa)2, to simulate an oscillating lake on 32 com-
pute nodes. The problem size of this use case is configured by
default, and it sub-partitions into 16 sections. The number of
tasks on each node is 208 with uniform load. The application
itself maintains the imbalanced nature of this use case.

Table V shows the summarized results, also including the
imbalance ratio (Rimb) and speedup calculated from the output
of the applied methods. Column “# mig. task” denotes the
total number of migrated tasks. Column “Runtime” shows the
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Fig. 4. A comparison of imbalance and speedup when varying the number of processes.
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Fig. 5. A comparison of imbalance and speedup when increasing the number of tasks per node.

elapsed time in milliseconds (ms) as the runtime overhead of
each method. The runtime values for Q CQM1 k1, k2 and
Q CQM2 k1, k2 are divided into CPU and QPU measure-
ments. The significant CPU runtimes values highlight a con-
siderable overhead and latency compared to classical methods,
with a portion of this time dedicated to communication with
D-Wave’s Leap quantum cloud service.

VI. DISCUSSION

Based on the results from our experiments, the quantum-
based methods show interesting solutions, especially in solving
the LRP applied to task-parallel applications. Q CQM1 k1
returns equivalent or even better solutions for LRP, in which
the number of migrated tasks is reduced. Interesting to note is
that the results obtained using the CQM solver with fewer
qubits, but a higher number of inequality constraints (the
total number of constraints is the same) generally outper-
form those stemming from more qubits and fewer inequality
constraints. This observation is notable given the challenge
of representing inequality constraints effectively in quantum
formulations. However, the superior performance with fewer
qubits is expected, as it corresponds to a smaller search space.
Future work will explore the impact of the upper bound k of
migrated tasks and different problem formulations, as well as
the challenges related to runtime costs.

Regarding scalability, the number of qubits currently avail-
able in real devices is a challenge. In our formulation, the

HPC
Login
Nodes

Munich Quantum
Software Stack

(MQSS)
Quantum
Servers

Quantum
Devices

HPC
Compute
Nodes

Fig. 6. Overview of HPCQC integration system at LRZ.

number of required logical qubits is (M−1)2×(⌊log2(n)⌋+1),
where M is the number of processes and n is the number of
tasks per node. This challenge becomes more significant when
the number of tasks reaches up to millions or billions. Further,
noise and error mitigation models must also be considered as
we increase the problem size.

Finally, the design of HPC-Quantum Computing (HPCQC)
integration systems is a major point for further investigation.
Figure 6 shows our current overview of HPCQC integration at
LRZ. The HPC clusters have connections to quantum servers,
which are hosting quantum backend devices through a quan-
tum software stack known as the Munich Quantum Software
Stack (MQSS) [25]. This stack connects domain end users to
a variety of quantum devices and supports quantum circuit
optimization, compilation, and hybrid execution workflows.
The integration motivates a hybrid execution model of the
proposed quantum-based method in this paper. Concretely,
quantum devices are considered accelerators alongside HPC
systems. The hybrid model of our Q CQM* methods can be
extended to use gate-based quantum solvers.
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VII. CONCLUSION

In this paper, we presented a formulation for load rebalanc-
ing in HPC systems that is specifically designed for leveraging
quantum devices. Load rebalancing is an NP-hard problem that
can be modeled as a combinatorial optimization task, similar
to number partitioning. Our methods produced solutions that
are particularly valuable in guiding task migration strategies
that match or even surpass those from classical approaches like
Greedy, KK, and ProactLB. When task migration costs are a
key constraint, represented in our study by an upper bound
of k migrated tasks, we showed that hybrid classical-quantum
methods offered better guidance, resulting in more efficient
task migration. Overall, we highlighted the promise of hybrid
classical-quantum approaches and outlined the challenges and
future work toward advancing these models.
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APPENDIX

A. Artifact Description/Artifact Evaluation
In this paper, we present a formulation of the Load Rebal-

ancing Problem (LRP) that can be solved in a hybrid classical-
quantum solver. The formulation can be extended to work
with gate-based quantum solvers, as mentioned in Section VI
- Discussion of the paper. LRP revolves around the input: N
tasks in a task-based parallel application already assigned to
M processes running on distributed memory systems. The case
studies demonstrate:

• Each process is assigned an equal number of tasks, n,
where n×M = N ;

• the execution time value of a task defines load;
• Assuming that tasks in a process have a uniform load but

the task load values from different processes are different,
this leads to an imbalance.
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Iteration 1
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1.97 1.97 1.97 1.97 1.97
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2.81 2.81 2.81 2.81 2.81

Fig. 7. An example of load imbalance in the case of task-based parallel
applications.

For example, Figure 7 shows an imbalance case; note
that the load values per task of P1 and P2 are reused as
an illustration for the input format in Table VI in the next
Subsection B. Figure 7 does not map directly to Table VI to
avoid confusion. Generally, Figure VI is simply intended to
illustrate a real-world example of load imbalance at runtime.
There are 4 MPI processes; each is assigned 5 tasks with a
uniform load. The load per task in process 1 is assumed 1.87
(ms), and 1.97, 3.12, 2.81 for processes 2, 3, 4 respectively.
In overall, the total load values are 9.35, 9.85, 15.6, 14.05,
where process 3 has the maximum load. When tasks are
migrated appropriately, the maximum load value is reduced,
and we can obtain the balance. This is a simple example to
show the target of the LRP and how we can approach to
solve it.

We use two applications to generate the imbalance in-
puts: matrix multiplication (MxM) and sam(oa)2. They are
ported to task-based parallel applications by using Chameleon,
https://github.com/chameleon-hpc/chameleon. The number of
tasks and task lengths in MxM can be reproduced, follow-
ing the example repository https://github.com/chameleon-hpc/
chameleon-apps/tree/master/applications. For sam(oa)2, we re-
fer to the instruction at https://github.com/chameleon-hpc/
samoa-chameleon.git. In this paper, the logs, as well as
imbalance inputs, are already synthesized. The code reposi-
tory associated with this work is available at https://github.

com/ctminh/qulrb. Please note that the repository is actively
maintained and might be updated or improved over time as
new insights are gained and additional features are developed.
The repository is structured as follows:

• docs/: includes related documents and references.
• experiments/: includes log files from the experiments

of MxM and sam(oa)2 with Chameleon. In which, there
are different sub-folders corresponding to each experi-
ment group to show the synthesized inputs and outputs
for each test case in the paper. Furthermore, the scripts
for extracting input data, output data, and plotting are
also included.

• qubo/: includes our explanation and example for the
current CQM formulation of LRP. Also, this folder is
used for the working-in-progress QUBO formulation as
future work.

• src/: include the source code of classical algorithms
and the source of porting LRP to be run on a hybrid
classical-quantum solver.

• utils/: include related scripts for testing.

B. Input/Output Format

Each imbalance input is synthesized to a table and formatted
as a .csv file. Concretely, Table VI shows an input example
that is the content in the corresponding .csv file. Here, we
use the case of MxM with 100 tasks assigned per process,
where one process is spawned in a compute node. The
columns and rows labelled P1, P2, P3, P4 form a symmetric
matrix. Its diagonal indicates the original number of tasks in a
process. When tasks are migrated, these numbers are changed.
Accordingly, the total load values on column “L” will also be
changed. Alongside, column “w” denotes the load value of
each task per process.

TABLE VI
THE FORMAT OF IMBALANCE INPUT.

Process P1 P2 P3 P4 w L
P1 100 0 0 0 1.87 187.59
P2 0 100 0 0 1.97 196.68
P3 0 0 100 0 14.86 1485.99
P4 0 0 0 100 103.23 10322.68

For the output data, assuming we apply Greedy to solve
the input, the output is shown in Table VII. We keep the
table similar to the input format; the diagonal now indicates
the remaining number of original tasks on each process. For
example, at column “P1”, there are 25 remained tasks, and P1
migrates 25 tasks to P2, 25 to P3, and 25 to P4. The columns
“num total”, “num local”, “num remote” are used for cross-
checking the total number of tasks, local tasks (original tasks),
and remote tasks (migrated tasks or received tasks from the
other processes). Column “L” shows the new total load value
on each process.

According to the experiment groups in Section V of the pa-
per, there are 4 corresponding sub-folders at experiments/
that further consist of imbalance log files obtained from the
experiments with Chameleon, input/output data, and related
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TABLE VII
THE OUTPUT FORMAT AFTER REBALANCING, WHERE THIS CASE APPLIES

THE GREEDY ALGORITHM.

Process P1 P2 P3 P4 num
total

num
local

num
remote

L

P1 25 25 25 25 100 25 75 3048.24
P2 25 25 25 25 100 25 75 3048.24
P3 25 25 25 25 100 25 75 3048.24
P4 25 25 25 25 100 25 75 3048.24

Python scripts. In details, the 4 corresponding sub-folders
include:

• real_usecase_samoa/ points to the experiments in
Section V.C.

• varied_imb_ratios/ points to the experiments in
Section V.B.1)

• varied_num_procs/ points to the experiments in
Section V.B.2)

• varied_num_tasks/ points to the experiments in
Section V.B.3)

In each experiment group, the folders are structured by
cham_logs/ that contains the Chameleon logs where
we get the imbalance inputs based on the execution of
MxM or sam(oa)2 on HPC systems. input_lrp/ contains
the formatted inputs as .csv files, where the input val-
ues are extracted from the Chameleon logs (by using the
Python script, cham_log_parser.py). output_lrp/
contains the formatted outputs after running the rebalanc-
ing algorithms. After applying the rebalancing algorithms,
the summary table of all outputs can be collected using
extract_rimb_speedup.py.

C. Reproducibility of Experiments

The provided source code for classical algorithms
and quantum-based algorithms can be found in folder
src/. We keep the classical algorithms in sub-folder
classical_algorithms/, and the quantum-based algo-
rithms in sub-folder hybrid_quantum_algorithms/.

1) In classical_algorithms/, three classical algo-
rithms are provided by Python. They are invoked in
the main.py file. Corresponding to the experimental
use cases at experiments/, there are different bash
scripts to reproduce the results, including

• run_real_usecase_samoa.sh applies
to the imbalance input of sam(oa)2 (at
real_usecase_samoa/input_lrp) by
running on 32 processes, 208 tasks per
process, and the baseline of imbalance ratio
is 4.1994. All classical algorithms will be
called in this bash script. The results output at
real_usecase_samoa/output_lrp

• run_varied_imb_levels.sh
applies to the imbalance inputs at
varied_imb_ratios/input_lrp.
Accordingly, the results output at
varied_imb_ratios/output_lrp.

• run_varied_num_procs.sh is called and out-
puts the results similar to the above scripts.

• run_varied_num_tasks.sh is called and out-
puts the results similar to the above scripts.

2) In hybrid_quantum_algorithms/, we provide
a notebook file with instructions and steps to con-
nect and run the problem on the D-Wave CQM
solver. However, the access and computation time
should registered at https://docs.dwavesys.com/docs/
latest/handbook hybrid.html. The paper’s results from
CQM solvers are put in the sub-folder poc/ of
hybrid_quantum_algorithms/. There are two
outputs from the two versions of our quantum CQM
formulation, with qubit reduction and without qubit
reduction.

Please note that the results of using D-Wave’s CQM solver
to solve our LRP formulation are not deterministic. We ran
each experiment with the CQM solver at least three times.
While there is some variation from run to run, the results are
not significantly skewed. Therefore, in this paper, we select
the best results for the corresponding experiments.
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