
JACC: Leveraging HPC Meta-Programming and
Performance Portability with the Just-in-Time and

LLVM-based Julia Language
Pedro Valero-Lara, William F. Godoy,

Het Mankad, Keita Teranishi,
and Jeffrey S. Vetter

Oak Ridge National Laboratory
Oak Ridge, Tennessee, USA
{valerolarap},{godoywf},

{mankadhy},{teranishik},{vetter}@ornl.gov

Johannes Blaschke
Lawrence Berkeley National Laboratory

Berkeley, California, USA
jpblaschke@lbl.gov

Michel Schanen
Argonne National Laboratory

Lemont, Illinois, USA
mschanen@anl.gov

Abstract—We present JACC (Julia for ACCelerators), the first
high-level, and performance-portable model for the just-in-time
and LLVM-based Julia language. JACC provides a unified and
lightweight front end across different back ends available in Julia,
enabling the same Julia code to run efficiently on many HPC CPU
and GPU targets. We evaluated the performance of JACC for
common HPC kernels as well as for the most computationally
demanding kernels used in applications, HPCCG, a supercomput-
ing benchmark test for sparse domains, and HARVEY, a blood
flow simulator to assist in the diagnosis and treatment of patients
suffering from vascular diseases. We carried out the performance
analysis on the most advanced US DOE supercomputers: Aurora,
Frontier, and Perlmutter. Overall, we show that JACC has a
negligible overhead versus vendor-specific solutions, reporting
GPU speedups with no extra cost to programmability.

Index Terms—Julia, Metaprogramming, Performance Porta-
bility, Programming Productivity, GPU Acceleration

I. INTRODUCTION

Generic, high-level, metaprogramming-oriented techniques
allow programmers to focus on the particular structure of an
application while offloading target-specific code specializa-
tions to compiler back ends. This enables a single source code
to be portable while enhancing development productivity for a
variety of heterogeneous architectures. Representative parallel
computing models that use this technique can be found in high-
performance computing (HPC) languages like C++: RAJA [1],
Kokkos [2], SYCL [3], OpenMP/OpenACC [4]. These models
rely on highly optimized vendor back ends (e.g., CUDA, HIP,
oneAPI), and their performance portability and overhead trade-
offs have become an active area of research [5].

There is renewed interest in closing the gaps in high-level,
just-in-time dynamic languages such as Python [6], Julia [7],
and R [8] and their current performance levels, especially
because these languages and their ecosystems have been at
the forefront of AI/ML and data analysis workflows [9].
Additionally, the widespread adoption of LLVM [10] allows
for unifying efforts in the compiler back-end layers for several
languages and programming models. Julia and other efforts

that target Python (e.g., Numba [11], codon [12]) reuse
LLVM’s modularity by generating intermediate representa-
tions (LLVM-IRs) to achieve improved performance from their
high-level, just-in-time, and dynamic programming models.

In this work, we focus on both programming productivity
and performance portability and evaluate how to bring that
capacity into just-in-time solutions such as Julia. For that,
we implemented the new JACC (Julia for ACCelerators) Julia
package, the first and only high-level meta-programming and
performance portable model in Julia. JACC’s main contribu-
tions are:

1) Taking meta-programming and performance portable
capabilities to the just-in-time and real-time interactive
Julia ecosystem for the very first time, elevating the
capabilities of programming productivity for the imple-
mentation of Julia scientific and HPC codes.

2) JACC sits atop existing package back ends leveraging
different vendor solutions (e.g., CUDA for NVIDIA
GPUs, AMDGPU for AMD GPUs, OneAPI for Intel
GPUs, and Julia’s Base.Threads based on pthreads for
CPUs).

3) JACC provides a single and unified high-level and easy-
to-use front end that abstracts the burden of low-level
hardware and software details away from the program-
mers.

4) JACC is a portable and highly productive programming
solution for Julia application developers who target
a large variety of CPUs and GPUs, including AMD
EPYC 7742 Rome CPUs, AMD MI100 GPUs, NVIDIA
Ampere A100 GPUs, and Intel Data Center Max 1550
GPUs.

5) We evaluated the performance of JACC for common
high-performance computing (HPC) kernels (e.g., DOT
and AXPY BLAS Level-1 operations) as well as for
the most computationally demanding kernels used in
important applications, such as the Conjugate Gradient

1955979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00245



algorithm used in MiniFE, a proxy application for un-
structured implicit finite element codes, and in HPCCG,
a supercomputing benchmark test for sparse domains, or
the lattice-Boltzmann method used in HARVEY, a blood
flow simulator to assist on the diagnosis and treatment
of patients suffering from vascular diseases.

II. JULIA IN HPC

Julia was created to provide a unified programming lan-
guage, community, and an integrated ecosystem (packaging,
testing, software tools, AI) to enhance productivity while
providing performance mechanisms that rely on LLVM ad-
vancements, addressing the main weaknesses of current HPC
programming languages as outline in a recent community pa-
per [13]. Julia uses the LLVM framework for JIT compilation,
enabling the same runtime speed as other compiled languages
such as C. Julia is also compatible with any external library
implemented in Python, Fortran, and C. Similar to Python,
Julia’s syntax is simple and efficient and users interact either
through passing source code files as arguments to the julia
command, or optionally via its real-time interactive Read Eval
Print Loop (REPL) command line to easily add commands,
scripts, and packages.

Julia offers several advantages:

• Julia syntax is optimized for mathematics and scientific
environments similar to the formulas used by domain-
specific experts.

• JIT compilation on top of LLVM enables Julia to outper-
form other high-level languages (e.g. Python, R, Matlab)
in terms of speed.

• Its native support for AI, makes Julia a real asset for
HPC-AI integration.

• Community and integrated ecosystem invested and moti-
vated by performance and productivity.

The support of Julia for HPC, although not as mature as in
other languages, is already significant. The Julia ecosystem
provides support for parallel computation on CPUs using
Base.Threads, a Julia package implemented in pthreads on top
of LLVM, which allows the distribution of the computation
on different CPU cores by using decorators on top of loops
(similar to OpenMP and OpenACC). Julia supports GPU1

accelerator programming natively thanks to vendor’s packages,
such as CUDA.jl, AMDGPU.jl and OneAPI.jl. Other pack-
ages, such as Distributed.jl and MPI.jl [14], allow Julia codes
to run on distributed memory environments.

Julia is not different from other programming languages in
facing performance portability challenges. Currently, Julia’s
programming models tend to follow closely vendor layers
which could still be too low-level hindering programming
productivity. JACC addresses this challenge for Julia program-
mers and applications, providing an HPC portable and highly
productive model targeting current HPC CPU, GPU hardware,
which could potentially be extended to other architectures

1https://juliagpu.org/

(AI custom hardware, FPGAs), and configurations (distributed
memory, multi-device, etc.).

III. JACC DESCRIPTION

The JACC model is divided into two main components:
memory and compute (Figure 2). These components have
different implementations, with one per back end supported
(Figure 1). We implemented four back ends so far on top
of Base.Threads, CUDA, AMDGPU, and OneAPI to target
CPUs, NVIDIA GPUs, AMD GPUs, and Intel GPUs, respec-
tively.

Fig. 1. JACC model illustrating its lightweight nature on top of LLVM for
performance portable code.

Owing to the dynamic and just-in-time nature of the Julia
language, JACC differs from other existing metaprogram-
ming solutions in how the back end is chosen [1], [2].
We use Julia’s Preferences2 package, which generates the
LocalPreferences.toml file before precompilation to
store the preferences (back end) used for JACC. Additionally,
JACC leverages the recently introduced package extensions
in Julia v1.9 to allow for optional package dependencies or
weakdependencies. Therefore, vendor-specific back-end
implementations (e.g., CUDA, AMDGPU, OneAPI) inside
JACC can coexist through function overloading and multiple
dispatches without incurring additional costs when installing
JACC. The default back end is Julia’s Base.Threads imple-
mentation, which targets CPUs.

The memory management in JACC is transparent to the
programmer, and we use a very similar syntax to that used
in other Julia packages: JACC.Array. JACC.Array is
mapped on the equivalent Julia function depending on the
target back end. Notably, when using Base.Threads as the back
end, using JACC.Array is not necessary.

As depicted in Figure 2, JACC has two primary constructs:
parallel_for and parallel_reduce, and this is sim-
ilar to metaprogramming solutions in other languages [1], [2].
We also included two different variants to be chosen based on
the data layout used: unidimensional or multidimensional (up
to three dimensions). These constructs are composed of three
main components: (1) the number of iterations of the for-loop
or reduction, which is typically equal to the size of the arrays;
(2) the name of the function that defines the operations to be

2https://github.com/JuliaPackaging/Preferences.jl

1956



# Unidimensional arrays
function axpy(i, alpha, x, y)

x[i] += alpha * y[i]
end
function dot(i, x, y)

return x[i] * y[i]
end
SIZE = 1_000_000
x = round.(rand(Float64, SIZE) * 100)
y = round.(rand(Float64, SIZE) * 100)
alpha = 2.5
dx = JACC.Array(x)
dy = JACC.Array(y)
JACC.parallel_for(SIZE, axpy, alpha, dx, dy)
res = JACC.parallel_reduce(SIZE, dot, dx, dy)
# Multidimensional arrays
function axpy(i, j, alpha, x, y)

x[i,j] = x[i,j] + alpha * y[i,j]
end
function dot(i, j, x, y)

return x[i,j] * y[i,j]
end
SIZE = 1_000
x = round.(rand(Float64, SIZE, SIZE) * 100)
y = round.(rand(Float64, SIZE, SIZE) * 100)
alpha = 2.5
dx = JACC.Array(x)
dy = JACC.Array(y)
JACC.parallel_for((SIZE,SIZE),axpy,alpha,dx,dy)
res = JACC.parallel_reduce((SIZE,SIZE),dot,dx,dy)

Fig. 2. JACC front end example.

computed in each iteration of the loop; and (3) the parameters
used in the function. Another important difference between
JACC and other existing meta-programming solutions for other
programming languages, such as Kokkos, is that the function,
which defines the operations to be computed in every iteration
of the loop, has to be implemented separately and in advance
of the call of parallel_for or parallel_reduce.

To better illustrate the differences between the model imple-
mented in JACC versus other Julia packages, Figure 3 depict
an implementation of the level-1 BLAS DOT operations using
the CUDA Julia syntax. For clarity and lack of space, we had
to reduce the CUDA code, which is much larger than the one
illustrated.

As shown, JACC provides a very simple way to parallelize
codes by providing a unified front end that can be deployed
on top of other Julia packages and make use of different
architectures. When using JACC, programmers do not have
to burden themselves with low-level details at the hardware
or software levels, and this abstraction provides a high-level
and portable solution to make Julia a productive programming
solution for HPC and scientific software.

A. Differences with KernelAbstractions

KernelsAbstractions (KA) (Figure 4) is a Julia package
that enables writing GPU-like kernels to target different ex-
ecution back ends. KA is intended to be a minimal, high-
performance library that guides ways to write heterogeneous
code. However, unlike KA, the proposed JACC program-
ming model (1) avoids setting the coarse or fine granularity

function dot_cuda_kernel(SIZE, ret, x, y)
shared_mem = @cuDynamicSharedMem(Float64, 512)
i = ( blockIdx().x - 1) * blockDim().x + threadIdx

().x
ti = threadIdx().x tmp::Float64 = 0.0
shared_mem[threadIdx().x] = 0.0
if i <= SIZE
tmp = @inbounds x[i] * y[i]
shared_mem[threadIdx().x] = tmp

end
sync_threads()
if (ti <= 256)
shared_mem[ti] += shared_mem[ti+256]

end
sync_threads()
...
return nothing

end
function reduce_kernel(SIZE, red, ret)
shared_mem = @cuDynamicSharedMem(Float64, 512)
i = ( blockIdx().x - 1) * blockDim().x + threadIdx

().x
ii = i
tmp::Float64 = 0.0
if SIZE > 512
while ii <= SIZE
tmp += @inbounds red[ii]
ii += 512

end
...
return nothing

end
function dot_cuda(SIZE,x,y)
threads = min(SIZE,512)
blocks = ceil(Int,SIZE/threads)
ret = CUDA.zeros(Float64,blocks)
rret = CUDA.zeros(Float64,1)
@cuda threads=threads blocks=blocks shmem=512*

sizeof(Float64) dot_cuda_kernel(SIZE,ret,x,y)
@cuda ... reduce_kernel(blocks,ret,rret)
return rret

end
SIZE = 1_000_000
x = round.(rand(Float64, SIZE) * 100)
dx = CuArray(x)
y = round.(rand(Float64, SIZE) * 100)
dy = CuArray(y)
res = dot_cuda(SIZE, dx, dy)

Fig. 3. CUDA 1D DOT code.

based on the target back end (CPU or GPU); (2) unifies the
non-portable, vendor-specific memory allocation functionality
(e.g., Array, CuArray, ROCArray, oneArray) into a
high-level portable JACCArray; and (3) provides a high-level
descriptive solution that hides any low-level hardware/software
detail.

KA provides portability at the cost of a more demanding
and complex syntax. For example, KA requires setting the
granularity based on the back end to be used. Unlike KA,
JACC provides a high-level, transparent, portable, and simple-
to-use syntax that abstracts all low-level details of hardware/-
software specialization. These qualities make JACC a portable
and highly productive programming solution for Julia codes.

1957



@kernel function axpy_ka_kernel(alpha, x, y)
i = @index(Global)
x[i] += alpha * y[i]

end
function axpy_ka(SIZE, alpha, x, y)

backend = get_backend(x)
@assert get_backend(y) == backend
groupsize = KernelAbstractions.isgpu(backend) ?

256 : 1024
kernel! = axpy_ka_kernel(backend, groupsize)
kernel!(alpha, x, y, ndrange=SIZE)
KernelAbstractions.synchronize(backend)

end
SIZE = 1_000_000
backend = CPU/GPU
x = round.(rand(allocate(backend, Float64, SIZE)) *

100)
y = round.(rand(allocate(backend, Float64, SIZE)) *

100)
alpha = 2.5
axpy_ka(SIZE, alpha, x, y)

Fig. 4. KernelsAbstraction AXPY code.

IV. JACC IMPLEMENTATION

As with other high-level solutions that run atop multiple
back ends, a different implementation is required for each
of these back ends to leverage the respective JACC front-
end functions (Figure 1). However, the very nature of the
high-level Julia ecosystem and programming model makes this
implementation much simpler than other solutions that run on
top of other languages [2], [15], [3], [16].

#JACC.Array and JACC.parallel_for on top of Threads
function __init__()

const JACC.Array = Base.Array{T,N} where {T,N}
end
#Unidimensional
function parallel_for(N::I, f::F, x...) where {I<:

Integer,F<:Function}
Threads.@sync Threads.@threads for i in 1:N

f(i, x...)
end

end
#Multidimensional
function parallel_for((M, N)::Tuple{I,I}, f::F, x

...) where {I<:Integer,F<:Function}
Threads.@sync Threads.@threads for j in 1:N

for i in 1:M
f(i, j, x...)

end
end

end

Fig. 5. JACC.Array and JACC.parallel_for implementations on top
of Julia Threads.

To better describe the implementation of the JACC front-
end functions, Figures 5 and 7 include pseudocode for
the JACC.Array and JACC.parallel_for implemen-
tations on top of Base.Threads and CUDA, respectively.
For simplicity, we focus on the CUDA and Base.Threads
back ends and JACC.parallel_for implementations.
However, the reader can access the implementation of
JACC.parallel_reduce construct and other back ends

#JACC.Array and JACC.parallel_for on top of CUDA
function __init__()

const JACC.Array = CUDA.CuArray{T,N} where {T,N}
end
#Unidimensional
function _parallel_for_cuda(f, x...)

i = ( blockIdx().x - 1) * blockDim().x + threadIdx
().x

f(i, x...)
return nothing

end
function JACC.parallel_for(N::I, f::F, x...) where {

I<:Integer,F<:Function}
maxPossibleThreads = attribute(device(),CUDA.

DEVICE_ATTRIBUTE_MAX_BLOCK_DIM_X)
cuda_threads = min(N, maxPossibleThreads)
cuda_blocks = ceil(Int, N/cuda_threads)
CUDA.@sync @cuda threads=cuda_threads blocks=

cuda_blocks _parallel_for_cuda(N, f, x...)
end
#Multidimensional
function _parallel_for_cuda_MN(f,x...)

i = ( blockIdx().x - 1) * blockDim().x + threadIdx
().x

j = ( blockIdx().y - 1) * blockDim().y + threadIdx
().y

f(i, j, x...)
return nothing

end
function JACC.parallel_for((M, N)::Tuple{I,I}, f::F,

x...) where {I<:Integer,F<:Function}
numThreads = 16
Mthreads = min(M, numThreads)
Nthreads = min(N, numThreads)
Mblocks = ceil(Int, M/Mthreads)
Nblocks = ceil(Int, N/Nthreads)
CUDA.@sync @cuda threads=(Mthreads, Nthreads)

blocks=(Mblocks, Nblocks)
_parallel_for_cuda_MN(f, x...)

end

Fig. 6. JACC.Array and JACC.parallel_for implementations on top
of CUDA.

(e.g., AMDGPU, OneAPI) via the public JACC repository. 3

More details can be found in Appendix A.
As shown, JACC.Array is a wrapper of the corresponding

Array constructs implemented in the different back ends:
Base.Array for Base.Threads and CuArray for CUDA.
JACC adapts (in a transparent way) memory management
and granularity to fit the characteristics of the hardware and
the syntax of the models provided for that hardware. This
enables us to exploit coarse granularity for CPU architectures
while exploiting a fine-grain approach for GPU architectures.
This also affects the way memory is accessed. Multidimen-
sional arrays in Julia are stored in column-major order;
therefore, the coarse-grain parallelization or decomposition for
the Base.Threads back end must be carried out in column-
wise order. For GPUs, we exploit a fine-grain approach in
which every thread will access one single position of the
array(s) involved in the computation. The objective is to
force consecutive GPU threads to access consecutive memory
locations (i.e., coalescing memory access). This enables us

3https://github.com/JuliaORNL/JACC.jl

1958



#JACC.Array and JACC.parallel_for on top of OneAPI
function __init__()

const JACC.Array = oneAPI.oneArray{T, N} where {
T, N}

end
#Unidimensional
function _parallel_for_oneapi(f, x...)

i = get_global_id()
f(i, x...)
return nothing

end
function JACC.parallel_for(N::I, f::F, x...) where {

I <: Integer, F <: Function}
maxPossibleItems = oneAPI.oneL0.

compute_properties(device().
maxTotalGroupSize)

items = min(N, maxPossibleItems)
groups = ceil(Int, N / items)
oneAPI.@sync @oneapi items = items groups =

groups _parallel_for_oneapi(f, x...)
end
#Multidimensional
function _parallel_for_oneapi_MN(f,x...)

j = get_global_id(0)
i = get_global_id(1)
f(i, j, x...)
return nothing

end
function JACC.parallel_for((M, N)::Tuple{I, I}, f::F

, x...) where {I <: Integer, F <: Function}
maxPossibleItems = 16
Mitems = min(M, maxPossibleItems)
Nitems = min(N, maxPossibleItems)
Mgroups = ceil(Int, M / Mitems)
Ngroups = ceil(Int, N / Nitems)
oneAPI.@sync @oneapi items=(Mitems, Nitems)

groups=(Mgroups, Ngroups)
_parallel_for_oneapi_MN(f, x...)

end

Fig. 7. JACC.Array and JACC.parallel_for implementations on top
of CUDA.

to alleviate the typically high latency of the high-bandwidth
GPU memories to achieve the expected high performance that
accelerators can provide.

Notably, JACC is a synchronous API, so it is guaranteed
that the computation is finished after the invocation of any
JACC construct.

V. PERFORMANCE ANALYSIS

In this section, we want to evaluate (i) the capability of
JACC as a high-level, meta-programming and performance
portable model for transparent GPU parallelization, and (ii)
the potential overhead of JACC as a software layer on top of
Julia vendors packages. Previously these authors evaluated the
performance of Julia against other languages or models such as
Kokkos, Python, OpenMP, HIP, or CUDA on multiple HPC
configurations, concluding that Julia is competitive or even
better in terms of performance than other vendor-specific or
open-source models [17].

This section is composed of a set of well-known and
widely-used test cases and applications for HPC that we used
to evaluate the performance of JACC on four representative
HPC architectures hosted in the most advanced US DOE

Fig. 8. The 1D AXPY and DOT time on one AMD Rome CPU, one AMD
Mi100 GPU, one NVIDIA Ampere A100 GPU, and one Intel MAX 1550
GPU using device-specific and JACC models.

1959



supercomputers, such as Frontier, Aurora, or Perlmutter: an
AMD EPYC 7742 Rome CPU (64 cores), AMD Mi100 GPU,
NVIDIA Ampere A100 GPU, and an Intel MAX 1550 GPU.
The analysis focuses on evaluating the performance portability
of JACC by comparing its performance against that of the
device-specific models. In other words, we want to know if
the performance reached by JACC on top of Base.Threads,
CUDA, AMDGPU, and OneAPI is equivalent or not to codes
that use the corresponding device-specific syntax, i.e., if there
is an overhead when using JACC. Other details, including
the comparison of the performance trends on the four dif-
ferent architectures and the GPU acceleration reached versus
CPU times, are also provided. All computations are double-
precision operations. For JACC code evaluation, we used the
same JACC codes on all four architectures.

A. AXPY and DOT BLAS Operations

We use AXPY and DOT operations for our first test
case. The first operation performs a scalar-vector product and
adds the result to a vector. The second operation performs
a dot product between two vectors. These are well-known
level-1 BLAS operations used in multiple applications and
benchmarks [18], [19]. For the JACC implementations, we
use the parallel_for construct to implement the AXPY
operation and the parallel_reduce construct for the DOT
implementation (see Figure 2).

1) 1D Arrays: We begin by analyzing the performance of
1D arrays. Figure 8 shows the performance on both device-
specific codes (Base.Threads, AMDGPU, CUDA, OneAPI)
and JACC codes. We see very similar trends in performance for
both AXPY and DOT test cases on the AMD CPU. We do not
see significant differences between the performance achieved
by the device-specific codes that use the Base.Threads Julia
package for this case versus the JACC codes running on top
of the same package (Figure 5).

On the AMD GPU, we see a clear difference between
AXPY and DOT performance. This is mainly because of the
two separate kernels for DOT operations on GPUs (Figure 3)
adding extra overhead in terms of latency and CPU-GPU
communication [20], [16]. Once again, we do not see a
significant difference between the performance of device-
specific codes and JACC codes. The exception is the AXPY
operation, for which JACC codes are slower than the device-
specific codes on small- to medium-sized arrays. However,
the JACC codes provide similar performance for the AXPY
operation on computations that use large arrays.

On the NVIDIA GPU, we see a trend that is similar to
the results for the AMD GPU. However, the gap between
AXPY and DOT performance is smaller than for the AMD
GPU, and the gap is minimal when computing large vectors.
This is because of a faster CPU-GPU connection, which helps
mitigates latency. Once again, we see similar performance for
CUDA and JACC codes. Unlike with the AMD GPU, we do
not see any overhead for JACC codes when running AXPY
test cases on small- and medium-sized arrays. However, we

see a small overhead when running DOT test cases on small-
and medium-sized arrays.

Finally, on the Intel GPU, we again see a difference between
the execution times of computing AXPY and DOT. Although
very similar to the AMD GPU’s results, the gap in time
between the two operations is slightly smaller on the Intel
GPU than on the AMD GPU. In this case, we do not see any
overhead of JACC codes when running AXPY and achieve
very similar performance to the codes implemented using the
OneAPI model. However, we see some overhead for JACC
codes when running the DOT operation, especially on larger
vector sizes, and this overhead is about 35%.

When comparing CPU and GPU performance (e.g., AMD
CPU versus AMD GPU), we note that GPUs provide better
performance for AXPY operations, but this is not the case
for DOT computations. For DOT, the CPU provides better
performance than GPUs for small- and medium-sized arrays
because of the particular requirements to compute this oper-
ation on GPUs (Figures 3). Our findings are consistent with
another study that used the C++ metaprogramming Kokkos
model [20].

In terms of portability provided by JACC, we note that the
same JACC code (AXPY) running on the AMD GPU can
reach a speedup of about 70× versus the same code running
on the AMD CPU. However, for DOT products on small arrays
(which favor CPUs), the same JACC code can reach a speedup
of 2× on the AMD CPU versus the AMD GPU.

2) 2D Arrays: Next, we extend this analysis to 2D arrays.
For that, we use JACC’s multidimensional API (Figure 2).
As with the analysis of 1D arrays, we see a very similar
performance trend for AXPY and DOT computations for
device-specific codes and JACC codes on the AMD CPU.

In general, we see that the gap in performance between
AXPY and DOT computations is reduced in all GPUs. Also,
the overhead observed in the previous analysis of 1D arrays
for JACC codes is mostly absent here, except for the NVIDIA
GPU, which exhibits some overhead for JACC codes when
computing AXPY because of more allocations computed by
the JACC code. Although in most cases the number of al-
locations is similar for both code types (i.e., device-specific
and JACC), there are slightly more allocations in the JACC
code due to the metaprogramming nature of this approach
(functions are managed as one more parameter). Note that
the JACC-AXPY line overlaps with the JACC-DOT line in
the NVIDIA A100 GPU graph (Figure 9). Although similar
overlapping is shown for the Intel GPU, this happens on both
JACC and CUDA codes. Also, on the Intel GPU, the time
consumed by DOT operations is about 2× longer than the time
consumed by AXPY operations (note that we are using log.
scale for time). This is not the case for DOT computations, in
which we see very similar performance for both codes (JACC
and device-specific codes) and architectures (NVIDIA GPU
and Intel GPU). Further analysis is required to identify the
source of the performance overhead in AXPY operations on
2D arrays.

In this case (2D computations), GPUs provide better per-

1960



Fig. 9. The 2D AXPY and DOT time on one AMD Rome CPU, one AMD
Mi100 GPU, one NVIDIA Ampere A100 GPU, and one Intel MAX 1550
GPU using device-specific and JACC models.

formance than CPUs in most cases for DOT computations. In
general, by increasing the computational demand and using
2D arrays instead of 1D arrays, JACC codes can achieve
performance comparable to device-specific codes in most of
the test cases.

B. HARVEY: Lattice-Boltzmann Method

The lattice-Boltzmann method (LBM) is a widely used
method for Computational Fluid Dynamics (CFD) simula-
tions [21]. In particular, it is very popular for low Reynolds
number or laminar flow simulations, such as the ones used
by the HARVEY simulator [22]. LBM is a key component of
HARVEY, a massively parallel CFD code to study the mech-
anisms driving disease development to inform treatment plan-
ning and improve clinical care on the diagnosis and treatment
of patients suffering from vascular disease. LBM [23], [24]
is an explicit Navier-Stokes solver for weakly compressible
flows with lattice-symmetry characteristics and is used for the
conservation of the macroscopic moments [25], [26].

LBM does this by modeling the fluid as a distribution
function of microscopic particles. These dual microscopic
and macroscopic aspects are key features of the mesoscopic
method and have significant implications for LBM regular-
ization schemes. The evolution of particle distribution f is
formulated as equilibrium and non-equilibrium terms by using
the lattice-Boltzmann equation,

fi(x+ ci, t+ 1) = feq
i (x, t) +

(
1− 1

τ

)
fneq
i (x, t), (1)

for relaxation time τ , lattice site x, and time step t. The lattice
Boltzmann equation is best understood as the combination
of two steps: collision and streaming. In the collision step,
local inter-particle interaction leads to a relaxation toward the
equilibrium distribution, which is computed as f∗i (x, t) =

feq
i (x, t) +

(
1 − 1

τ

)
fneq
i (x, t) for post-collision distribution

f∗. During streaming, conversely, post-collision distribution
components advance along the lattice according to their dis-
crete velocities: fi(x+ ci, t+ 1) = f∗

i (x, t).
For this study, as we can see in Figure 10, we implemented

the 2-lattice D2Q9 pull algorithm [27], [28], which is used by
HARVEY. This approach is considered state-of-the-art and is
the fastest algorithm for LBM on both CPUs and GPUs [29],
[30]. To implement the LBM code using JACC, we used
a single multidimensional parallel_for construct (see
Figure 10).

As shown in Figure 11, JACC provides performance com-
parable to that of the device-specific models on the four
architectures used in this study. The speedup provided by
the GPU over the CPU is equivalent to the one provided
by other metaprogramming solutions [20]. Unlike the AXPY
test case on 2D arrays (multidimensional parallel_for
JACC construct), where we see a relatively small performance
overhead for JACC codes on the NVIDIA GPU, we do not
see that here. Indeed, the performance results for device-
specific codes and JACC codes are very similar. This is
because of the higher computational demand of the LBM

1961



# Implementation of the LBM 2DQ9 algorithm
function lbm( x, y, f, f1, f2, t, w, cx, cy, SIZE)
u = 0.0
v = 0.0
p = 0.0
x_stream = 0
y_stream = 0
if x > 1 && x < SIZE && y > 1 && y < SIZE
for k in 1:9
x_stream = x - cx[k]
y_stream = y - cy[k]
ind = ( k - 1 ) * SIZE * SIZE + x * SIZE + y

iind = ( k - 1 ) * SIZE * SIZE + x_stream * SIZE +
y_stream

f[trunc(Int,ind)] = f1[trunc(Int,iind)]
end
for k in 1:9
ind = ( k - 1 ) * SIZE * SIZE + x * SIZE + y
p += f[ind]
u += f[ind] * cx[k]
v += f[ind] * cy[k]

end
u /= p
v /= p
for k in 1:9
cu = cx[k] * u + cy[k] * v
feq = w[k] * p * ( 1.0 + 3.0 * cu + cu * cu -

1.5 * ( ( u * u ) + ( v * v ) ) )
ind = ( k - 1 ) * SIZE * SIZE + x * SIZE + y
f2[trunc(Int,ind)] = f[trunc(Int,ind)] * (1.0 -

1.0 / t) + feq * 1 / t
end
end
end
# Initialization
SIZE = 1_000
#We assume that the variables are already

initialized
df = JACC.Array(f)
df1 = JACC.Array(f1)
df2 = JACC.Array(f2)
dcx = JACC.Array(cx)
dcy = JACC.Array(cy)
dw = JACC.Array(w)
# Invocation of the Lattice-Boltzmann Method
parallel_for((SIZE, SIZE), lbm, df, df1, df2, t, dw,

dcx, dcy, SIZE)

Fig. 10. JACC LBM code.

implementation. This is in agreement with our findings of
the previous subsection; the higher the computational cost the
lower the potential overhead of using JACC. When comparing
the same JACC code on the AMD CPU versus the GPUs, we
see that JACC can reach a speedup of about 14× on the AMD
GPU, 20× on the NVIDIA GPU, and 6.5× on the Intel GPU.

C. MiniFE and HPCCG: Conjugate Gradient

Conjugate gradient (CG) is a well-known and widely used
iterative method for solving sparse systems of linear equations.
This algorithm is a key component in a large variety of
HPC applications, such as MiniFE [31], a proxy application
for unstructured implicit finite element codes. These systems
appear in finite difference and finite element methods, PDEs,
structural analysis, circuit analysis, and many more linear
algebra–related problems [32]. Given the ubiquity and impor-

Fig. 11. LBM time on one AMD Rome CPU, one AMD Mi100 GPU, one
NVIDIA Ampere A100 GPU, and one Intel MAX 1550 GPU using device-
specific and JACC models.

1962



tance of this operation in HPC applications, it is no surprise
that it is also used to benchmark supercomputer performance
(HPCCG)4.

# Tridiagonal Matrix-Vector Multiplication
function matvecmul(i, a1, a2, a3, x, y, SIZE)

if i == 1
y[i] = a2[i] * x[i] + a1[i] * x[i+1]

elseif i == SIZE
y[i] = a3[i] * x[i-1] + a2[i] * x[i]

else
y[i] = a3[i] * x[i-1] + a1[i] * + x[i] + a1[i] *

+ x[i+1]
end

end
# Conjugate Gradient Algorithm
function cg(SIZE, a0, a1, a2, r, p, s, x, r_old,

r_aux )
cond = 1.0
while cond <= 1e-12

r_old = copy(r)
JACC.parallel_for(SIZE, matvecmul, a0, a1, a2, p

, s, SIZE)
alpha0 = JACC.parallel_reduce(SIZE, dot, r, r)
alpha1 = JACC.parallel_reduce(SIZE, dot, p, s)
alpha = alpha0 / alpha1
negative_alpha = alpha * (-1.0)
JACC.parallel_for(SIZE, axpy, negative_alpha, r,

s)
JACC.parallel_for(SIZE, axpy, alpha, x, p)
beta0 = JACC.parallel_reduce(SIZE, dot, r, r)
beta1 = JACC.parallel_reduce(SIZE, dot, r_old,

r_old)
beta = beta0 / beta1
r_aux = copy(r)
JACC.parallel_for(SIZE, axpy, beta, r_aux, p)
cond = JACC.parallel_reduce(SIZE, dot, r, r)
p = copy(r_aux)

end
end
# Initialization
SIZE = 100_000_000
a0 = ones(SIZE) a1 = a1 * 4.0 da0 = JACC.Array(a0)
a1 = ones(SIZE) da1 = JACC.Array(a1)
a2 = ones(SIZE) da2 = JACC.Array(a2)
r = ones(SIZE) r = r * 0.5 dr = JACC.Array(r)
p = ones(SIZE) p = p * 0.5 dp = JACC.Array(p)
s = zeros(SIZE) ds = JACC.Array(s)
x = zeros(SIZE) dx = JACC.Array(x)
r_old = zeros(SIZE) dr_old = JACC.Array(r_old)
r_aux = zeros(SIZE) dr_aux = JACC.Array(r_aux)
# Invocation of the Conjugate Gradient Algorithm
cg(SIZE, a0, a1, a2, r, p, s, x, r_old, r_aux)

Fig. 12. JACC CG code.

For this study, we implemented the plain CG algorithm [18],
[19] without a precondition (see Figure 12), as the one used in
MiniFE or other libraries such as the HPCCG benchmark. This
simplifies the study of the optimizations thanks to the elimi-
nation of the preconditioning step. To this end, we generate a
diagonal-dominant tridiagonal sparse matrix (see matvelmul
in Figure 12), which is commonly used in these contexts
(e.g., in the MiniFE application and the HPCCG benchmark).
The JACC implementation of CG is composed of multiple
unidimensional parallel_for and parallel_reduce

4http://www.hpcg-benchmark.org/

invocations to compute the different steps of the algorithm,
which consists of a series of DOT and AXPY computations,
among other kind of operations.

Fig. 13. CG time on one AMD Rome CPU, one AMD Mi100 GPU, one
NVIDIA Ampere A100 GPU, and one Intel GPU using both device-specific
and JACC models.

Figure 13 shows the execution time of computing one
iteration of the CG algorithm on a tridiagonal matrix size
equal to 100M. As shown, we see similar performance on both
device-specific codes and JACC codes. Only in the Intel GPU
results do we see some overhead for running JACC, and this
finding agrees with the previous results for the 1D AXPY and
DOT test cases. We observe significant speedup using JACC
over the AMD CPU when comparing the execution times for
the AMD GPU (17×), the NVIDIA GPU (68×), and the Intel
GPU (4×).

VI. RELATED WORK

Julia’s HPC ecosystem has been an active area of explo-
ration and community engagement in recent years [13]. For
example, Ranocha et al. [33] assessed their Trixi hyperbolic
partial differential equation (PDE) solver at scale providing
similar performance to traditional HPC languages. More recent
work by Godoy et al. [9] evaluated Julia as a unified end-to-
end language for HPC workflows on Frontier (#1 supercom-
puter on the Top500 list and they found good scalability on up
to 4K GPUs (512 nodes). Shang et al. [34] conducted quantum
computational chemistry simulations achieving up to 91%
efficiency when measuring weak scaling on up to 21M cores
of the Sunway supercomputer. Lin and McIntosh-Smith [35]
used memory and compute-bound mini apps to show that
Julia’s performance is on par or slightly behind traditional
compiled languages across several CPU/GPU HPC hardware
configurations. Godoy et al. [36] compared the performance
of Julia codes against other high-level solutions such as those
based on pragmas (OpenMP and OpenACC) or metapro-
gramming (Kokkos), among others vendor-specific solutions
(CUDA and HIP) concluding that Julia is very competitive or
even faster than other solution for HPC targets. Faingnaert et
al. [37] provided optimized GEMM kernels in Julia that are
competitive with cuBLAS and CUTLASS implementations.
Giordano et al. [38] found competitive system performance

1963



for Julia’s Message Passing Interface (MPI) [39], MPI.jl, on
the Fujitsu A64FX Arm-based Fugaku system. Overall, Julia
is promising due to its compiled nature leveraging advances
in LLVM.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

We present JACC, the first and the only high-level and meta-
programming programming model for performance portable
codes in the just-in-time and LLVM-based Julia language.
JACC provides a unified front end with a near-zero overhead
when compared to CPU and GPU device-specific models
available in the Julia ecosystem. The descriptive nature of
JACC allows the compiler to perform advanced optimizations
for varying computing patterns and device types. Results
show that JACC not only eliminates the burden of device
specialization for Julia applications, thereby providing a real
performance-portable and highly productive programming so-
lution, but it also achieves significant acceleration for certain
hardware and application characteristics.

In future work, we plan to extend this effort to other plat-
forms. We will also explore novel features for a higher level
of transparency and more efficient exploitation of available
resources, including heterogeneous memory architectures and
heterogeneous multi-device nodes.

ACKNOWLEDGMENT

This research used resources of the Oak Ridge Leadership
Computing Facility and the Experimental Computing Labora-
tory (ExCL) at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the US Department of
Energy under Contract No. DE-AC05-00OR22725. This work
is funded, in part, by Bluestone, an X-Stack project in the DOE
Advanced Scientific Computing Office with program manager
Hal Finkel. This research was funded in part by the ASCR
Stewardship for Programming Systems and Tools (S4PST)
project, part of the Next Generation of Scientific Software
Technologies (NGSST). This manuscript has been authored
by UT-Battelle LLC under contract DE-AC05-00OR22725
with DOE. The US government retains and the publisher, by
accepting the article for publication, acknowledges that the
US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form
of this manuscript, or allow others to do so, for US government
purposes. DOE will provide public access to these results
of federally sponsored research in accordance with the DOE
Public Access Plan (http://energy.gov/downloads/doe-public-
access-plan).

REFERENCES

[1] D. Beckingsale, R. D. Hornung, T. Scogland, and A. Vargas,
“Performance portable C++ programming with RAJA,” in Proceedings
of the 24th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP 2019, Washington, DC, USA, February
16-20, 2019, J. K. Hollingsworth and I. Keidar, Eds. ACM, 2019, pp.
455–456. [Online]. Available: https://doi.org/10.1145/3293883.3302577

[2] C. Trott, L. Berger-Vergiat, D. Poliakoff, S. Rajamanickam, D. Lebrun-
Grandié, J. Madsen, N. A. Awar, M. Gligoric, G. Shipman,
and G. Womeldorff, “The kokkos ecosystem: Comprehensive
performance portability for high performance computing,” Comput.
Sci. Eng., vol. 23, no. 5, pp. 10–18, 2021. [Online]. Available:
https://doi.org/10.1109/MCSE.2021.3098509

[3] Z. Jin and J. S. Vetter, “Performance portability study of epistasis
detection using SYCL on NVIDIA GPU,” in BCB ’22: 13th
ACM International Conference on Bioinformatics, Computational
Biology and Health Informatics, Northbrook, Illinois, USA, August
7 - 10, 2022. ACM, 2022, pp. 69:1–69:8. [Online]. Available:
https://doi.org/10.1145/3535508.3545591

[4] B. Chapman, G. Jost, and R. Van Der Pas, “Using OpenMP,” 2008.
[5] A. Marowka, “On the Performance Portability of OpenACC, OpenMP,

Kokkos and RAJA,” in HPC Asia 2022: International Conference on
High Performance Computing in Asia-Pacific Region, Virtual Event,
Japan, January 12 - 14, 2022. ACM, 2022, pp. 103–114. [Online].
Available: https://doi.org/10.1145/3492805.3492806

[6] G. Van Rossum et al., “Python programming language.” in USENIX
annual technical conference, vol. 41, no. 1. Santa Clara, CA, 2007,
pp. 1–36.

[7] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, “Julia: A fresh
approach to numerical computing,” SIAM Review, vol. 59, no. 1, pp.
65–98, Jan. 2017.

[8] R. Ihaka and R. Gentleman, “R: a language for data analysis and
graphics,” Journal of computational and graphical statistics, vol. 5,
no. 3, pp. 299–314, 1996.

[9] W. F. Godoy, P. Valero-Lara, C. Anderson, K. W. Lee, A. Gainaru, R. F.
da Silva, and J. S. Vetter, “Julia as a unifying end-to-end workflow
language on the frontier exascale system,” in Proceedings of the SC
’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, SC-W 2023, Denver, CO,
USA, November 12-17, 2023. ACM, 2023, pp. 1989–1999. [Online].
Available: https://doi.org/10.1145/3624062.3624278

[10] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[11] S. K. Lam, A. Pitrou, and S. Seibert, “Numba: A LLVM-based Python
JIT compiler,” in Proceedings of the Second Workshop on the LLVM
Compiler Infrastructure in HPC, 2015, pp. 1–6.

[12] A. Shajii, G. Ramirez, H. Smajlović, J. Ray, B. Berger, S. Amarasinghe,
and I. Numanagić, “Codon: A compiler for high-performance pythonic
applications and dsls,” in Proceedings of the 32nd ACM SIGPLAN
International Conference on Compiler Construction, ser. CC 2023.
New York, NY, USA: Association for Computing Machinery, 2023, p.
191–202. [Online]. Available: https://doi.org/10.1145/3578360.3580275

[13] V. Churavy, W. F. Godoy, C. Bauer, H. Ranocha, M. Schlottke-Lakemper,
L. Räss, J. Blaschke, M. Giordano, E. Schnetter, S. Omlin, J. S.
Vetter, and A. Edelman, “Bridging HPC Communities through the Julia
Programming Language,” submitted for review, 2022.

[14] S. Byrne, L. C. Wilcox, and V. Churavy, “MPI.jl: Julia bindings
for the Message Passing Interface,” Proceedings of the JuliaCon
Conferences, vol. 1, no. 1, p. 68, 2021. [Online]. Available:
https://doi.org/10.21105/jcon.00068

[15] S. Yue and J. Gray, “SPOT: A DSL for extending
fortran programs with metaprogramming,” Adv. Softw. Eng.,
vol. 2014, pp. 917 327:1–917 327:23, 2014. [Online]. Available:
https://doi.org/10.1155/2014/917327

[16] P. Valero-Lara, S. Lee, M. G. Tallada, J. E. Denny,
and J. S. Vetter, “KokkACC: Enhancing Kokkos with
OpenACC,” in 9th Workshop on Accelerator Programming Using
Directives, WACCPD@SC 2022, Dallas, TX, USA, November
13-18, 2022. IEEE, 2022, pp. 32–42. [Online]. Available:
https://doi.org/10.1109/WACCPD56842.2022.00009

[17] W. F. Godoy, P. Valero-Lara, T. E. Dettling, C. Trefftz, I. Jorquera,
T. Sheehy, R. G. Miller, M. G. Tallada, J. S. Vetter, and
V. Churavy, “Evaluating performance and portability of high-level
programming models: Julia, python/numba, and kokkos on exascale
nodes,” CoRR, vol. abs/2303.06195, 2023. [Online]. Available:
https://doi.org/10.48550/arXiv.2303.06195

[18] L. Toledo, P. Valero-Lara, J. S. Vetter, and A. J. Peña, “Static graphs for
coding productivity in openacc,” in 28th IEEE International Conference
on High Performance Computing, Data, and Analytics, HiPC 2021,

1964



Bengaluru, India, December 17-20, 2021. IEEE, 2021, pp. 364–369.
[Online]. Available: https://doi.org/10.1109/HiPC53243.2021.00050

[19] S. Catalán, X. Martorell, J. Labarta, T. Usui, L. A. T. Dı́az, and
P. Valero-Lara, “Accelerating conjugate gradient using ompss,” in
20th International Conference on Parallel and Distributed Computing,
Applications and Technologies, PDCAT 2019, Gold Coast, Australia,
December 5-7, 2019. IEEE, 2019, pp. 121–126. [Online]. Available:
https://doi.org/10.1109/PDCAT46702.2019.00033

[20] P. Valero-Lara, S. Lee, J. E. Denny, K. Teranishi, J. S. Vetter,
and M. G. Tallada, “skokkos: Enabling kokkos with transparent
device selection on heterogeneous systems using openacc,” in
Proceedings of the International Conference on High Performance
Computing in Asia-Pacific Region, HPCAsia 2024, Nagoya, Japan,
January 25-27, 2024. ACM, 2024, pp. 23–34. [Online]. Available:
https://doi.org/10.1145/3635035.3635043

[21] Valero-Lara, Pedro, Martı́nez-Pérez, Ivan, Sirvent, Raül, Peña, Antonio
J., Martorell, Xavier, and Labarta, Jesús, “Simulating the behavior
of the human brain on gpus,” Oil Gas Sci. Technol. – Rev.
IFP Energies nouvelles, vol. 73, p. 63, 2018. [Online]. Available:
https://doi.org/10.2516/ogst/2018061

[22] S. Roychowdhury, S. T. Mahmud, A. X. Martin, P. Balogh, D. F.
Puleri, J. Gounley, E. W. Draeger, and A. Randles, “Enhancing adaptive
physics refinement simulations through the addition of realistic red
blood cell counts,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC
2023, Denver, CO, USA, November 12-17, 2023, D. Arnold, R. M.
Badia, and K. M. Mohror, Eds. ACM, 2023, pp. 41:1–41:13. [Online].
Available: https://doi.org/10.1145/3581784.3607105

[23] P. Valero-Lara, F. D. Igual, M. Prieto-Matı́as, A. Pinelli,
and J. Favier, “Accelerating fluid-solid simulations (lattice-
boltzmann & immersed-boundary) on heterogeneous architectures,”
J. Comput. Sci., vol. 10, pp. 249–261, 2015. [Online]. Available:
https://doi.org/10.1016/j.jocs.2015.07.002

[24] P. Valero-Lara and J. Jansson, “LBM-HPC - an open-source tool
for fluid simulations. case study: Unified parallel C (UPC-PGAS),”
in 2015 IEEE International Conference on Cluster Computing,
CLUSTER 2015, Chicago, IL, USA, September 8-11, 2015.
IEEE Computer Society, 2015, pp. 318–321. [Online]. Available:
https://doi.org/10.1109/CLUSTER.2015.52

[25] Y.-H. Qian, D. d’Humières, and P. Lallemand, “Lattice BGK models for
Navier-Stokes equation,” EPL (Europhysics Letters), vol. 17, no. 6, p.
479, 1992.

[26] X. He and L.-S. Luo, “A priori derivation of the lattice Boltzmann
equation,” Physical Review E, vol. 55, no. 6, p. R6333, 1997.

[27] P. Valero-Lara and J. Jansson, “Heterogeneous CPU+GPU approaches
for mesh refinement over lattice-boltzmann simulations,” Concurr.
Comput. Pract. Exp., vol. 29, no. 7, 2017. [Online]. Available:
https://doi.org/10.1002/cpe.3919

[28] P. Valero-Lara, “Reducing memory requirements for large size LBM
simulations on gpus,” Concurr. Comput. Pract. Exp., vol. 29, no. 24,
2017. [Online]. Available: https://doi.org/10.1002/cpe.4221

[29] J. Gounley, M. Vardhan, E. W. Draeger, P. Valero-Lara, S. V. Moore,
and A. Randles, “Propagation pattern for moment representation
of the lattice boltzmann method,” IEEE Trans. Parallel Distributed
Syst., vol. 33, no. 3, pp. 642–653, 2022. [Online]. Available:
https://doi.org/10.1109/TPDS.2021.3098456

[30] P. Valero-Lara, “Accelerating solid-fluid interaction based on the
immersed boundary method on multicore and GPU architectures,” J.
Supercomput., vol. 70, no. 2, pp. 799–815, 2014. [Online]. Available:
https://doi.org/10.1007/s11227-014-1262-2

[31] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C.
Edwards, A. Williams, M. Rajan, E. R. Keiter, H. K. Thornquist,
and R. W. Numrich, “Improving Performance via Mini-applications,”
https://github.com/Mantevo/, 2022, online accessed 20-April-2022.

[32] J. R. Shewchuk, “An introduction to the conjugate gradient method
without the agonizing pain,” USA, Tech. Rep., 1994.

[33] H. Ranocha, M. Schlottke-Lakemper, A. R. Winters, E. Faulhaber,
J. Chan, and G. J. Gassner, “Adaptive numerical simulations with
Trixi.jl: A case study of Julia for scientific computing,” Proceedings
of the JuliaCon Conferences, vol. 1, no. 1, p. 77, 2022.

[34] H. Shang, L. Shen, Y. Fan, Z. Xu, C. Guo, J. Liu, W. Zhou, H. Ma,
R. Lin, Y. Yang, F. Li, Z. Wang, Y. Zhang, and Z. Li, “Large-scale
simulation of quantum computational chemistry on a new sunway su-

percomputer,” in SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, 2022, pp. 1–14.

[35] W.-C. Lin and S. McIntosh-Smith, “Comparing Julia to Performance
Portable Parallel Programming Models for HPC,” in 2021 International
Workshop on Performance Modeling, Benchmarking and Simulation of
High Performance Computer Systems (PMBS), 2021, pp. 94–105.

[36] W. F. Godoy, P. Valero-Lara, T. E. Dettling, C. Trefftz, I. Jorquera,
T. Sheehy, R. G. Miller, M. G. Tallada, J. S. Vetter, and
V. Churavy, “Evaluating performance and portability of high-level
programming models: Julia, python/numba, and kokkos on exascale
nodes,” in IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2023 - Workshops, St. Petersburg, FL, USA,
May 15-19, 2023. IEEE, 2023, pp. 373–382. [Online]. Available:
https://doi.org/10.1109/IPDPSW59300.2023.00068

[37] T. Faingnaert, T. Besard, and B. De Sutter, “Flexible Performant GEMM
Kernels on GPUs,” IEEE Transactions on Parallel and Distributed
Systems, vol. 33, no. 9, pp. 2230–2248, 2022.

[38] M. Giordano, M. Klöwer, and V. Churavy, “Productivity meets Perfor-
mance: Julia on A64FX,” in 2022 IEEE International Conference on
Cluster Computing (CLUSTER), 2022, pp. 549–555.

[39] M. Snir, W. Gropp, S. Otto, S. Huss-Lederman, J. Dongarra, and
D. Walker, MPI–the Complete Reference: the MPI core. MIT press,
1998, vol. 1.

1965



APPENDIX

The code used for this study is hosted on GitHub:
https://github.com/JuliaORNL/JACC.jl. It follows the typical
structure of a Julia project, which includes packaging infor-
mation in the Project.toml file (including compatibility)
and the newly added weakdependencies feature for
making CUDA.jl, AMDGPU.jl, and OneAPI.jl optional back-
end dependencies. JACC makes use of Julia’s support for
testing. Listing 2 contains the steps to test JACC from a Julia
terminal.

Listing 1. Steps to run JACC.jl testing on NVIDIA systems.
# You need to be inside JACC.jl folder
using JACC
# Next you need to specify the backend to use (e.g., CUDA)
using CUDA
# Instantiate the project
] instantiate
# Run the tests
test

The test directory (in JACC.jl/test/) contains typical im-
plementation examples and testing codes (one per backend).
Continuous Integration (CI) is implemented by using GitHub
Actions runners that check Julia’s weakdependencies
compilation and run the JACC testing in CPU (Base.Threads)
and GPU (AMDGPU.jl, CUDA.jl, OneAPI.jl) modes. We plan
to extend this testing to Intel GPU hardware in the near future.

Additionally, all the benchmarks used in the paper can be
accessed via a public GitHub repository 5. The steps to follow
to run the different experiments are described in the README
file of that repository:

Listing 2. Steps to run JACC benchmarks.
git clone git@github.com:pedrovalerolara/JACC-Test-Codes.git
# Access to the benchmark (one per backend)
cd JACC-Test-Codes/benchmarks/CUDA
julia --project=.
# Instantiate Environment
] dev ../.. JACC
# Execute Benchmarks
julia --project=. benchmark.jl >& cuda.txt

Finally, to run Julia on the Oak Ridge Leadership Comput-
ing Facility’s systems (Summit and Frontier), the scripts
directory (in Julia.jl/scripts/) provides examples for simple
system-specific configurations such as the one presented in
Listing 3 for the AMD-based Frontier system.

Listing 3. Configuration script to run JACC.jl on Frontier AMD systems.
#!/bin/bash

# Change these 3 lines accordingly
PROJ_DIR=/lustre/orion/proj-shared/csc383/$USER
export JULIA_DEPOT_PATH=$PROJ_DIR/julia_depot
# Location where you cloned JACC.jl
JACC_DIR=$PROJ_DIR/ProgrammingModels.jl/JACC.jl

# Remove existing generated files and existing modules
rm -f $JACC_DIR/Manifest.toml
rm -f $JACC_DIR/LocalPreferences.toml
module purge

# Load required modules
module load PrgEnv-cray/8.3.3 # has required gcc
module load rocm/5.4.0
module load julia # default is 1.9.0

# Required to point at underlying modules above
export JULIA_AMDGPU_DISABLE_ARTIFACTS=1

# Instantiate the project by installing packages in Project.toml
julia --project=$JACC_DIR -e 'using Pkg; Pkg.instantiate()'

5https://github.com/pedrovalerolara/JACC-Test-Codes

1966


