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Abstract—The growing demand for high performance comput-
ing (HPC) necessitates significant energy consumption, posing a
sustainability challenge for HPC centers, users, and society at
large, especially in the face of stricter environmental regulations.
While efforts exist to reduce overall system energy consumption,
optimizations for GPU-based workloads, increasingly prevalent
in HPC, has received insufficient attention for workload-specific
energy efficiency optimizations. This work addresses this crit-
ical gap by proposing dynamic approaches to increase energy
efficiency by instrumenting the simulation code with an open-
source toolkit that enables accurate power and energy mea-
surements for a wide range of CPU-GPU node architectures,
as well as the instrumentation of the code controlling the
GPU frequency dynamically. We further investigate the energy-
performance trade-off by comparing both static and dynamic
GPU frequency scaling strategies within SPH-EXA, a newly
developed, open-source, and GPU-centric simulation framework
specializing in astrophysical and cosmological simulations. Our
findings demonstrate that code instrumentation enables detailed
energy consumption acquisition beyond traditional HPC system
monitoring, while dynamic frequency scaling of computational
kernels achieves energy reduction with limited performance loss.
This approach empowers researchers to develop more sustainable
large-scale scientific simulations running mainly on GPUs.

Index Terms—HPC, GPUs, frequency scaling, energy effi-
ciency, large-scale simulations

I. INTRODUCTION

Energy efficiency is a critical issue in high performance
computing (HPC) due to its substantial operational costs and
environmental impact. To reduce energy consumption in HPC
systems, collaborative efforts are needed from supercomputing
centers, hardware vendors, and HPC users. Although HPC
centers have made strides by incorporating renewable energy
sources, there is still potential for further progress, particularly
from users. Hardware vendors have also significantly advanced
the energy efficiency of HPC systems, resulting in more than
15-fold increase in the energy efficiency of the first ten systems
in the Green500 list over the last decade [1]. HPC users can
also contribute by optimizing their simulations to enhance both
performance and energy efficiency.

In Astronomy and Astrophysics, the recently published
Astronet roadmap [2] offers guidelines for research activities
within the astronomical community that have a considerable
environmental impact. The report advocates for a compre-
hensive approach to reducing the carbon footprint. Firstly,

researchers need to be more conscious of the environmental
costs associated with their work, such as the computing and
power required for simulations and data analysis, as well as
the energy consumption of observatories. They should aim to
minimize energy use and promote the adoption of renewable
energy sources in the facilities they utilize. Secondly, the
importance of code optimization is emphasized. While user-
friendly interpreted languages are useful, researchers should
also have proficiency in compiled languages for greater ef-
ficiency. The Astronet report strongly encourages the use of
efficient programming languages and computational architec-
tures for intensive computations to lower environmental costs.
However, switching from interpreted to compiled languages
is only part of the solution; further energy savings can be
achieved through better-optimized code and more efficient use
of system resources.

There is a positive correlation between the performance
of a parallel application and its energy consumption, which
presents a significant challenge for optimization. While higher
performance can often be obtained by allocating additional
resources, this approach may lead to reduced energy efficiency.
The complexity of this trade-off is further exacerbated by
the evolving landscape of computing hardware, with modern
systems featuring an increasing number of CPU cores and
specialized accelerators like GPUs. These diverse processing
elements have varying power consumption characteristics,
making it increasingly difficult to achieve optimal performance
without excessive energy use. However, the performance
benefits provided by GPUs can lead to improved overall
energy efficiency, especially for compute-bound components
of scientific applications. Thus, greater energy efficiency in
scientific applications can be attained by optimizing GPU
resource utilization and focusing on both performance and
energy efficiency.

In this work, we demonstrate the advantages of enabling
precise measurement of energy consumption as well as using
this information to adjust the frequency of GPUs both dy-
namically through code instrumentation to assess the energy-
performance trade-off of an astrophysical simulation frame-
work. We apply our approach to a real-world case in com-
putational astrophysics, specifically the SPH-EXA simulation
framework [3], which runs on various CPU+GPU node archi-
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tectures. SPH-EXA is equipped with extensions to measure
energy consumption using HPE/Cray-specific pm counters for
systems built by HPE, and for other systems, it employs
an open-source power measurement toolkit [4] (PMT) to
collect energy consumption data and generate reports that
users can analyze to develop energy-efficient code and conduct
computational experiments. This information is then used to
determine the best frequencies for each computational kernel
for increasing the energy efficiency of the simulation. We
enabled user-level GPU frequency adjustment, allowing users
to set GPU frequencies within a cluster without needing supe-
ruser privileges, solving the issue of restricted access typically
required for GPU frequency changes. Our results show that
dynamic GPU frequency setting through code instrumentation
decreases the energy consumption of our simulations up to
7.82% per GPU while the performance loss is limited to
2.95%.

The rest of this paper is organized as follows. Section II
discusses the importance of energy efficiency and gives back-
ground information on how energy is measured in systems and
within applications. Section III presents our methodology for
measuring the energy consumption and performance of each
SPH-EXA function online and discusses how this information
can be exploited to increase the energy efficiency of large
scale simulations. Section IV shows our results for validating
our instrumented energy measurements as well as the benefits
of GPU compute frequency scaling using static and dynamic
methods. Section V concludes this paper.

II. BACKGROUND AND RELATED WORK

The changes in supercomputers from CPU-only to CPU-
GPU heterogeneous architectures, started an effort to port
SPH simulation codes to GPUs, enabling higher performance,
larger, and higher resolution simulations [5]–[8]. Although
the motivation for this switch was due to the immense
performance benefits that GPUs can provide, it was also
beneficial from the energy efficiency and environmental im-
pact perspectives. Portegies Zwart [9] evaluates how different
programming languages affect the energy consumption and
carbon footprint for various N-body codes where CUDA-based
implementations prevail with the most energy-efficient and
producing the least carbon footprint, performing almost an
order of magnitude better than Fortran or C++ as shown in
Figure 1. However, the increased energy efficiency by better
utilizing GPUs is only an afterthought, as research on energy
efficiency of scientific applications is lacking.

Increasing the energy efficiency of simulations can be
achieved by not only increasing the performance, but also
better utilizing the computational resources. Decreasing the
energy consumption of a simulation without changing the
application is possible through altering the operational voltage
and/or frequency of the computational units.

Dynamic Voltage and Frequency Scaling (DVFS), is a
power management technique that dynamically adjusts the
voltage and frequency of processors and other devices in sys-
tems. By lowering voltage and frequency during low-intensity

Fig. 1. Programming language efficiency as a function of the time to solution
(image reproduced from [9]).

tasks, DVFS can significantly reduce power consumption. The
energy efficiency benefits of DVFS has been studied exten-
sively for GPUs [10]–[13], but application specific energy
efficiency studies have not seen a lot of attention. Moreover,
decreasing the voltage may result in computational inaccu-
racies and decreasing the frequency negatively affects the
performance and these effects are different for each applica-
tion, so the energy efficiency concerns might differ depending
on the application. Overall, increasing the energy efficiency
without impacting the performance or the correctness of the
applications is of paramount importance.

The multi-dimensional energy optimization problem can be
solved by finding the sweet spot frequencies for applications,
thus increasing the overall energy efficiency [14]. The first
step towards finding such sweet spots is measuring the energy
consumption of the application in a detailed way. This step
can then be followed by optimizing for the best frequency for
parts of the application.

A. Application-level Energy Measurement

Measuring the energy of a simulation requires power and
time measurements. Although external power meters are the
most accurate method to monitor the power consumption of
computing systems [15], [16], power meters are generally not
integrated in production systems. Instead, the systems pro-
vide the power and energy measurements through embedded
sensors using IPMI or ACPI interfaces. However, the power
consumption data is rarely available to the system users.

In HPC systems, resource and job management systems,
such as Slurm [17], can be configured to provide information
about the energy consumption of submitted jobs by adding the
energy label to the AccountingStorageTRES list of Trackable
RESources (TRES). Energy accounting data can be accessed
with the sacct command and ConsumedEnergy parameter.
Depending on the system, the Slurm’s energy reporting back-
end can be ipmi, pm counters or rapl. The ipmi uses the
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baseboard management controller (BMC) and pm counters
is an HPE/Cray-specific BMC, while rapl uses the hardware
sensors to read the power consumption of the CPUs.

The Cray systems incorporate Out-Of-Band (OOB) data
collection capabilities for monitoring power and energy at
the node level, with a default collection rate of 10 Hz.
Collected power and energy data are published via special
/sys/cray/pm counters/ sysfs files, as described by Martin
in [18] and [19]. The pm counters files are read-only and
available to users for monitoring purposes and to report energy
usage. The energy usage of node, CPU and memory of a
compute node can be read from the energy, cpu energy and
memory energy pm files. The energy usage of accelerators
can be read from the accel[0,1,2,3] energy pm files. It is
important to note that the energy consumption of the auxiliary
parts of a node can also be calculated by subtracting the GPU,
CPU, and memory measurements from the node-level energy
measurement.

While energy consumption data provided as part of a job re-
port is useful for users, it does not provide specific information
about which parts of the job consumed most energy, depriving
the user of the opportunity to reduce their job’s energy
consumption. When information is available about devices that
consume more energy, or as a functional breakdown, users can
then employ various techniques to reduce their application’s
energy consumption.

PMT [4] is an open-source library that provides a common
interface to measure power consumption of various devices.
For GPUs it relies on NVML [20] for Nvidia and rocm-
smi [21] for AMD. CPUs are monitored through the RAPL
(Running Average Power Limit) [22] interface, or through
LIKWID [23]. Using the power measurements taken from the
vendor provided APIs, PMT calculates the energy consump-
tion of the instrumented code and reports the measurements to
the user. The advantage of PMT compared to previous efforts
for power measurements, e.g., LIKWID [23], is that it provides
an interface to a comprehensive set of back-ends which
reduces the frequent code changes within the application code
base. PMT also supports the HPE/Cray-specific back-end, thus
providing easy and accurate measurements for compute nodes
entirely built by HPE/Cray.

B. Static and Dynamic Frequency Scaling

Frequency scaling is a key power management technique
in both CPUs and GPUs. Processors dynamically adjust their
clock speed based on workload. During demanding tasks, the
frequency increases for faster processing, but consumes more
power. Conversely, for simpler tasks, the frequency dips to
conserve power while maintaining adequate performance. This
ensures the processor is not constantly running at maximum
power, optimizing efficiency without sacrificing performance.

In supercomputing centres, CPU and GPU frequencies of
the nodes are generally set to the highest frequency values for
performance reasons. However, due to the increasing energy
costs, some centres have been introducing ways to reduce the
overall energy consumption by setting lower CPU frequencies.

In 2022, the ARCHER2 Supercomputing Center decided to
decrease the default CPU frequencies [24] in order to reduce
the power consumption with limited performance loss for a
variety of applications. Additionally, CPU and GPU frequen-
cies can be controlled by Slurm and be set to a specific value
or a range of values. For example, the --cpu-freq=1800000
flag would set the CPU frequency to 1.8 GHz, and the --gpu-
freq=900 flag would set the GPU frequency to 900 MHz. This
is possible under the condition that the supercomputing centre
is allowing users to change default values.

On the other hand, due to the correlation between perfor-
mance and energy, setting the operating frequency statically to
a lower value will impact the performance of the application
negatively. Although DVFS tries to decrease the frequency
when the computational unit is not in use to save energy,
this is dependent on the utilization of the compute unit.
Specifically for GPUs, the utilization is calculated by the
time taken to execute one or more computational kernels and
thus using Nvidia-smi and rocm-smi APIs result in high-level
and unrepresentative results for actual GPU utilization [25].
Therefore, the frequency set by the DVFS on GPUs is also
not exactly representative of the underlying kernel execution,
leading to reduced energy efficiency. This inefficiency can be
solved by finding out the best frequency for the performance-
energy trade-off and dynamically setting the GPU frequency
for different kernels from within the application through code
instrumentation.

III. METHODOLOGY

A. Application

SPH-EXA [3]1 is a simulation framework that leverages
state-of-the-art SPH method implementation. It is written in
modern C++, with minimal software dependencies and can
execute on CPUs and GPUs at extremely large scales [26],
making it well-suited for extreme-scale astrophysical and
cosmological simulations.

SPH-EXA employs MPI+X for parallelization, where X
is either CUDA, HIP if the system offers CPUs and GPUs,
or OpenMP if the system offers only CPUs. On CPU+GPU
systems, SPH-EXA moves all the simulation data from the
CPU memory to the GPU memory at the beginning of the
simulation and runs entirely on GPUs, leaving CPUs available
for handling auxiliary tasks, such as performance or energy
profiling. This way, the performance of the instrumented code
is unaffected by performance or energy profiling.

B. Measurement of Application Energy Consumption

SPH-EXA provides hooks within the code that can be
used for low-overhead profiling, enabling third party tools
to be integrated into the framework for performance and
energy consumption analysis. The hooks are normally used to
measure the timings for each function within the framework,
which consists of functions that perform domain decompo-
sition, halo exchanges, and physics computational kernels.

1https://github.com/unibas-dmi-hpc/SPH-EXA
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We instrumented the SPH-EXA code using these hooks with
native support for HPE/Cray built systems to collect energy
consumption data from the start of each function call until
its completion. In case the target production system is not
HPE/Cray built, we use PMT to get the measurements from
CPU and GPU separately for each device. Energy consumption
is measured per each MPI rank throughout the simulation,
gathered at the end of the execution, and stored into a file for
post-hoc analysis, to avoid perturbing the actual simulation.
The provided hooks are also used to instrument the code
for setting the GPU frequency within the code before each
computational kernel in order to increase the energy efficiency
of the overall execution. If the kernel is not computationally
intensive, the GPU frequency is reduced back. The benefit
of instrumenting the code is that the developer has prior
knowledge about the computational kernels, hence can select
the best frequency that benefits the performance-energy trade-
off.

The general rule-of-thumb in GPU-centric applications is to
use one MPI rank to drive one GPU. However, this assignment
does not favor energy measurements. For example, HPE/Cray
pm counters measure power consumption and report it in a
file per GPU card. On systems where each GPU card has
two GCDs (GPU Complex Dies), such as LUMI-G (Table I),
an MPI rank only drives a GPU half-card, while power
consumption is measured and reported for the entire card
which corresponds to two MPI ranks. This is not an issue
on systems where each GPU card has one GCD, such as
the CSCS-A100 system (Table I). In both cases, pm counters
reports 4-or-8 power consumption measurements on CPUs,
one for each MPI rank executing on one node. The CPU
measurements for both systems take into account the entire
CPU, and all MPI ranks on the same node report the same
energy measurement, hence only one measurement needs to be
used for the calculations. To overcome these discrepancies, our
analysis scripts take the system’s hardware configuration and
MPI rank-to-GPU assignment into consideration. However,
two GCDs on one GPU card still creates certain measurement
inaccuracies, as discussed in Section IV-A.

With energy measurement enabled in SPH-EXA, we exe-
cuted two astrophysical simulations and collected the time and
energy measurements throughout the runs. The information
gathered is exploited to draw insights from the energy con-
sumption of the simulation at device-level and code function-
level. We show that functional-level energy consumption can
be used to designate which part of the simulation code can
benefit from GPU frequency down-scaling for reducing the
energy consumption.

C. Tuning Application Functions for Energy Efficiency

KernelTuner [27] is a tool designed to help developers
create optimized applications for GPUs. It allows users of
KernelTuner to define the GPU kernels and specify which parts
of the code can be tuned to improve performance. KernelTuner
then tries out different combinations of these adjustments and
measures how well each one performs.

The tool provides tune kernel main functionality which in-
cludes kernel name, kernel source, problem size, and params
arguments. By supplying the kernel name and kernel source,
the users can specify which kernel to tune. The problem size
is used to determine the grid dimensions while benchmarking
different kernel configurations. The final argument params is a
dictionary that specifies the tunable parameters of the kernel.
For each tunable parameter, specified as a key in the dictionary,
it contains a list of all possible values. KernelTuner offers a
lot of strategies for the search space, brute-force search being
the default, which simply iterates over the entire search space.
This may seem inefficient, but for small number of tunable
parameters, this can be done in a reasonable amount of time.

Since we are interested in finding the most energy-efficient
frequency for specific kernels, which itself is not a tunable
parameter for a kernel, but rather a device-wise parameter, we
simply employ the ease-of-use that KernelTuner provides for
running the same kernel multiple times and reporting the time-
to-solution and energy consumption metrics to choose the best
option.

We keep the problem size parameter fixed for this op-
timization problem and change the GPU frequency using
Nvidia Management Library (NVML) [20]. Specifically for
our experiments, we set the problem size to 4503 particles for
each kernel in the SPH-EXA simulation framework.

Figure 2 shows the outcome of the search space for all
SPH-EXA kernels with the GPU compute frequency parameter
between 1410 MHz and 1005 MHz. We have not experimented
with frequencies below 1005 MHz, due to limited benefits for
energy efficiency. This range also provides a reasonable search
space for KernelTuner to find the best GPU compute frequency
for energy efficiency.

The frequency selection is also in line with the frequency
settings for production supercomputers. For example, Piz
Daint supercomputer [28] at the Swiss National Supercom-
puting Centre (CSCS) has the GPU frequency between to the
minimum value of 1189 MHz and maximum value of 1328
MHz.

Fig. 2. GPU frequencies per function optimized for the best EDP outcome
for Subsonic Turbulence simulation using 4503 particles.
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D. Application Instrumentation for Dynamic GPU Frequency
Scaling

For changing the GPU frequency dynamically during the
application execution, we instrumented SPH-EXA using API
calls from NVML. Before each SPH-EXA function, we call
the following code below which enables setting both the GPU
compute frequency and memory frequency, though we keep
the memory frequency as is for all cases.
nvmlDev ice t nvmlDeviceId ;
getNvmlDevice (& nvmlDeviceId )

i n t smClock = 1410 ; / / 1305 , 1200 , 1110 , 1005
n v m l D e v i c e S e t A p p l i c a t i o n s C l o c k s ( nvmlDeviceId ,

memClock ,
smClock ) ) ;

Since each MPI-rank is bound to only one GPU, get-
NvmlDevice returns the corresponding device ID which is then
used to set the GPU compute frequency. Depending on the
best frequency values that are found using KernelTuner, we
set each function’s frequency using the nvmlDeviceSetAppli-
cationsClocks API call.

IV. RESULTS

We conducted experiments with the SPH-EXA simulation
framework and executed Subsonic Turbulence and Evrard
Collapse simulations with 150 and 80 million particles per
GPU, respectively, evaluating the value added by energy
measurement instrumentation, across three systems with GPUs
as shown in Table I. We chose these two workloads due to
the different functionality, such that Evrard Collapse includes
gravity calculations whereas Subsonic Turbulence does not.

We first validate the energy measurements from energy
instrumented SPH-EXA against Slurm provided measurements
on LUMI-G and CSCS-A100 systems. We then showcase
application energy consumption per-device on the system as
well as per-function during the simulation to a level of detail
which is not normally available to the users. Furthermore, we
use the miniHPC system for exploiting information provided
by measuring the energy per-function to evaluate the effect of
static and dynamic GPU frequency down-scaling on perfor-
mance, energy consumption, and energy-delay-product (EDP)
which is a combined metric for understanding the trade-off
between performance and energy consumption.

A. Validation of PMT Energy Measurements

Integration of instrumentation-based power measurement
tools, such as PMT, does not guarantee the validity of the
measurements. Since users at most only have access to Slurm
measurements, we validated our PMT instrumented simula-
tions to this baseline. To this end, we validate the PMT
measured energy with Slurm provided energy by running the
Subsonic Turbulence experiments with energy measurement
enabled, using 8-to-48 GPU cards with 1 GPU per MPI rank
and 150 million particles per GPU as shown in Figure 3.

We observe a strong match between PMT measured and
Slurm measured energy values. The difference between PMT
and SLURM measurements is due to the timing of the energy

Fig. 3. Comparison between PMT measured and Slurm reported energy,
normalized to 48 GPUs in CSCS-A100 and 96 GCDs in LUMI-G respectively.

measurement. Slurm starts measuring energy as soon as the
job is submitted, while PMT starts the measurement when
the time-stepping loop begins in SPH-EXA. This means that
PMT does not measure the job and application setup phases,
such as job launching or allocating the required data structures
for the simulation. This difference in measurements does not
pose a problem for the actionable insights users can take,
as users have limited control over the job setup time and
reducing the energy consumption of application initialization
has a limited impact on the total amount of energy consumed.
This is because the computational units that consume the most
energy, namely GPUs, are idle during job and application setup
phases.
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Fig. 4. Breakdown of energy consumption by GPU device for the Subsonic
Turbulence and Evrard Collapse simulations executing on two systems using
150 million and 80 million particles per GPU on 32 MPI ranks.

B. Measuring and Reporting Energy Consumption per-Device
and per-Function

Figure 4 shows the percentage of energy consumed by each
device on the two test systems for the Subsonic Turbulence
and Evrard Collapse simulations, both running with a total of
32 Ranks. The LUMI-G system shows separate measurements
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TABLE I
SIMULATION AND COMPUTING SYSTEM PARAMETERS.

Simulation Parameters Info
Subsonic Turbulence -n 0.6 | 1.2 | 2.4 | 4.9 | 7.4 | 9.2 | 14.7 Billion particles -s 100 150 million particles per GPU | 100 time-steps
Evrard Collapse -n 0.6 | 1.2 | 2.4 | 3.2 | 4.8 | 7.7 Billion particles -s 100 80 million particles per GPU | 100 time-steps
System Hardware of each Node GPU Frequencies

LUMI-G 1 × 64 cores AMD EPYC 7A53 CPU with 512 GB Memory
8 × AMD Mi250X GPUs half cards with 64 GB Memory

AMD GPU compute frequency: 1700 MHz
AMD GPU memory frequency: 1600 MHz

CSCS-A100 1 × 64 cores AMD EPYC 7113 with
4 × Nvidia A100-SXM4 with 80 GB Memory

Nvidia GPU compute frequency: 1410 MHz
Nvidia GPU memory frequency: 1593 MHz

miniHPC 2 × 28 Core Intel Xeon Gold 6258R CPU with 1.5 TB Memory
2 × Nvidia A100-PCIE with 40 GB Memory

Nvidia GPU compute frequency: 1410 MHz
Nvidia GPU memory frequency: 1593 MHz

for GPU, CPU, and memory while CSCS-A100 system does
not provide separate measurements for the memory, hence
the Other reported for CSCS-A100 also includes the energy
consumed by the memory. The amount of total energy con-
sumed in mega-Joules (MJ) is 24.4, 15.2, 12.5, and 10.7 for
LUMI-Turb, LUMI-Evr, CSCS-A100-Turb, and CSCS-A100-
Evr, respectively.

The energy consumption breakdown by device shows that
the GPU consumes the most energy, 74.3% on LUMI-G
and 76.4% on CSCS-A100 system. This information already
provides insight about where the greatest potential lies for
reducing energy consumption. Since SPH-EXA computations
are predominantly executed on the GPU, the optimizations
focusing on energy efficiency need to be applied to the
computational kernels executing on the GPU.

Fig. 5. Breakdown of energy consumption by SPH-EXA functions for the
Subsonic Turbulence and Evrard Collapse simulations executing on two GPU
systems, using 150 million and 80 million particles per GPU, respectively.

The energy consumed by auxiliary parts of the node, named
as other, is a calculated value as explained in Section II.
Even though it is the second-most energy consuming part
of the simulation, we do not have additional information to
insightfully analyze it. For example, it would be important
to know if the energy consumed is attributed to the network
interface card, so that the communication operations become
a target for future optimizations.

The instrumented code also enables energy measurements at
code functional-level. Figure 5 shows all SPH-EXA functions
called in the time-stepping loop of the Subsonic Turbulence

and Evrard Collapse simulations using 150 million and 80
million particles per GPU respectively.. The functions that
consume the most energy overall are enclosed in a box in
the legend. The reason these functions also consume the most
energy on the CPU, as well as on the GPU, is that the CPU
consumes energy which is proportional to the execution time
of each function, even though the CPU is mostly idle during
the execution of these functions.

The energy consumption per function normalized to the
total energy consumed per device varies greatly depending
on the system. For example, for the Turbulence simulation on
the CSCS-A100 system, the function MomentumEnergy only
consumes 25.29% of the total energy consumed by the GPU
(3.1 MJ) while on LUMI-G it consumes 45.80% (11.2 MJ).
This is a clear indication that MomentumEnergy function can
further be optimized for AMD GPUs.

C. Statically Setting the GPU Frequency

The information made available by the integration of en-
ergy measurements into SPH-EXA shows where the most
energy is consumed both device-wise and function-wise and is
paramount for the energy efficiency optimizations. Efficiency
metrics such as energy-delay product, calculated by multiply-
ing the total amount of energy with the execution time, can
be used to quantify the impact of applied optimizations.

Previous studies [9] show the effect of the choice of
programming languages and compute device frequencies for
running the simulations in an astrophysical context. Portegies
Zwart et. al. [9], shows that GPUs are the most energy-efficient
for large scale simulations and they evaluate the effect of
CPU frequency changes on the energy-to-solution. Since SPH-
EXA is a GPU-native simulation framework, we employed
frequency down-scaling as a way to reduce the GPU power
consumption as other studies [29], [30] show the benefits
of reducing the energy consumption through reduced power
consumption.

As the systems we used to gather the energy measurements
in larger simulations do not allow user control over the GPU
frequencies, we used the GPU node of a local research cluster
named miniHPC which includes a node with Nvidia A100
GPU and conduct experiments with different GPU compute
frequencies. Since the GPU memory of miniHPC is smaller
than the GPU memory on the other two test systems, we were
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Fig. 6. Effect of statically down-scaling the GPU frequency on the energy-
delay product of Subsonic Turbulence SPH-EXA simulation with different
GPU particle counts, running on a single Nvidia A100 GPU.

forced to execute smaller simulations, starting at 91 million
particles per GPU.

We first evaluate the effect of the change in the simulation
problem size on the EDP, by varying the simulated particles
per GPU between 4503 (91 million) particles down to 2003 (8
million) particles. We observe that the EDP drops significantly
when the GPUs are not fully utilized as evidenced by the
2003 particle case in green. These results show that when the
problem size is small, leaving the GPU underutilized, i.e. 2003

case, using lower frequency such as 1110 MHz results in the
best energy efficiency configuration.

Figure 6 shows the energy-delay product (EDP) of SPH-
EXA turbulence simulations normalized to the baseline, when
the GPU compute frequency is set to 1410 MHz. We compare
the EDP of SPH-EXA simulations when varying the GPU
compute frequency between 1410 MHz and 1005 MHz. As
frequencies are reduced, the time-to-solution of the simulation
increases, but the power consumption reduction is so signifi-
cant that the overall EDP decreases.

Figure 8 shows the execution time, energy, and EDP values
of the most time consuming functions in SPH-EXA simula-
tions with 4503 particles per GPU. All the results here are
normalized to the baseline, when the GPU compute frequency
is set to 1410 MHz. The most computationally intensive
functions, i.e., MomentumEnergy and IADVelocityDivCurl, has
high execution time increase of more than 20% while the
energy reductions are limited to 13% and 19% respectively
for the 1005 MHz GPU frequency as shown in Figure 8(a)
and Figure 8(b).

The combined metric of EDP thus shows that decreasing the
frequency for these functions has limited benefits as shown in
Figure 8(c). On the other hand, all the other functions have at
least 10% reduction in their corresponding EDP metric.

These results corroborate the findings presented using Ker-
nelTuner in Section II-B in Figure 2. As shown in both Figures
2 and 8(c), the functions that are less computationally intensive
such as XMass and NormalizationGradh can benefit from
lower frequencies than the most compute-bound functions such
as MomentumEnergy.

D. Dynamically Setting GPU Frequency for Different Func-
tions

Down-scaling the GPU frequency during the entire simula-
tion to save energy is not the best solution as it increases the
overall time-to-solution. However, dynamic approaches can be
employed for identifying Pareto-optimal solutions that provide
acceptable performance and lower energy consumption.

Figure 7 shows the comparison of time-to-solution, energy
consumption, and EDP metrics. The values are normalized to
1410 MHz baseline. Statically setting the GPU frequency to
a lower value increases the energy efficiency of some of the
functions in SPH-EXA. However, if we look at the overall
time-to-solution and energy consumption reduction for the
frequency range between 1005-1410 MHz, we see that time-to-
solution of our simulations are affected. Although the energy
savings are significant, the most important metric for the users
remains time-to-solution. As the frequency decreases, time-to-
solution increases, impacting overall performance. The energy
reduction however is more significant, resulting in the decrease
in the combined EDP metric.
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Fig. 7. Effect of dynamic frequency changes limits performance loss while
increasing energy efficiency in Subsonic Turbulence simulation using 4503

particles on a single Nvidia A100 GPU. ManDyn denotes manually changing
the GPU frequency through code instrumentation.

The DVFS usage does not decrease the time-to-solution,
providing similar values with the baseline. However, the
energy-to-solution metric is also higher compared to the
baseline. Since the compute-intensive kernels also benefit from
DVFS effects, non-compute dominated kernels consume more
energy, hence the overall energy consumption increases.

On the other hand, for the proposed method of manually
changing the GPU frequency (ManDyn) we clearly see the
benefit of reduced energy and the performance loss is limited
to a negligible degree as shown in Figure 7.

Dynamically setting the GPU frequency leads to limited
increase in time-to-solution, as much as 2.95%, with 8%
reduction in energy consumption, leading to 4% reduction
in EDP compared to setting the frequency statically to 1005
MHz which provides 2.5% decrease in EDP overall. Only
comparing the static frequency of 1005 MHz with setting
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Fig. 8. Effect of statically down-scaling the GPU frequency on (a) execution time, (b) energy, (c) EDP for Subsonic Turbulence SPH-EXA simulation running
on different GPU compute frequencies for 4503 particles.

the frequency dynamically, we see a 16% decrease in time-
to-solution, showing clear benefits of dynamically setting the
compute frequency during execution.

E. Delving into GPU DVFS

In order to better understand the comparison between the
effects of DVFS on performance and energy, we setup an-
other experiment for measuring the frequencies set by the
DVFS during the simulation execution. Figure 9 shows the
measured frequencies set by DVFS on a single A100 GPU
during Subsonic Turbulence simulation execution for 10 time-
steps. We clearly see the pattern produced by the DVFS
in each time-step the frequencies climb to the maximum of
1410 MHz for MomentumEnergy and above 1350 MHz for
IADVelocityDivCurl functions. While executing the kernels in
between, the frequency is set between 1300 and 1350.

Fig. 9. Device frequencies set by DVFS on a single A100 GPU during
Subsonic Turbulence simulation execution using 4503 particles for 10 time-
steps.

Moreover, at the beginning of each time-step, during Do-
mainDecompAndSync function we see the frequency around
1200 MHz. This specific function launches a lot of lightweight

kernels for calculating the particle keys which do not utilize
the GPU and do not necessarily require such high frequencies.
However, each kernel launch boosts the GPU frequency since
the kernel does not yet have any information on how much
utilization is achieved, leading to a higher than necessary
frequency value which translates into increased energy con-
sumption. These results are in line with findings reported in
the literature [25] since this work also discusses the reported
GPU utilization is overestimated.

At the end of each time-step, the frequency dips due to com-
munication operations in order to calculate the physical time
of the current time-step which is a collective communication
function. These small functions at the end of each time-step
decreases the GPU frequency below 1000 MHz in some cases,
but due to the execution times of these functions being very
low, they do not affect the overall results much. However, this
is an indicator that for such functions, the frequency could be
lowered further.

V. CONCLUSION AND FUTURE WORK

This paper presents the benefits of dynamically adapting
the GPU frequency through code instrumentation to enhance
energy efficiency on an astrophysics and cosmology simula-
tion framework, SPH-EXA. We analyzed energy consumption
across multiple compute devices and simulation functions,
identifying areas for performance and energy improvements.
By adjusting GPU frequencies dynamically, we evaluated
performance and energy impacts, comparing our results with
against static frequency setting as well as GPU DVFS usage.
Experiments with Subsonic Turbulence and Evrard collapse
simulations validated our approach, limiting the performance
loss of dynamic frequency down-scaling, to a mere 2.95%
while the reduction in energy consumption is as high as 8%.

We further investigated the DVFS of usage on a single
Nvidia A100 GPU and measured the frequencies during the
simulation execution. We observed that the computationally
intensive kernels do not always reach the highest possible
frequency, while a high number of lightweight kernel launches
negatively affect the energy efficiency.
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Through our results, we show that application developers
can help increase the energy efficiency of their code through
instrumentation, since developers have expert knowledge on
the applications they develop, helping with the global effort
of decreasing the energy usage their codes as well as super-
computers.

Future work includes the adaptation of the proposed method
on AMD and Intel GPUs, and studying the effect of differ-
ent architectures and frequencies. Additionally, the proposed
method will be applied to other simulation codes that use
GPU acceleration to increase the overall energy efficiency and
decrease the energy-delay product.
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