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Abstract—Methods to mitigate the kernel launch overhead,
one of drawbacks of GPUs, were implemented to an overhead-
sensitive atmospheric model using OpenACC and CUDA and
were evaluated. OpenACC enables kernels to run asynchronously
in either one or multiple GPU queues. Moreover, CUDA allows
different loops to be collocated in one kernel by branching
operations based on block indices. While the default synchronous
execution on A100 GPU lagged behind the A64FX CPU in
strong scaling, the single-queue asynchronous execution reduced
the total model runtime by 37%, and the kernel fusion of the
core application component further accelerated the entire model
by approximately 10%. In overhead-sensitive applications, the
single-queue asynchronous execution is recommended because it
can be easily implemented and maintained. If a small number of
kernels are executed particularly frequently, it would be worth
the effort to eliminate synchronizations and introduce CUDA
Graphs, or bundle kernels using CUDA.

I. INTRODUCTION

GPUs and similar accelerators are becoming dominant in
supercomputers due to their high performances per cost or
power. A wide range of applications, from traditional ones to
the recently surging field of machine learning, are well-suited
to the highly parallel nature of these accelerators.

However, GPUs do exhibit some weaknesses. For instance,
GPUs typically execute applications as separate kernels in-
voked by host processors. Because it takes some time to launch
kernels [1], applications with a particularly large number of
iterations or timesteps may experience slowdowns due to ker-
nel launch overheads. Another limitation of GPUs arises from
their architecture, which is optimized for parallel processing.
When an application includes tasks that cannot be massively
parallelized, GPUs often underperform. Recently, products
featuring tight integration between host CPUs and accelerators
have emerged. In such products, it may be feasible to retain
some subroutines on CPUs without incurring excessive wait
times for host-device data transfers. However, even in such
tightly coupled processors, kernel launch overheads can still
slow down applications with a vast number of kernel launches.
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It is crucial to overcome such drawbacks of GPUs. By
adapting as many HPC applications as possible to GPUs,
resources can be more focused on GPU-equipped supercom-
puters, which benefits GPU-optimal applications as well. In
pursuit of this goal, an overhead-sensitive atmospheric model
was ported to GPUs and methods to mitigate overheads were
evaluated in this study.

Multiple atmospheric models have been ported to GPUs.
Some studies confined their focus to resource-intensive sub-
routines [2]–[7] due to the extensive codebase of an entire
atmospheric model, while others managed to port the entire
model [8]–[12].

Previous studies have addressed the overheads of GPU ker-
nel launches and synchronizations. For iterative solvers, ker-
nels can be radically asynchronized, which compromises the
accuracy of individual iterations [13]. Even if more iterations
are required for convergence, the speedup by asynchronous
execution may outweigh the increase in iterations, signifi-
cantly reducing the total time for convergence. Conversely,
most operations in atmospheric codes need to be executed
accurately to adhere to conservation laws. Another strategy
called persistent kernel [14] involves running the main loop
inside a huge CUDA [15] kernel, drastically reducing the
number of kernel launches. In this approach, all subroutines
inside the main loop must be ported to CUDA. However,
if the application supports CPU machines as well, such a
CUDA-based approach forces developers to maintain multiple
sets of codes for CPUs and GPUs. Hence, a single set of
directive-based codes is preferable to CUDA-based codes in
large-scale applications supporting a wide range of processors.
NVIDIA developed another framework called CUDA Graphs
[16], with which a set of kernels can be bundled as a “graph”
and reissued quickly. Kernel launches in existing codes can be
captured and transformed to graphs objects, which have less
overheads than normal kernels. Both OpenACC and CUDA
kernels are supported by CUDA Graphs. However, the target
code may need revisions because all operations in the captured
code must be asynchronous according to the CUDA Graphs
specification. Hence, it takes some effort to deploy CUDA
Graphs to large-scale applications, necessitating quantitative
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Fig. 1. Overview of the SP-MIROC model. tEND is the simulation period, which is 10 days in the whole-model evaluation in this study.

evaluation of performance benefits before adoption. Finally,
asynchronous kernel execution supported by OpenACC [17]
has been employed by atmospheric models [10], [12]. While
this approach is expected to help hide launch overheads, its
quantitative contribution to performance has been scarcely
documented.

The purpose of this study is to provide developers of large
applications with insights to mitigate kernel launch overheads.
An atmospheric model, sensitive to kernel launch overheads,
was ported to GPUs, with or without methods to mitigate
kernel overheads. The performance benefits for both the entire
application and a core component were quantitatively evalu-
ated. Finally, overhead mitigation methods suitable for existing
large-scale applications were discussed.

II. BACKGROUND

The target application in this study is SP-MIROC [18], an
atmospheric model for decadal global simulations. This model
employs a strategy known as super-parameterization or multi-
scale modeling framework [19]–[21]. In a super-parameterized
model, two models with distinct horizontal resolutions are
integrated to conduct a multi-scale simulation (Fig. 1). A low-
resolution model encompasses the entire simulation domain,
typically global, and simulates large-scale circulations. The
other component, a high-resolution regional model, simulates
small-scale activities such as convective clouds and turbulence,
and conveys their large-scale impacts to the low-resolution
component. The high-resolution component simulates a mul-
titude of small two-dimensional domains, each coupled with a

unique location of the low-resolution component. By simulat-
ing the regional domains in two dimensions rather than three,
the total computational cost is significantly reduced compared
to a monolithic high-resolution model covering the entire
globe. Regional domains do not interact with each other and
communicate with the large-scale component infrequently to
exchange heat and moisture. This allows super-parameterized
models to execute decadal global simulations within reason-
able resource constraints. Furthermore, explicit simulation of
cloud activities, performed by the high-resolution component,
enhances the representation of impactful meteorological phe-
nomena compared to traditional low-resolution climate models
[12], [18], [22]. In summary, super-parameterized models
are both lightweight enough for long-term simulations and
capable of representing convection-sensitive phenomena more
effectively than traditional low-resolution climate models.

SP-MIROC is composed of two primary components written
in Fortran. The first is a global model called MIROC6 [23]
used for long-term climate simulations [24]. The second is a
regional model called SCALE-RM v5.3.6 [25]–[27] modified
to perform two-dimensional simulations instead of three. In
this study, SP-MIROC operates exclusively in a specific con-
figuration employed by [18], despite its ability to run in var-
ious horizontal resolutions. The global component comprises
256 × 128 horizontal grids and 40 vertical layers. There are
2048 regional domains, each with 32 horizontal grids spaced
every 2 km and 39 vertical layers. Each regional domain is
coupled with a set of 4× 4 columns in the global component,
exchanging heat and moisture. Although coupling a regional
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domain to a single column of the global model is more
straightforward, this “blockwise coupling” helps reduce the
resource usage drastically with only minor impacts on scien-
tific performances. The time step of the regional component
is 12 s and the global-regional coupling is performed every
600 s. In an 16-GPU run, which is considered as the optimal
configuration for SP-MIROC on A100 GPUs (see Section
V-B), the coupling process accounted for 2.2% of the total
simulation time.

Both SP-MIROC components possess a dynamical core that
solves the primary equations of fluid dynamics. They also
include subroutines for tracer advection and various subgrid
parameterizations (Fig. 1). The dynamical core of SCALE-
RM is executed most frequently per timestep because it is
divided to three substeps, each of which features a 4th-order 4-
step Runge-Kutta method invoking the actual dynamical core
four times. It accounts for approximately 40% of the total
runtime, while the remaining 60% is shared by many other
kernels. When ported to GPUs, it contains 32 kernels and can
be divided into 9 groups of data-independent kernels.

The hybrid nature of super-parameterization allows for long-
term high-resolution simulations but also makes the applica-
tion sensitive to overheads. The timestep of the high-resolution
component must be small to satisfy the the Courant-Friedrichs-
Lewy stability condition. In this work, the timestep of SCALE-
RM is configured as 12 s. To simulate years of atmospheric
flows per day, which is necessary for climate studies, each
timestep computation must be as quick as 10 ms. Because
more than 500 kernels are present in a timestep, kernels run
only for an average of 20 µs, which is short enough to expose
launch overheads.

III. GPU PORTING AND OPTIMIZATION

The SCALE-RM codes were ported to GPUs primarily
using OpenACC directives, while the MIROC6 codes were
left on CPUs due to the lightweight nature of the global
component. Even though the mainstream SCALE-RM codes
are being ported to GPU as well [7], the SP-MIROC version
was ported independently of the main branch for further
optimization. All array operations were ported to GPUs,
eliminating host-device array transfer in the main loop. The
SCALE-RM codes contain complex loops with long bodies,
which could not be adequately parallelized due to a shortage
of registers. To ensure sufficient parallelization, such loops
were divided into simpler and more tightly nested ones.
Although the SCALE-RM codes were modified to simulate
two-dimensional fluid dynamics, kernels were implemented
as collapsible three-dimensional loops handling all regional
subdomains assigned to a GPU in parallel. In a 16-GPU
configuration, each kernel handles 128 regional subdomains,
and the typical CUDA grid size was 1000.

As will be demonstrated, the synchronous execution of GPU
kernels, referred to as the “Sync” implementation in this study,
results in a significant portion of the runtime consumed by
kernel overheads. Therefore, the Sync approach, which is the
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Fig. 2. Hiding kernel launch overheads using asynchronous execution.
Rectangles represent individual kernel executions. Kernels are grouped by
colors and black lines. Kernels in a group are data-independent, while kernels
in different groups have data dependency. Kernels merged together in the A-
Fused configuration are grouped by gray broken rectangles.
In the Sync configuration, large gaps are present between executions due to
kernel overheads. Such gaps will be partially hidden in the A-Single approach.
Multiple kernels are executed concurrently in A-Multi to hide overheads, while
kernels are merged to fewer ones in the A-Fused implementation.

default behavior in OpenACC and OpenMP target [28], is not
suitable for SP-MIROC.

This study compares the performance of three methods de-
signed to hide and/or reduce kernel launch overheads. The first
method, A-Single, hides launch overheads by launching GPU
kernels asynchronously in one GPU queue (Fig. 2) using the
OpenACC’s async(0) clause. The second method, A-Multi,
launches kernels asynchronously in multiple queues (Fig. 2)
using the OpenACC async clause without an argument. The
third method, A-Fused, merges data-independent OpenACC
kernels to fewer CUDA kernels (Fig. 2).

In the A-Single approach, issues of data dependency do
not arise as kernels are executed sequentially. Therefore, syn-
chronization is only required before MPI communications and
interactions with CPU codes. This makes it easy to implement
and maintain A-Single, even for a large codeset. This approach
necessitates language support for explicit queue assignment or
an option to run kernels asynchronously with respect to CPU,
but only in one GPU queue. While OpenACC’s async(0)
clause realizes this, the nowait clause in OpenMP 5.2 [28]
does not support such queue management. Hence, the A-Single
approach is not suitable for existing versions of OpenMP
target.

The A-Multi approach involves concurrent execution of
multiple kernels. This method is more portable because it
can be implemented in both OpenMP and OpenACC. Fur-
thermore, the computation may be accelerated beyond that
in A-Single because GPU resources unused by one kernel
can be utilized by another. However, the concurrent kernel
execution introduces issues of data dependency. Application
developers must ensure that kernels are data independent or a
synchronization directive is inserted to resolve the dependency.
This forces developers to inspect all kernels carefully, which
can be quite painful for a large application. Furthermore, any
modification of the source code after the initial GPU porting
prompts a reevaluation of the data dependency. Hence, the
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A-Multi approach considerably reduces the maintainability of
the application. Moreover, synchronizations required to resolve
data dependencies have some overheads, which offset the
speedup. Nevertheless, an A-Multi version of the SCALE-RM
dynamical core was implemented in this study to quantitatively
evaluate the performance benefit.

The A-Fused approach, while being the most costly in
terms of implementation, is expected to provide the greatest
performance benefit. CUDA kernels are parallelized at two
levels: blocks and threads. While divergent branching between
threads in a block results in a performance penalty, branching
between blocks incurs less cost. Therefore, operations can be
switched with respect to CUDA block numbers to run different
tasks in one kernel. In this way, data-independent OpenACC
kernels can be bundled to fewer CUDA kernels. In this work,
no additional CUDA-specific optimization, such as the use of
shared memory, was implemented to focus on the overheads.
Single-queue asynchronous execution is suitable for this ap-
proach because most of the merged kernels are data dependent
to each other. In this study, an A-Fused version of the SCALE-
RM dynamical core was implemented using the single-queue
approach. In general, the directive-based approach is preferred
in atmospheric models for maintainability. However, using
CUDA for the dynamical core may be justified if it constitutes
only a small portion of the entire source code and a reasonable
speedup is achieved.

Variants of A-Single and A-Fused with CUDA Graphs
were also implemented only for the SCALE-RM dynamical
core. Codes of the dynamical core were revised to comply
with the constraints by CUDA Graphs; synchronizations were
eliminated and async clauses were applied to all operations
including !$acc data directives. Versions using CUDA
Graphs will be referred to as A-Single-G and A-Fused-G in
this paper.

IV. PROCEDURES FOR THE PERFORMANCE EVALUATION

The performance of the GPU-ported SP-MIROC was evalu-
ated in two aspects: the dynamical core and the whole model.
The dynamical core experiment focused on the performance
on GPUs in various kernel launch configurations and problem
sizes. In contrast, the strong scaling of time and energy to
solution was compared in the whole-model experiment.

Four types of computers, equipped with either Fujitsu
A64FX CPUs, NVIDIA A100 GPUs, NVIDIA H100 GPUs,
or an NVIDIA GH200 processor, were used for the per-
formance evaluation. One is the Odyssey subsystem of the
Wisteria/BDEC-01 supercomputer equipped with Fugaku-
compatible A64FX CPUs. Odyssey consists of FX1000 nodes,
each of which contains one A64FX CPU. The A100 GPUs
are from the Aquarius subsystem of Wisteria/BDEC-01. One
GX2570 M6 node in the Aquarius cluster contains two sockets
of Xeon 8360Y CPU and eight water-cooled A100 40GB
GPUs. The H100 GPU and the GH200 superchip are contained
in a DELL PowerEdgeXE8640 server and an ARS-111GL-
NHR server, respectively, and are air-cooled. Codes for A64FX

were compiled using Fujitsu Development Studio, while codes
for NVIDIA GPUs were compiled using NVIDIA HPC SDK.

As stated earlier, the dynamical core experiment targets
behaviors in various kernel launch configurations. Therefore,
performances were evaluated only on GPUs (i.e. A100, H100,
and GH200). To focus on the kernel launch overheads, sub-
routine calls were manually inlined in the dynamical core
experiment. The timelines of kernel executions were retrieved
using the Nsight Systems profiler. Preliminary measurements
indicated that collection of kernel information using Nsight
Systems results in a small overhead of a few microseconds
per kernel, varying among launch strategies. In addition, the
total elapsed time of the dynamical core shown by Nsight
Systems was approximately 10% less than actually measured
for unknown reasons. This makes it impossible to directly
measure exact kernel overheads using the profiler. Hence, the
runtimes of the entire dynamical core were measured without
profiling kernels as well, and the timelines retrieved by Nsight
Systems were rescaled to the runtimes without the profiler.
The number of two-dimensional domains to simulate per GPU
ranged from 1 to 1024. The dynamical core was run 101 times
for each domain number and the timelines of the last 100 runs
were averaged.

For comparison, an OpenMP-offloaded version of the dy-
namical core was tested on AMD MI210 and Intel Data Center
GPU Max 1100. AMD ROCm version 6.0.2 and Intel oneAPI
version 2024.2.0 were used to compile the codes. However, it
failed to perform reasonably on these devices. Asynchronous
offloading resulted in a segmentation fault on the Data Center
GPU Max 1100. Even the smallest kernels took around 300 µs
on MI210, which implies approximately 30 times the overhead
compared to HIP codes on MI210 or OpenACC codes on
NVIDIA GPUs. In contrast, the OpenMP version on A100
compiled with NVIDIA HPC SDK did not encounter such fatal
problems, albeit twice to three times slower than the OpenACC
version. Therefore, the OpenMP implementations by AMD
and Intel used in this study were assumed to be premature
for overhead-sensitive applications, and detailed evaluation on
these accelerators was not conducted in this work. Perfor-
mance improvements are expected as the implementations of
OpenMP target by these vendors mature in the future.

The whole-model strong scaling experiment targets the full
combination of the MIROC6 and SCALE-RM components
in the standard SP-MIROC resolution. See [18] for meteo-
rological details (e.g. parameterization schemes and boundary
conditions). Simulations were performed on A64FX and A100
in Wisteria/BDEC-01, which supports the acquisition of power
usages of the whole node. Ten-day simulations were performed
and the time to solution was compared. The total power
consumption of the nodes used was multiplied by the runtime
to yield the energy to solution. Power consumed by the host
modules (e.g. CPUs and main RAMs) as well as that of GPUs
was included in the A100 runs. The program codes for the
whole-model experiment is meant for long-term development
and maintenance. Hence, the subroutine inlining employed
in the dynamical core experiment was not performed in the
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Fig. 3. Timelines of kernel executions in the 512-domain dynamical core
on GH200. Rectangles represent individual kernel executions. Kernels are
grouped by colors and black lines. Kernels in a group are data-independent,
while kernels in different groups have data dependency. As stated in Section
II, there are 32 kernels divided to 9 groups.

whole-model experiment. As a result, many kernels in the
dynamical core were contained in separate subroutines.

Because there are 2048 regional domains in the standard
SP-MIROC, the number of processes assigned to the SCALE-
RM regional component was selected from divisors of 2048.
In the A64FX CPU run, 512, 1024, or 2048 processes were
assigned to SCALE-RM. Each process occupied one A64FX
core. Sixteen processes were assigned to the global component
when the regional component has 512 or 1024 processes. In
contrast, 32 processes were allocated for the global component
coupled to 2048 regional processes to catch up with the fast
regional simulation. Hence, the total numbers of SP-MIROC
processes were 528, 1040, or 2080, and were accommodated in
11, 22, or 44 A64FX CPUs. As for the A100 experiment, 4, 8,
16, or 32 GPUs were committed for the regional component.
Each GPU was driven by one host process of the regional
component. The number of processes in the global component
was 16 for the 4-GPU or 8-GPU runs, and 32 for the 16-GPU
and 32-GPU runs. All global processes ran on the host Xeon
CPU along with regional host processes. As introduced earlier,
one Aquarius GX2570 M6 node has 8 GPUs, which cannot
be fully occupied by the 4-GPU run. Therefore, the energy
usage of the 4-GPU run was derived as the total node energy
subtracted by the idle energy drain of the unused 4 GPUs.

V. EXPERIMENTAL RESULTS

A. Performance of the dynamical core

Fig. 3 presents timelines of kernels in the dynamical core
simulating 512 domains on GH200. It is evident that the
default synchronous execution (Sync) results in substantial
gaps between kernel executions. The gaps shrink consid-
erably in the A-Single configuration. The A-Multi and A-
Fused configurations further accelerate the dynamical core by
concurrently running multiple kernels.

On NVIDIA GPUs, asynchronous execution consistently
reduces overheads in a wide range of problem sizes and GPU
types (Fig. 4). Even when the problem size approached zero,
the Sync version took 380–460 µs. As there are 32 kernels
in the dynamical core, the kernel overhead is approximately
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and the others to better illustrate overheads in near-zero problem sizes.
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Fig. 5. Same as Fig. 4, but for comparison against implementations with
CUDA Graphs. Dotted lines represent implementations with CUDA Graphs,
while solid lines represent ones without CUDA Graphs.

12 µs. While the overhead was shorter in newer GPUs, the
reduction was modest even in the tightly-coupled GH200
processor. In contrast, the A-Single and A-Multi runs finished
in 180–330 µs when the problem size was close to zero. Hence,
the overhead was reduced to approximately 8 µs per kernel.
Although the A-Multi version outperformed A-Single for most
of the problem sizes (Fig. 4), the difference was less than 1
µs per kernel. As the A-Multi approach considerably reduces
the code maintainability, A-Single would be preferable to A-
Multi for large-scale applications. The near-zero-size elapsed
time was further reduced to 130–240 µs in the A-Fused run,
despite the introduction of branching in the merged kernels. A-
Fused consistently outperformed both A-Single and A-Multi.
Hence, it may be worth the effort to implement A-Fused to a
small amount of code invoking kernels particularly frequently.

The use of CUDA Graphs further accelerated the dynamical
core (Fig. 5). However, the contributions of CUDA Graphs
to A-Single and A-Fused were modest. On GH200, where
the acceleration was the largest, the overhead of A-Single
per kernel was reduced from 5.6 µs to 4.4 µs. In contrast,
on an H100 PCIe, A-Fused-G was slightly slower than A-
Fused, indicating that the benefit of CUDA Graphs may vary
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depending on environment. Most of the launch overheads were
probably hidden in A-Single and A-Fused, leaving relatively
a small room for improvement by CUDA Graphs. Therefore,
in large-scale applications where maintainability is prioritized,
CUDA Graphs would be suitable only for sets of kernels that
are invoked particularly frequently.

B. Performance of the entire SP-MIROC model

Fig. 6 illustrates the strong scaling of the entire SP-MIROC.
While the CPU version and the asynchronous versions scale
well up to 44 CPUs or 16 GPUs, the Sync implementation
failed to scale adequately beyond 8 GPUs. In the 16-GPU
cofiguration, the A-Single asynchronous execution acceler-
ated the simulation by 37% compared to the Sync run. The
performance benefit of A-Single was larger in this whole-
model experiment than in the dynamical-core-only expeirment
(Section V-A) because subroutine inlining was not performed
in the whole-model experiment, exposing subroutine over-
heads as well as kernel latencies in the Sync run. The kernel
merger using CUDA (A-Fused) provided additional speedup
of 10% compared to the A-Single run. As the dynamical core
constitutes only a small portion of the entire SP-MIROC code,
it would be justified to compromise the single code principle
and employ CUDA for the dynamical core.

Asynchronous simulations on GPUs consumed much less
energy than on A64FX (Fig. 7). The A-Single and A-Fused
runs consumed around 2.5 MJ, which is approximately 40%
less than the A64FX run. In the Sync run, overheads resulted in
an increase of the energy consumption especially when larger
number of GPUs were committed.

Considering both the time to solution and energy to solution,
the optimal number of A100 GPUs in the standard SP-
MIROC configuration is 16, which is too small for large-
scale supercomputers. However, the GPU-ported SP-MIROC
is expected to scale well to larger machines in other con-
figurations. As shown in Fig. 1, the GPU-ported SCALE-
RM component scarcely interacts with other processes. There
are no communications among GPUs and the global-regional
coupling is infrequent (600 s) compared to the SCALE-RM
timestep of 12 s. Hence, the weak scaling of SP-MIROC is
expected to be almost perfect, although actual tests could
not be performed due to the small scale of the Aquarius
system. Assuming that enough resources are available, there
are larger-scale SP-MIROC applications that are meteorologi-
cally important. For example, refining the horizontal resolution
of the global component helps better reproduce activities of
an impactful meteorological phenomenon called mesoscale
convective system (MCS) [29]. If the nominal grid spacing of
the SP-MIROC global component were refined from 156 km
to 19.5 km, the number of regional domains would increase
64 times. Changing from 4 × 4 blockwise coupling to 2 × 2
would further multiply the number of regional domains by 4.
In such a large-scale configuration, 4096 A100 GPUs would be
utilized efficiently, simulating years of global MCS activities
per day.
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VI. CONCLUSION

As GPUs become dominant in top-tier supercomputers, it
is increasingly important to adapt as many HPC applications
as possible to GPUs. However, GPUs often exhibit significant
overheads when launching kernels, which can slow down some
HPC applications. This study focuses on porting and tuning an
atmospheric simulation model, SP-MIROC, which is sensitive
to kernel overheads, for GPU-equipped computers.

SP-MIROC, written in Fortran, consists of a low-resolution
model running on CPU cores and a high-resolution model
ported to GPUs using OpenACC. Kernels in the high-
resolution component were launched asynchronously with
respect to host processes, but in single queue per GPU,
using the OpenACC async(0) clause. For the dynamical
core subroutine, which is invoked the most frequently in SP-
MIROC, multiple approaches were implemented. These in-
clude the default synchronous execution (Sync), single-queue
asynchronous execution (A-Single), multi-queue asynchronous
execution (A-Multi), and fusion of OpenACC kernels into
fewer CUDA kernels (A-Fused). In addition, variants of A-
Single and A-Fused with CUDA Graphs were implemented.

As shown in Section V, the A-Fused version was the fastest,
closely followed by the A-Multi and A-Single approaches. In
an run using 16 A100 GPUs, A-Single reduced the total model
runtime by 37%, and A-Fused further accelerated the entire
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model by approximately 10%. The asynchronous approaches
hide overheads of subroutine execution as well as kernel
launches. While the use of CUDA Graphs further accelerated
A-Single and A-Fused, its performance benefit was only 1.2 µs
per kernel or less, likely because most of the overheads were
already hidden in the A-Single and A-Fused implementations
without CUDA Graphs.

Considering the fact that the kernel fusion requires target
loops to be rewritten to CUDA, rather than inserting directives,
it would be worth the effort only if a small amount of code
accounts for a large portion of the runtime. Similarly, CUDA
Graphs would be beneficial for sets of kernels that are invoked
frequently. However, not all subroutines in applications may
be suitable for CUDA Graphs because no synchronization is
allowed in a graph. In contrast, single-queue asynchronous
execution requires minimal additional effort for an application
ported to GPUs using OpenACC. As no kernels are executed
concurrently, no issues arise from data dependencies between
kernels. In addition, one can synchronize the kernels at any
points desired. Therefore, for overhead-sensitive applications,
launching kernels asynchronously in a single queue is recom-
mended.
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