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Abstract—In this paper, we address the challenges in achiev-
ing sustainable data-driven efficiency by providing a detailed
exploration of the end-to-end operational data analytics (ODA)
framework that evolved through two generations of supercom-
puter systems at the Oak Ridge Leadership Computing Facility
(OLCF). This framework addresses large data streams ingested
from heavily instrumented HPC environment that accumulates
multi-terabytes per day. We outline the multifaceted data life
cycle across HPC procurement, operations, and research & devel-
opment, identifying key obstacles and design decisions that shape
effective strategies in building and supporting data pipelines end-
to-end. By sharing key insights and lessons learned from our
experience, we offer recommendations for the HPC community
on enabling sustainable operational data analytics and beyond.
Our contributions aim to bridge the gap between potential
and real benefits of operational data, guiding future efforts
towards integrated and sustainable operational intelligence in
high-performance computing environments.

Index Terms—Operational Data Analytics, HPC Post-Exascale
Challenges, Monitoring, Telemetry, Data Analytics, Machine
Learning Applications, Visual Analytics, Data Governance

I. INTRODUCTION

The increasing complexity of Exascale high-performance
computing (HPC) systems, coupled with the diminishing
performance gains per watt and the need for sustainability
through carbon emission accountability, introduces significant
operational challenges. Operational data is a crucial foundation
in enabling continuous improvements towards reliable, safe,
and efficient resource usage in the face of such challenges.
Consequently, leading HPC sites are turning to operational
data analytics (ODA) to navigate these challenges effectively
[1]. The advancements in big data, data science, and machine
learning across various domains offer promising opportunities
for enhancing data-driven operational efficiency in HPC envi-
ronments.

Despite the growing reliance on ODA to navigate the
increasing complexities, significant barriers hinder its effective
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use. The volume of data generated and collected by HPC sites,
presents a daunting challenge in managing and extracting ac-
tionable insights essential for enhancing operational efficiency
and planning future systems. Additionally, disjointed efforts
and a lack of cohesive long-term integration strategies further
widen the gap between the potential benefits and the actual
realization of the value of ODA.

There is an urgent need to address these challenges and shift
towards a more integrated and effective ODA strategy in HPC.
Data usage in HPC operations is lagging behind in contrast to
other sectors [2] that thrive on data-driven methodologies such
as internet search [3], cloud data centers [4], social-network
services [5], ride-share industry [6], [7], and self driving [8],
[9]. Nonetheless, there are opportunities to develop new strate-
gies that account for the unique operational complexities of
HPC.

In this paper, we describe the design and execution of
an end-to-end operational data analytics (ODA) framework
at an open science HPC facility, the Oak Ridge Leadership
Computing Facility (OLCF). This framework serves as a cen-
tralized system for processing operational data from multiple
supercomputer generations, handling 4.2 to 4.5 Terabytes of
data daily across the HPC data center. It meets various organi-
zational needs for operational data, from system administration
to research and development, enabling holistic, data-driven
strategies in addressing Exascale-era complications in HPC
operations.

Throughout this exploration, we share our experiences and
lessons learned from deploying this framework in an open
science HPC user facility over two supercomputer gener-
ations, Summit and Frontier. This study provides insights
and recommendations for navigating the unique challenges
of implementing ODA within HPC environments. Our key
contributions are as the following:

End-to-end data life cycle in the context of HPC op-
erational efficiency: We report the multifaceted, end-to-end
nature of the data life cycle within an HPC organization that
supports generations of HPC systems. Teams from various
domains contribute different viewpoints and use cases, leading
to multiple phases for the same data source.

End-to-end framework for ODA: We detail the imple-
mentation of the framework to facilitate sustainable ODA
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TABLE I
AREAS OF OPERATIONAL DATA USAGE IN A HPC ORGANIZATION

System Management
System
Administration

System performance, stability and reliability en-
surance: compute, interconnect, storage

Facility
Management

Reliable and energy efficient power and cooling supply
system design and operations

Cyber Security Detection, diagnosis and prevention of security issues
Operations
User Assistance Diagnostics for swift troubleshooting and solutions
Administrative
Program Man-
agement

Resource allocation, coordination, and reporting to
sponsors

Job Scheduling Job execution priority adjustment based on program
needs and user requests

Procurement
System Design Technology integration, tuning, testing, and projection

for future systems
R&D / Cross Cutting Thrust Areas
Performance Performance optimization, tuning
Reliability Reliability projection and prediction
Applications Runtime performance monitoring and optimization,

tuning, energy efficiency
Energy
Efficiency

Energy usage optimization from various layers of an
HPC data center

from data ingestion to application. Our discussion covers the
technical frameworks employed, alongside the essential policy
and life cycle enhancements that streamlined data utilization
and adoption across the organization.

Recommendations to the community towards the future:
Through our exploration of data life cycle and support infras-
tructure, we share key insights from the process of enabling
ODA across two high-ranking, large-scale HPC systems.

II. BACKGROUND AND MOTIVATION

A. Operational Data Analytics from Large-Scale HPC Sites

Amidst the pursuit of exascale computing, there is a notable
shift towards ODA marking a transition from traditional mon-
itoring to a more integrated approach in handling operational
data [1]. ODA represents an evolved framework that supports
a common infrastructure, enabling organization-wide data col-
lection, engineering, and distribution [10]. This paradigm not
only caters to the three Vs of Big Data—volume, velocity, and
variety—but also facilitates a wide array of use cases through
its capabilities [1], [11]–[16]. Such systems have sparked sig-
nificant interest in new, data-driven operational improvements
and have opened avenues for research innovations, particularly
the application of machine learning algorithms on operational
data [17]–[21].

B. Operational Data at OLCF

The Oak Ridge Leadership Computing Facility (OLCF)
serves the DOE Office of Science by providing high-end
HPC systems for large-scale computational tasks that address
major research areas like advanced scientific computing, basic
energy, biological and environmental, fusion energy, high
energy physics, and nuclear physics. Managed and operated
by a dedicated HPC organization, the OLCF plays a pivotal
role in propelling scientific progress with its generations of

top-tier HPC systems. Each system debuted at the topmost
ranks of the Top500 list [22].

Over its two-decade journey towards exascale computing,
the OLCF has faced challenges in heterogeneity, scale, and
operational complexity. Operational data is used to meet these
challenges and support its mission to advance scientific knowl-
edge. Table I illustrates the multifaceted usage of operational
data by the HPC organization which serves many purposes:
addressing operational demands and supporting HPC research
objectives aligned with its mission. The diverse use of data
is powered by data streams emitted from many parts of the
organization, including data from scientific workloads and
usage patterns that drive generations of HPC systems.

C. Challenges in Making Operational Data Work for Us

Heterogeneous, continuous use of streamed data in the
organization requires new perspectives on operational data.
Data is immediately valuable upon creation, necessitating that
data consumers process it in real-time, rather than waiting
for the entire dataset upon system decommission. Moreover,
the data outlives its originating system and is crucial for
planning future generations of supercomputers. The increasing
size, complexity, and diversity of these data streams render
traditional management approaches by system administrators
alone as a side-job impractical.

The proliferation of open-source tools has significantly im-
proved data collection [1]; however, the operationalization of
this data across organizations remains a substantial challenge.
Despite abundant data acquisition, there is a notable gap in the
end-to-end understanding of how the data is used, resulting
in the accumulation of unused data and uncoordinated efforts
that fail to deliver the right kind of data for operational
use. Technical issues, such as inadequate tools for diverse
data usage needs and difficulties in making large, complex
datasets accessible, exacerbate these challenges. Additionally,
non-technical barriers like policy enforcement and compliance
further delay the process from data ingestion to actionable
insights.

III. OVERVIEW

In addressing such challenges, our overarching aim is to
elevate the use of operational data within the supercomputing
life cycle, treating it as essential rather than optional in an
HPC organization. We focus on the end-to-end considerations
of ODA to ensure that every facet of data utilization is
optimized, empowering the entire organization in the process.
The following are the major considerations we made in this
end-to-end effort:

• Reliable source of data: singular, trusted, stable location
for managing operational data in the organization.

• Streamlined data acquisition and usage: systematic
engineering, policy, and life cycle support for data ac-
quisition and usage.

• Accelerated, heterogeneous use of streaming data: ac-
celerating data life cycle by consolidation of high-impact
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Fig. 1. End-to-end of the data life cycle is formed around operational control
feedback loop handling data streaming from the HPC system

data identification, data management, data processing,
and data publishing efforts.

• Sustainable, reliable, and reproducible operational
impact: enable organizational data usage through well-
canned applications and services implemented on top of
repeatable, sustainable industry best practices.

These considerations focus on refining a unique, yet widely
applicable, data life cycle in HPC ODA (Figure 1). This life
cycle centers around a manual operational feedback control
loop. This loop is powered by batches of data generated from
real-time data streams, which are then shared internally within
the organization and externally with the HPC community.
Sections IV to IX explore the challenges and insights of each
key stage, aiming to enhance our understanding of HPC ODA
and identify opportunities to accelerate the iterations.

IV. DATA COLLECTION

Data collection efforts are driven by topical Subject Matter
Experts (SMEs) or project Principal Investigators (PIs) col-
laborating with system owners with the goal of enhancing
performance, reliability, and energy efficiency. The process for
developing data streams is depicted in Figure 2. This process
begins with a data collection plan informed by experiences and
use cases with prior systems very early in the process. This
plan involves engineering and refining the collection process
for broader operational use.

A. Multi-source Multi-use Nature of Operational Data

Data collection faces challenges due to the prototypical
nature of our systems. Securing vendor cooperation for un-
planned sensor implementation can be difficult. Additionally,
there is a trade-off between minimizing system overhead and
ensuring the quality of signals and features at scale. This
balancing act is often constrained by the available technologies
for data extraction and delivery. Vendor-supplied technology
plays a crucial role often requiring iterative communication
between subject matter experts, system administrators, and
vendors to enable data streams that are sufficiently usable
downstream but within acceptable overheads of the system.
These issues are mitigated by leveraging lessons from previous
generations and optimizing sensor data collection for future
systems, but consequently, takes time due to end-to-end trial
and error.

Figure 3 illustrates the current status of data stream develop-
ment throughout the organization for the past two generations
of supercomputers expressed in terms of the stages depicted
in Figure 2 as a degree of data usage readiness at the current
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Fig. 2. Sensor data stream establishment and its usage is driven by use cases
and matures over time (i.e., L0 to L5) impacting future operations
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Fig. 3. Data requirement, development in various areas: maturity of data
usage across systems in each cell (left: Mountain, right:Compass) expressed
in L0 ∼ L5 as in Figure 2. Boldface outline is where the teams behind an area
(X-axis) is responsible of producing the type of data (Y-axis) as the owners.

date. Critical data sources (X-axis) are primarily generated in
the system management area to meet immediate operational
requirements, yet these data streams hold value for numerous
other areas as well (Y-axis). Despite the necessity for multiple
data streams outside of system management, there remains a
gap in achieving the full readiness and utility of these datasets
across various organizational domains.

B. SME or PI Driven Data Stream Development

In addressing these challenges, our approach is to have
topical SMEs across different areas proactively ensure that
necessary capabilities and technologies are considered early
in procurement processes. These activities include the robust
development and demonstration of use cases outside the im-
mediate system management scope, directed both at system
owners and the vendor community. It also includes identifying
and embracing innovative approaches in data extraction and
delivery mechanisms (i.e., monitoring infrastructure) to ensure
the delivery of sensor data is guaranteed outside of the system.
This is especially true for data collection which can be too
invasive to the system. New approaches such as fully lever-
aging the out-of-band data sources [23] via the management
network [24], [25] or leveraging per-job instrumentation based
on technologies such as Darshan [26] has been successfully
employed to mitigate such issues.

Lessons Learned: Data stream development is a non-
trivial effort that should be planned ahead and coordinated
by capturing the future and current use cases and needs
from various parties in the organization. To guarantee
success, responsible topical SMEs or PIs should engage
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with vendors as early as the prior generation of the system
and ensure that data stream capabilities exist in the vendor
technology offering and see through the delivery of data.

V. DATA ENGINEERING AND DATA MANAGEMENT

The matrix between the multifaceted use of data streams
from various areas (Figure 3) illustrates the complex relation-
ship between data producers and consumers. To manage this
complexity, we have adopted an hourglass-type architecture
that introduces a multi-tenanted, centralized data management
and engineering infrastructure. Based on a deep understanding
of the end-to-end process of data stream development to
data artifact usage, this infrastructure has evolved into an
optimized, flexible, self-service, one-stop shop for various staff
projects that need data, storage, and the compute power to
handle the three Vs of big data.

A. Large Data Flows and the Anatomy of ODA Data Pipelines

Figure 4-b) illustrates the common anatomy of ODA queries
or data pipelines conceptually broken down in terms of SQL
clauses regardless of the actual implementation. Through the
pipeline stages, data is refined through “Bronze”, “Silver”, and
“Gold” states as an adaptation of the “Medallion Architec-
ture” [27]. Initially, raw data undergoes a transformation into
a tabular long-format, where each row encapsulates an indi-
vidual sensor observation, marking the preliminary “Bronze”
stage of data refinement. Subsequently, this dataset is aggre-
gated over designated time intervals (e.g., every 15 seconds)
to reconcile differences in sample rates and then pivoted into a
wide format. In this format, each row signifies a specific com-
ponent or node, potentially integrated with additional datasets
(such as job allocation logs) for contextualization and further
refinement. This results in the “Silver” stage of refinement,
characterized by its more processed nature. The ultimate phase
includes: slicing and dicing the data through group-by aggre-
gations relevant to specific analyses; visualizations intended
for human interpretation; data prepared for machine learning
model training through featurization—yielding “Gold” stage
data artifacts that represent the final refined product.

Distribution of these stages is heavily influenced by the
control loop timescale of an operational domain and its
corresponding data refinement requirements, which dictate
the pipeline latency constraints (as depicted in Figure 4-c)).
This dynamic is especially important in scenarios involving
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Fig. 5. Common data services (white) and project specific resources
(gray) managed in a tiered fashion. Each tier (STREAM, LAKE, OCEAN,
GLACIER) focuses on different classes [27] of data artifacts (left: darker
circles) with class specific retention time (right: duration). Project resources
are ”outsourced” (gray boxes) from HPC and support resources from the
organization (i.e., App. platform & HPC resources).

large data flows where “Bronze” stage artifacts seldom serve
immediate analytical purposes without undergoing substantial
transformations—entailing a series of group-by aggregations,
pivots, and joins that necessitate considerable I/O operations
and data movement to achieve a more compact and computa-
tionally efficient “Silver” stage.

B. Data Services, Technologies, and Infrastructure

Figure 5 outlines the architecture of data services and
resources that streamline the per-project journey from data
ingestion to archival or public release. The architecture fa-
cilitates broader utilization of refined datasets, either through
continuous streams in the STREAM service (data streaming
broker) or via ever-appended parquet-based highly compressed
tabular data in the OCEAN service (S3 object store). For long-
term preservation, data is archived in the GLACIER (Tape
Archive), whereas immediate real-time usage needs are catered
to by the LAKE (online database access) service. Additionally,
downstream artifacts are disseminated through a site-wide
public data repository Constellation [28], [29], ORNL’s public
data repository, following a formal approval process outlined
in Section IX.

Each building block and underlying technology was chosen
for efficient data access, availability, and resource usage.
Apache Kafka [30] serves as a core component, acting as FIFO
buffers for in-flight data in distributed multi-project pipelines.
ElasticSearch [31] and Apache Druid [32] are used for real-
time diagnostics and debugging, targeting unstructured and
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time series data, respectively. For long-term storage demands,
Apache Parquet [33] with MinIO [34] offers a column-oriented
compressed file format, ensuring significant data compression
and minimal I/O footprint. Apache Spark [35] structured
streaming [36] is adopted for high-volume processing of mul-
tiple data streams, providing SQL-based real-time processing
along with advanced failure and recovery mechanisms that can
be difficult to re-engineer from scratch.

C. Project Specific Data Engineering

Supplementing these centralized services, application plat-
form resources play a crucial role in providing access
to compute power, memory, and temporary storage neces-
sary for running sophisticated data pipelines. Our platform,
called Slate [37], is constructed atop Kubernetes [38] (Open-
Shift [39]) offering a non-HPC resource environment designed
for applications requiring continuous uptime like databases,
web server data portals, message queue software, or stream
processors. This self-service environment empowers project
subject matter experts to construct and manage their data
pipelines autonomously, leveraging project-specific allocations
to meet their unique requirements while maintaining our
multi-tenant security model for the workloads running on the
platform.

For more demanding computational tasks that exceed the
capabilities of Slate’s non-HPC resources, projects have the
option to tap into high-performance computing (HPC) systems.
These powerful platforms support large-scale batch processing
tasks such as data amendment operations, backfills, or exten-
sive analysis campaigns by utilizing allocated modest amounts
of node hours from project allocations. This approach, similar
to a Platform as a Service in the cloud computing space,
enabled us to coordinate the compute, memory, and storage
usage of multiple projects in an efficient way enabling higher
utilization of physical resources.

Lessons Learned: Data services and infrastructure can
be optimized by identifying common patterns of the data
pipelines and their artifacts. In this process, known data
management techniques from the database community and
the big data community play a significant role in bounding
resource usage. Implementing tiered data management,
data reuse, compression, SQL interfaces, failure and re-
covery mechanisms, and stream processing all made a
huge difference. Project-specific allocations were effective
in supporting multiple projects that required storage and
compute resources. Common data services bound overall
resource usage by eliminating redundant work.

VI. DATA DISCOVERY, EXPLORATION AND ANALYSIS

Once data is collected and made accessible to the organi-
zation, it requires rigorous exploration to be understood and
utilized effectively. Data discovery and exploration is initiated
by SMEs or staff project PIs aiming to understand the quality,
meaning, and value of a pile of relevant raw datasets that
sometimes have a footprint of terabytes. Challenges such as

limited information during the data discovery phase and the
difficulty of processing backlogs of undiscovered or unrefined
data can significantly delay subsequent phases, leading to low
data coverage.

A. Data Exploration Campaign

To navigate these complexities, we initiate “data exploration
campaigns” focused on breaking new ground into a set of
datasets related to an operational topic relevant to the mis-
sion. Aiming for developing a sustainable pipeline for large-
scale data streams, these path-finding activities concentrate
resources to address various challenges once and for all for
the organization.

These data exploration campaigns first focus on building
a data dictionary that has qualitative information about the
dataset such as sample rate, failure rates, logical and physical
sensor location, and their meaning with respect to the under-
lying process or system. Here, the role of the system provider
and vendor is crucial, but this area has room for improvement.
This often involves costly interactions with the vendor tracking
down the engineers responsible for developing the sensors and
acquiring authoritative knowledge due to the bleeding edge
nature of the hardware.

B. Developing High-Impact Upstream Data Pipelines

Recognizing the complexity of managing terabyte-scale data
streams, initial efforts focus on identifying and refining the
processes necessary to transform raw data (Bronze state) into a
more usable form (Silver state). To manage this efficiently, we
“outsource” these tasks onto the HPC system or a dedicated
data processing cluster adopting distributed data processing
frameworks like Apache Spark. This burst of activity is driven
by a goal of identifying the costly data transform phases and
implementing upstream data stream processing units to pre-
compute refined Silver datasets in real-time. This transition
from batch to stream processing amortizes the cost of refining
datasets over a long period of time while making refined
datasets that significantly accelerate iterations of downstream
activities.

A deeper understanding of the intricate processes involved
in refining datasets across various timescales and tiers helped
developing strategies to mitigate the pressure in data collection
and management. For example, terabyte-scale Bronze datasets
can be stored in cold storage in a frozen state (GLACIER)
as there was very little value in serving unrefined data sets in
hotter data tiers until upstream data pipelines are developed
creating refined datasets that are manageable.

C. Drivers of Data Exploration Campaigns and their Impact

User support and program needs are essential drivers of
data exploration campaigns, focusing on enhancing user expe-
rience and streamlining reporting processes to sponsors. These
campaigns leverage a broad spectrum of datasets to create
intuitive dashboards for easy access to information. Based
on experiences supporting users on previous systems, such
projects initiate explorations to pinpoint which data streams
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and metrics are most relevant. Further aims to identify analysis
methods to best serve the diagnostic processes.

R&D activities also play a significant role in such cam-
paigns aiming to understand system responses under user
behaviors, encompassing performance, reliability, and energy
efficiency. Heavily relying on profiling user application activ-
ities, R&D initiatives process terabytes of data, condensing
them into a manageable format for deeper analysis. This
process lays the groundwork for developing use cases and
refining data analysis techniques.

System design and procurement decisions also motivates
explorations on operational data to determine the specifications
of new supercomputing systems. This involves a meticulous
balance between various system components such as compute
capacity, memory, bandwidth, and storage within the confines
of budgetary limitations. A data-driven approach, grounded
in the analysis of long-term telemetry datasets reflecting user
behavior, ensures that procurement decisions are made with
precision.

Lessons Learned: The primary bottleneck in HPC oper-
ational intelligence lies within the initial stage of large-
scale stream exploration—directly impacting overall data
coverage and usage. Consolidated data exploration cam-
paign efforts toward sustainable pipeline development play
a crucial role. Strategic investments in enabling streams
of high-coverage sustainable data artifacts are pivotal to
unlocking downstream high-profile innovations and oper-
ational impact.

VII. DATA VISUALIZATION AND REPORTING

Data visualization and reporting are crucial for empowering
day-to-day operations by transforming raw data into actionable
insights which demands a broad combination of technical
expertise as it forms the culmination of the data pipeline at
the end, where the real empowerment happens. Despite its
importance, this area is often undervalued, seen as a task
for interns rather than a critical operational function. Key
challenges include reducing delays from data ingestion to visu-
alization while ensuring low-latency interactivity for end-users
and achieving higher data coverage without overwhelming the
analysis process. Time to delivery and ensuring end-to-end
sustainability also pose significant obstacles, requiring mature
data pipelines developed through concrete steps.

A. Sustainable “Well Packaged Data Applications”

In addressing these challenges, our approach focuses on cre-
ating purpose-driven applications crafted through well-studied
analysis, models, and interactions. Coordination with prior
data life cycle stages mentioned in prior Sections are crucial.
Empowerment of field operators, system administrators, and
user support teams should be one of the focus areas in
developing data streams, analysis methods, and their data
pipelines.

Due to the large lead-time in enabling such teams and
efforts, we found it best to design and optimize towards

serving generations of systems through disciplined continuous
improvement of such services potentially all the way from
research to production. Our approach in well packaged data
applications as software services resulted in several long-
standing application that takes advantage of the real-time holis-
tic data-driven view to empower major operational activities
and thrust areas.

B. Data Powered Software Services

Fig. 6. User assistance: increases productivity of issue diagnosis by providing
easy access to various system metrics and job oriented metrics

User assistance dashboards: The User Assistance (UA)
group uses specially designed dashboards to improve handling
of daily user tickets (Figure 6). These dashboards compile
data from various sources, including compute, storage, and
system logs, all integrated with job node allocation details
for a comprehensive overview. This type of compilation re-
places the old method of manually checking different systems
or consulting with experts, streamlining the problem-solving
process through clear visualizations tailored for quick issue
identification. As a result, the group has seen a significant
decrease in the time it takes to resolve user problems, making
the troubleshooting process more efficient and effective for
everyone involved.

Fig. 7. Screenshot from RATS-Report showing project usage (CPU vs. GPU)
across an allocation program which is easily accessed in real-time

User Resource Usage Report: RATS Report: Figure 6 de-
picts RATS-Report, the central reporting infrastructure for the
HPC user facility, offering comprehensive insights into usage
data such as node-hours on compute resources and filesystem
storage utilization. This system provides users access to over
a decade’s worth of utilization data, supporting customized
visualizations for diverse metrics including resource usage,
project allocations, and user activity. A key feature is its
capability to track burn rates for project allocations, aiding in
efficient job scheduling. Daily data ingestion encompasses a
vast range of sources including compute job logs from multiple
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schedulers, GPU stats, and filesystem usage logs, amounting
to potentially millions of parsed log lines.

Fig. 8. Live Visual Analytics (LVA) provides near real-time low latency
interactivity into years worth of high-dimensional power and thermal profile
data (left: system view, mid.: job allocation, right: cooling plant)

Power and Energy Analytics: To address the challenge of
managing and analyzing extensive high-dimensional datasets
in HPC energy efficiency, a custom interactive visual ana-
lytics service, Live Visual Analytics (LVA), was developed
(Figure 8). LVA facilitates rapid exploration of years of accu-
mulated power profiling data, despite the high volume of in-
coming data (e.g., 0.5 TB/day for the Frontier supercomputer).
This capability is enabled by a specialized data refinement
pipeline that delivers contextualized job power profiles, which
vastly reduces the amount of processing required in interactive
queries from the user interface.

Cybersecurity: Copacetic: High-resolution system infor-
mation such as performance counters and system telemetry
Extreme-scale data analytics capabilities are essential to the
integrity of scientific computing. [40] [41] Copacetic is an in-
house developed analytics tool that requires a reliable feed of
real-time events and logs from non-homogeneous data sources
provided by ODA infrastructure. It detects when certain spe-
cific combinations of network availability, system state, and
user behavior occur and informs administrative teams to take
security-specific actions. ODA infrastructure greatly lowers the
barrier of access to data sources in a way that is otherwise
impossible for traditional batch-based security information
event monitoring (SIEM) tools.

Lessons Learned: Ensuring that the value of data ef-
fectively reaches day-to-day operations through usable
visualization and reports demands special care and consid-
eration. Adopting a ”sustainable software service” model
worked well in achieving quick time-to-delivery while
addressing specific operational needs through customizable
applications integrated into workflows.

VIII. MACHINE LEARNING (ADVANCED DATA USAGE)

Machine learning (ML) enhances operational data analytics
by automating the approximation of system dynamics through
models derived from large datasets. These models serve as
tools for dimensionality reduction aiding in descriptive or
diagnostic analytics, and act as proxies for the actual system,
enabling predictive or prescriptive analytics through forecast-
ing and optimization. Despite its potential and demonstrated
benefits in research [17]–[21], the application of ML in
operational data analytics remains challenging. We identified
that this is largely due to difficulties in formulating problems

Run
Logs

C
I/C

D
R

unners
C

I/C
D

R
unners

aML Workflow
Featurize

OCEAN

Silver
Data

ML Workflow (Code)
Featurize Training

Feature Store

Jupyter / IDE SCM Svc.

C
I/C

D
R

unners

Tracking Svc.

Model
Registry

App.

RunsRunsModelRunsRunsRuns Deploy

Fig. 9. Per-project implementation of a machine learning pipeline for
repeatibility and reproducibility

and integrating machine learning outcomes and workflows into
existing engineering processes.

A. Problem Formulation

Our approach in addressing problem formulation is to
drive the process with an overarching understanding of the
requirements, constraints, and challenges of HPC operational
data analytics. We have found that many of our use cases could
be understood by modeling the continuous improvement loops
as manual feedback control loops at a relevant timescale. This
control loop operates on time series data or events that continu-
ously stream in large volumes and velocity which humans need
to understand deviations, make optimal decisions based on the
understanding of the system, and make adjustments within the
required time scale. Such an effort can be challenging due to
the interdisciplinary nature of understanding both the HPC
operational domain and ML. Even with experts in each area,
basic training on HPC or ML which each individual lacks was
necessary for basic communication in a team setting.

With this conceptual view, we can identify robust impact
points and constraints that we can utilize to define inputs,
outputs, constraints, and goals of a machine learning problem.
Further, identify major machine learning challenges unique
to operational data analytics which we focus our efforts
in solving. Progress in ML use cases is currently heavily
bottlenecked by the data itself due to its streamed, skewed, and
lossy nature which starves ML development iterations with un-
known future data, low-yield features, rare events, and missing
data. This often results in upstream data stream and pipeline
refinements that are costly or sometimes impossible. Data
quality enhancements and the advancement of ML techniques
that can cope with these issues are equally important. These
factors should be also accounted into problem formulation.

B. Machine Learning Engineering

To facilitate repeatable, reproducible ML model develop-
ment and usage targeted in our operations, we focus on devel-
oping ML pipelines by carrying out such projects similar to a
software engineering project by focusing on code management
with some extensions to handle data and models, as illustrated
in Figure 9. This process starts from importing Silver class re-
fined batches of datasets on OCEAN, managing featurized data
through version-controlled project feature stores (DVC [42]),
employing CI/CD workflow support in private deployment of
software change management services (GitLab [43]) for train-
ing orchestration, and tracking experiments and distributing
models via an ML tracking service (MLflow [44]) for down-
stream inference workloads. To maintain sufficient flexibility

1801



in this process, such pipelines are managed and developed
through project-specific allocations. Due to the reduced size
and refined nature of the Silver class datasets, most of our
training workloads are expected to fit in non-HPC resource
allocations.

C. ODA Applications of Advanced Data Usage

Machine learning and advanced data usage in our facility are
driven by the conceptual operational feedback control loop we
have identified. On top of the aforementioned ML engineering
project environment, these use cases are currently work in
progress aiming for tangible operational impact. Many of our
use cases found place in the context of HPC energy efficiency
due to its end-to-end nature.

Fig. 10. Profiling jobs based on their power profile (left). A neural network-
based classifier automatically groups power profiles based on their similarities
(right) — cells are profile shapes and the color is the observed population.

User Job Profiling on Power and Energy: In the con-
text of energy efficiency, a novel real-time job classification
pipeline [45] enhances analysis by clustering job power pro-
files based on their similarity in consumption patterns using
a neural network (Figure 10). This classification not only
facilitates easier navigation through the data but also offers
insights into the relationship between application resource use
and its overall energy impact on the system.

Fig. 11. Telemetry flow and input of ExaDigiT (left), the telemetry replay of
a HPL run on the simulators (middle) and the virtual cooling system response
(right) during verification and validation.

Digital Twins: ExaDigiT: We have developed a compre-
hensive digital twin of the Frontier supercomputer called
ExaDigiT [46]. The digital twin has three main modules: (1) a
resource allocator and power simulator, (2) a transient thermo-
fluidic cooling model, and (3) a virtual reality model of both
the supercomputer and central energy plant. Such a twin can
be used to study “what-if” scenarios, system optimizations,
and virtual prototyping of future systems. The system re-
plays various telemetry data from the HPC data center for
verification and validation of the power and thermo-fluidic
models. As white-box models based on thermodynamics, these
models overcome the limitations of black-box data-driven
machine learning models that do not extrapolate to unknown

TABLE II
CONSIDERATIONS FROM THE ADVISORY CHAIN

Consideration Description
Data Owner Considers purpose and potential interpretation of the

data that can harm ongoing operations.
Cyber Security Prevent leakage of PII data embedded within the data

or information that can identify certain projects or
users.

Legal Provides guidance on legal requirements defined by
contractual obligations as well as any national regula-
tory concerns.

Institutional
Review Board
(IRB)

Federally mandated entity that oversees the protection
of human subjects in research ensuring rights and
welfare of human research subjects are protected [47].

Management Organizational approval on publications or artifacts
reviewing alignment with the facility mission.
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states. The framework reveals the complex transient dynamics
of the cooling system, handles synthetic or real workloads,
and predicts energy losses due to rectification and voltage
conversion (Figure 11-right).

Lessons Learned: Beyond the hype, the status quo of
ML in HPC ODA is well beyond being a hammer in
search of a nail but it requires interdisciplinary effort
to integrate it into existing engineering efforts and make
meaningful impact. Even with established experts in each
domain, HPC operations and ML, basic cross-domain
training was required for the necessary communications
between experts to pursue such efforts. Repeatable and
reproducible execution of machine learning development
is crucial. We have found practices in software engineering
useful as a starting point as those handle code and can be
reasonably easily extended to data and models.

IX. DATA GOVERNANCE AND MANAGEMENT

In producer-consumer relationship matrices across many
sources and usage areas, distributing data can be challenging
without proper data governance and management support. The
power and value of operational data is important to a variety
of stakeholders; that is, system owners and data owners at the
organization level, the funding agency, government, vendors,
and the hosting institute which is subject to a variety of
rules, regulations, contracts, and laws. While it is extremely
difficult for individual projects to navigate such a high-stakes
environment, the process serves as a standard mechanism that
can facilitate the process safely and minimize delays.
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A. Data Access, Governance and Management

Moving successfully through any facility-wide workflow
requires coordination and collaboration between multiple enti-
ties. Figure 12 shows steps we take to distribute the data while
ensuring safety considerations. This is done by reviewing
every data usage request through an advisory chain described
in (Table II). The review starts either from internal staff either
for their projects or on behalf of an external collaboration
(e.g., university collaboration) submitting a request to a data
resource usage committee (DataRUC) each at the stage of
starting a project or optionally at the phase releasing publi-
cations or data artifacts to a wider audience via appropriate
channels. In particular, for datasets, the data is curated, and
archived in a public repository for public usage.

B. Data Usage

With the approvals from the advisory chain, access to the
data is provided and tracked via various channels suitable for
the projects in a fine-grained manner. Internal projects are
provided access to data service resources (Figure 5) such as
STREAM, LAKE, or OCEAN to acquire access to relevant
data to either (1) enable data visualization and reporting
applications (STREAM, LAKE) or (2) carry out a historical
analysis campaign to publish a paper or further develop
pipelines (OCEAN). In cases of external collaborations, data is
released in an approved project area or allocation provided by
internal staff in the form of files or project database accesses.
In the process of acquiring approvals for external data usage,
internal staff hosting such projects carry out data sanitization
or anonymization tasks with the guidance of the curation and
cybersecurity staff before the data reaches external users.

Towards the HPC community, this data distribution process
accelerated the safe release of Summit’s power and energy data
[48], GPU failure data [49], I/O data (Darshan) [50], [51]. This
process was also applied to the release of Frontier’s 2023 June
HPL run submission data [52].

Lessons Learned: Having a comprehensive approval pro-
cess and gateway may sound counterintuitive toward the
goal of organizational empowerment. However, we have
found such a process is instrumental in accelerating em-
powerment.

X. CONCLUSION

In this paper, we have explored the end-to-end framework
of ODA within an HPC organization, pinpointing crucial
investment areas that helped us advance ODA to support a
multi-tenanted and multifaceted use of operational data. Our
journey with ODA through the recent two generations of large-
scale supercomputers has uncovered significant insights. These
not only shed light on the changing dynamics of data use in
HPC operations, which makes ODA challenging but also pave
the way for identifying cost-effective solutions for handling
complexity and strategies for maintaining operational impact
with high data coverage.

The transition from traditional monitoring to ODA is driven
by the complexities of big data and versatile, multi-purpose
data streams that feed real-time operational feedback loops
in a matrixed producer-consumer environment across vari-
ous time scales. This shift makes ODA resource-intensive;
however, a thorough understanding of its full data life cy-
cle allows for cost-effective infrastructure development and
process optimization. Additionally, sustainable pipelines and
software services, along with policies and workflows for data
distribution, are required to fully empower the organization.
The role of SMEs (Subject Matter Experts) and PIs (Principal
Investigators) is crucial from end to end. These approaches not
only lower operational costs but also enhance data coverage
and impact.

In the context of HPC ODA, there is a challenge of achiev-
ing immediate data availability in the face of the relatively
short lifespan of supercomputers. To address this challenge,
we stress the importance of minimizing re-work by consis-
tently investing in infrastructure and accumulating knowledge
across different system generations. We also advocate for
standardized HPC use cases that could speed up vendor-driven
enhancements in sensor documentation and data collection
technologies.

Looking forward, as we move beyond exascale computing
into an era marked by sustainability challenges, complex
scientific workflows, and multi-facility campaigns [53], the
evolution of HPC operations will increasingly depend on
supplementing human decision-making with sophisticated op-
erational data analytics. Proficiency in data-driven operational
intelligence will become even more essential in this new era.
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