Performance Characterization and Provenance of
Distributed Task-based Workflows on HPC
Platforms

Amal Gueroudji!, Chase Phelps?, Tanzima Z. Islam?, Philip Carns',
Shane Snyderl, Matthieu Dorier!, Robert B. Ross!, Line C. Pouchard?
'Argonne National Laboratory, *Texas State University, Sandia National Laboratories
Email:{agueroudji,carns,snyders,mdorier,rross } @anl.gov, {chaseleif,tanzima} @txstate.edu, {Icpouch} @sandia.gov

Abstract—Understanding performance and provenance of
task-based workflows poses significant challenges, particularly in
distributed configurations where resources are shared by multiple
applications. Task-based workflow management systems further
complicate performance predictability because of their dynam-
icity that subtly alters task execution order from run to run. In
this paper we propose a layered characterization framework for
performance and task provenance for Dask.distributed workflows
running on high-performance computing (HPC) platforms. It
collects data from jobs, the workflow management system, and
the operating system to aid in understanding the performance
of these workflows. Our approach encompasses three main
contributions: first, an extension of Dask.distributed to capture
high-fidelity task provenance using Mochi data services; second,
the adaptation of the established HPC I/O characterization tool
Darshan to gather high-fidelity I/O data, thereby enhancing the
granularity of our analysis; and third, a framework to combine
and process the collected data and provide helpful insights into
performance characterization and reproducibility, alongside our
lessons learned.

Index Terms—High-performance computing (HPC), task-based
workflows, performance characterization, performance variabil-
ity, provenance, performance reproducibility, Dask

I. INTRODUCTION

Scientific workflows executed on high-performance, het-
erogeneous computing environments rely on the complex
composition of system software, middleware services, and ap-
plication codes [1]. Pythonic task-based programming models
are increasingly prevalent for large-scale computations and
data-intensive processing because of their high productivity.
Examples of such tools include Parsl [2], Dask [3], and
RADICAL-Pilot [4].

In contrast to traditional MPI-based workflows, which are
predominantly static in nature and where the tasks assigned to
each MPI process are known in advance, task-based workflows
are dynamically scheduled. These workflows rely on a runtime
scheduler to efficiently orchestrate resources within a single
application. Scheduling decisions are made transparently and
dynamically as the workflow progresses, and tasks are dis-
patched to available resources at runtime, resulting in a lack
of a priori information regarding the specific tasks that each
worker will execute. While this approach to resource manage-
ment hides the complexity of the underlying infrastructure and
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the resource/task management from users, it also obscures a
potential source of eventual performance variability.

Reproducibility, defined as the ability to reliably recreate
the same results, outputs, or behaviors from a given set of in-
puts, configurations, and conditions [5], encounters significant
challenges in computational sciences because of complicating
factors such as non-deterministic ordering of floating-point
operations, parallel executions, workflow patterns, and job
scheduling.

In this paper we study Dask workflows to identify task
behavior, performance, and provenance to determine which
tasks, task behaviors, and system characteristics are respon-
sible for the largest variations during multiple executions of
the same set of codes in the same configurations. We use
these performance variability measures to help us determine
the sources of overall irreproducibility in distributed workflow
performance. In particular, we aim to answer the following
research questions in this work:

1) What workflow management system (WMS) capabilities
are required to extract this information?

2) What information from a dynamically scheduled work-
flow is required to characterize performance variations?

3) What correlations between tasks and events would help
us investigate performance variability and understand the
sources of latency and irreproducible performance?

4) Can we identify gaps in the metadata collection?

This work addresses these questions for Dask workflows
by collecting data from different layers and tools and storing
the data in a common tabular format with shared identifiers
between the different sources, facilitating compliance with
FAIR principles [6], especially interoperability and reusability.
Our contributions include the following:

e Data collection at the WMS level: we extend
Dask.distributed to extract high-fidelity task provenance
by leveraging a Mochi HPC [7] event streaming service
known as Mofka. This enables us to track the detailed
lineage and execution history of individual tasks without
perturbing the workflow system.

« Data collection at the I/O level and correlation with task
data: we adapt the well-established HPC 1/O characteriza-



tion tool Darshan [8] to gather more granular performance
data including detailed insights into task execution, in-
cluding I/O behavior, with thread-level fidelity.

Analysis framework: we introduce a framework for dis-
secting and understanding the performance dynamics of
Dask.distributed workflows.

Lessons learned: we discuss the challenges and lessons
learned in this study and identify additional metadata that
needs to be collected to explain the gaps.

The remainder of this paper is organized as follows. In
Section II we summarize related work, and in Section III
we present our proposed implementation with Dask, Dar-
shan, and Mofka. Section III-E discusses provenance and
metadata extraction, and Section IV proposes an evaluation
including analysis and visualization. In Section V we discuss
the challenges and lessons learned during our investigationln
Section VI we summarize our conclusions and briefly discuss
ideas for future work.

II. RELATED WORK

Many HPC performance profiling tools are available to aid
in understanding and optimizing the performance of scientific
applications [9], [10]. Although these tools are highly effective
across a wide range of applications, they do not include
native workflow support. Specifically, they do not present tasks
as distinct entities from threads or processes, nor do they
understand the specifics of task execution in a WMS, since
these vary by implementation. Thus, it is difficult for these
tools to map from low-level performance counters to specific
tasks and dependencies, which is crucial for understanding
these workflows.

Several task-based workflows offer their own integrated
performance profiling tools tailored to the WMS they operate
within. However, these tools often lack integration with other
profilers or performance characterization tools, limiting their
versatility and interoperability. For example, Dask [3] provides
a comprehensive dashboard for diagnostics, including task
progress, bytes stored by workers, CPU utilization, and other
relevant metrics, but this capability is available only to Dask
workflows. Similarly to Dask, Ray [11] offers a web-based
dashboard with a rich set of data and plots about cluster
utilization and resource status, node count and status, and
running tasks. Ray also introduces the capability to filter
logs using Loki,! enhancing workflow behavior understanding.
Pegasus [12] provides information about the running workflow
and job statistics, integrity metrics (checksum), task status and
data, and a notification system for both job and workflows.

Despite the richness of data provided by these tools, ex-
tracting and processing this information for further analysis,
such as performance reproducibility studies or correlation with
data from other tools, remain challenging because the collected
data is often specific to each workflow system. This limitation
underscores the need for improved interoperability and data
exchange mechanisms across different performance profiling

Uhttps://github.com/grafana/loki

2033

tools and between different layers. Reconciling data sources
from heterogeneous services (e.g., mapping from low-level
performance counters to specific workflow tasks) is a nontriv-
ial step required for analysis and is not resolved with these
tools. Before improving the reproducibility of performance
in HPC workflows, one needs to be able to measure it at a
low level of task or function granularity instead of aggregate
statistics, as is commonly done with current performance tools.
This work addresses these challenges for Dask workflows by
collecting data from different layers and tools and storing the
data in a common tabular format, facilitating compliance with
FAIR principles, especially interoperability and reusability.

III. PROPOSED IMPLEMENTATION

In this paper we focus on studying the performance and the
provenance of Dask.distributed workflows while running on
HPC platforms. Nevertheless, our approach can be used for
other workflow management systems and tools.

A. Dask.distributed workflows

Dask.distributed [3] is a distributed task-based framework
and WMS known for its versatility and productivity. It offers
multiple approaches to writing programs, ranging from uti-
lizing lower-level decorators and futures for task creation to
leveraging higher-level distributed interfaces for well-known
libraries such as NumPy, pandas, and Scikit-learn. In Dask, a
task is essentially a function that executes within a distributed
process known as a worker, and a workflow is described as
a directed acyclic graph, where nodes are tasks and edges
are task dependencies. A typical Dask cluster comprises three
primary entities: (a) the client is responsible for creating and
submitting tasks to a runtime scheduler; (b) the scheduler
orchestrates tasks within the cluster, dispatching tasks to avail-
able workers and managing their execution; and (c) workers
are the computational units responsible for executing tasks,
communicating with each other, and storing data.

B. Aggregating workflow instrumentation with Mofka

The volume and velocity of telemetry generated at scale
have the potential to exacerbate performance challenges for in-
strumented workflows. We must therefore take care to collect,
aggregate, and store this telemetry using lightweight mecha-
nisms. This could be accomplished with a global system-level
metrics service, such as LDMS [13], or with a local user-
level service that runs in tandem with the workflow. We have
elected to employ the latter approach in this study in order
to maximize portability. Specifically, we leverage the Mofka?
event streaming service from the Mochi [7] composable data
services framework to manage characterization data.

An event streaming service that runs in tandem with the
workflow offers several advantages for this use case. The event
streaming model, as pioneered in distributed services such as
Kafka [14], is intrinsically designed to ingest large volumes
of small but highly concurrent events. Events are buffered,
aggregated, partitioned, transported, and stored by using a

Zhttps://mofka.readthedocs.io/en/latest/



combination of memory, network, and disk resources to avoid
overwhelming producers or consumers. The event streaming
model enables our framework to support both in situ analysis
and postprocessing analysis. Event streams are persistent data
structures, and the API for consuming events is identical
whether consumers process events individually in real time
or in bulk at the completion of a workflow. This property
also means that workflow execution and in situ analysis can
each proceed at their own pace, in contrast with more conven-
tional time-multiplexed in situ methods. Moreover, services
that are implemented by using the Mochi composable data
services framework can be executed in user space without
administrative privileges. They can be executed alongside
the workflow, on any platform, and scaled as needed for
a given workflow instance. We also thus avoid introducing
system software dependencies that would require a specialized
platform configuration or administrative privileges.

Mofka is a distributed event streaming service, analogous to
the more widely known Katka [14] but optimized specifically
for HPC use cases. It leverages HPC architectural features such
as high-performance networks, remote direct memory access,
high-performance local NVMe storage devices, and high-
concurrency multicore CPUs; and it uses an event structure tai-
lored to suit high-volume scientific data. Mofka is constructed
using Mochi [7], a methodology and collection of reusable
components for rapid development of HPC data services.
Mofka uses the following reusable Mochi microservices’:
Yokan to store key/value data, Warabi to store raw (blob) data,
Bedrock for deployment and bootstrapping, and SSG for group
membership and fault detection.

Mofka client applications can act as producers or con-
sumers. A producer pushes events that are organized into
topics in the servers. Each event has two parts. The first
is a data portion that contains the raw data payload. The
second is metadata expressed in JSON format to describe
the data. Consumers subscribe to specific topics and pull
events from servers to process them. Mofka can be tuned
for specific use cases and optimizes transfers using a non-
blocking API, background network and processing threads,
batching strategies, prefetching, and customizable serializa-
tion/deserialization of event metadata. In our framework we
treat Dask as the producer (injecting units of characterization
data as events into Mofka) and our analysis tools as the
consumer (processing and interpreting characterization data to
provide insight into reproducibility). More details about how
we integrated Dask with Mofka can be found in Section III-E2.

C. Characterizing I/0O behavior with Darshan

Collecting task-level performance and provenance data is
not always enough for reproducibility analysis. I/O behavior,
for example, is a key factor in overall workflow performance.
I/O is also known to be a prominent source of performance
variability at scale on HPC systems [15], [16]. We have opted
to use Darshan [8] to capture workflow I/O behavior because

3https://mochi.readthedocs.io/
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of its minimal overhead, proven usage in the HPC community,
and availability of flexible analysis tools [17].

Darshan is a lightweight application-level I/O character-
ization tool designed to capture the I/O behavior of HPC
applications at scale. It collects a plethora of information,
including I/O operation counts, access sizes, and cumulative
times, and provides a correlation of the I/O operations at the
granularity of OS processes and MPI ranks. In this paper we
use Darshan eXtended Tracing module (DXT) [18] to collect
full tracing of POSIX read/write APIs. We enhance DXT to
collect finer-grained information in order to correlate the I/O
operations with specific Dask tasks. More detail about this
enhancement can be found in Section III-E3.

D. Multisource data analysis and visualization engine

To understand the performance characteristics of different
entities of the ecosystem from worker, client, task, and thread
levels, we present two types of analysis: (1) single-source
and (2) multisource. In a single-source analysis, we retrieve
information from a single log and correlate variability in a met-
ric of interest with the factors present within the source. For
instance, the Darshan log alone is sufficient to understand I/O
characteristics of different threads as a workflow progresses.

However, complexity arises as different components of the
composable architecture generate data in diverse formats. For
instance, the format of the logs generated by Darshan does not
match those generated by Dask, making the data aggregation
process challenging. While many performance trace collection
tools provide a GUI-based interface to analyze data [9], [19],
[20], these tools typically work only with data in a specific
format, such as a performance trace file.

To address these challenges in wrangling data collected
across various ecosystem layers for extracting insights about
how different factors correlate with performance variability, in
this paper we present PERFRECUP, a Python-based data ag-
gregation, analysis, and visualization engine. The PERFRECUP
engine reads performance data and logs generated by many
layers from different tools such as Darshan, Dask, and job
schedulers and provides uniform data structures built atop the
pandas library [21].

PERFRECUP uses the data (e.g., a view from a specific
worker) to focus analyses on regions of interest within all
output. Specifically, PERFRECUP combines information from
Darshan logs and from Dask scheduler and worker logs,
including task keys, dependencies, state transitions, location
in the distributed memory (worker, thread), worker commu-
nication, and other events from the clients, workers, and
scheduler such as the unresponsiveness of the Tornado event
loops or garbage collection interruptions, to create pandas
DataFrames as “views.” For instance, both Darshan and Dask
logs contain pthread ID and timestamps that can be used
to align specific events. The amount of communication and
I/O, aligned by execution time, can be compared across several
runs to identify whether variability exists and relate variability
to task, network, and I/O statistics.
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Fig. 1: Example data provenance chart for an HPC workflow.
Provenance is collected at the hardware, system software, and
application layers. Dask is shown as a representative WMS
while Darshan is shown as a representative performance tool.

E. Provenance and metadata extraction

In a typical Dask.distributed workflow, after acquiring the
requested resources, the client and workers connect to the
scheduler. The client creates and submits task graphs, and the
workers run assigned tasks, save, and serve data. In this section
we present an overview of the data provenance chart of Dask
workflows and then detail the integration of Dask with Mofka
and Darshan.

1) Data provenance chart

In this section we present the data provenance chart and
detail the need for and impact of the collected data at each
layer. In Figure 1 we show the metadata collected at the hard-
ware infrastructure, system software and job configurations,
and application layer including the WMS and the profiler
components.

In hardware infrastructure we collect platform characteris-
tics, including CPU, GPU, SSD, memory, PFS, and network
topology characteristics. Then, in system software and job
configurations, we collect data about the OS, loaded modules,
compilers, and installed packages and configurations. We
also collect job-level data, including job scripts and logs, to
provide insight into the requested and allocated resources.
These first two layers introduce the potential for performance
unpredictability. For example, the allocated nodes may vary in
performance due to factors such as network topology. More-
over, if the Dask scheduler and worker nodes are connected
to different switches, some workers may experience increased
latency. Furthermore, communication between workers may
vary depending on their placement, that is, the worker to
node assignment. Thus, we not only incorporate infrastructure,
software, and job allocation but also package configuration
details, such as Dask’s timeouts, heartbeat intervals, and
communication settings from the distributed.yaml file.
In the application layer we collect the data from the workflow
management system and profilers and performance tools. In
the WMS we collect the client code, the number of task
graphs, and eventual configuration changes. Additionally, we
collect client logs that may contain warnings or other infor-
mation about the running workflow. When tasks arrive at the
scheduler, we extract all task-related data, such as task keys,
groups, prefixes, and dependencies. We also capture all task
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Fig. 2: Dask—Mofka integration.

state transitions, scheduling evolution, and task performance.
Here, we keep the scheduler logs, which contain data about
the connection/disconnection of the clients and workers, in-
formation, warnings, and eventual errors while running tasks.
When a task is dispatched to a worker, we gather task state
transitions in the worker to identify the time spent in a worker
before execution; we also collect communication data between
different workers. In addition, we collect worker logs, which
may contain information including garbage collection status,
and event loop warnings. All data collected at this layer is
streamed in situ to Mochi servers for processing.

I/O performance can be a highly variable component of
overall workflow performance [22]. We therefore collect I/O
counters using an augmented version of the Darshan I/O
characterization tool.* Task-granular I/O characterization pro-
vides a means to evaluate the cost of I/O and the impact of
alternative I/O strategies within overall workflow performance.

2) Dask—Mofka plugins

To efficiently gather extensive task provenance data from
Dask workflows, we have introduced a new extension to Dask
that streams this data via Mofka. We have developed two
components serving as plugins for the Dask scheduler and
worker classes. These plugins are incorporated into the sched-
uler and worker launch processes. Their primary function is to
intercept specific calls within the classes and extract pertinent
data from the ongoing events. For example, during a task state
transition, our plugins capture crucial details such as the task
key, group, prefix, initial state, final state, timestamp, and the
stimuli that triggered this transition. Upon task completion,
we retrieve additional information, including the IP address of
the worker where the task was executed, the thread ID, start
and end times, and the size of the task result. Our plugins
facilitate comprehensive tracking and analysis of task behavior
and workflow progression within the Dask environment. This
information enables users to gain deeper insights into the
performance and execution dynamics of distributed workflows.
Utilization of this information during runtime to enhance the
management of computational tasks is left for future work.

3) Adapting Darshan to enable task-level I/0O analysis

We instrument each worker with our modified version of
Darshan in order to incorporate I/O instrumentation into our

4The Darshan modifications demonstrated in this study will be incorporated
into a future Darshan point release.



provenance data. In Dask.distributed, workers execute many
tasks within the context of a single POSIX process through
the use of an independent thread for each task. Therefore,
we extend the DXT module to capture the POSIX thread
(pthread) IDs. These can later be correlated with the thread
identifier returned by threading.get_ident () at the
Dask.distributed level. This additional information, along with
timestamps, enables us to correlate Darshan records with
specific tasks, thereby providing a more detailed understanding
of a task’s performance and associated I/O operations. We
have opted to collect data from Dask and Darshan separately
and then fuse them at analysis time to avoid cross-component
communication overhead as well as to make the contribution
generic and tool-agnostic.

IV. EVALUATION
A. Platform and software

We use the Argonne Leadership Computing Facility su-
percomputer Polaris, which has 560 nodes. Each node has
one 2.8 GHz AMD EPYC Milan 7543P 32 core CPU with
512 GB of DDR4 RAM, 4 NVIDIA A100 GPUs, and a pair
of Slingshot 11 network adapters. We have used Lustre file
systems, each residing on an HPE ClusterStor E1000 platform
equipped with 100 petabytes of usable capacity across 8,480
disk drives, with an aggregate data transfer rate of 650 GB/s.

B. Dask workflows

We have collected performance and provenance data from
three workflows inspired by Dask examples® and its integration
with other tools such as Pytorch.® The workflows differ from
each other in aspects such as data type and size, the type,
size, and number of tasks, whether created automatically or
manually, and how the task graphs are submitted (step by
step or all at once). We have performed 10 runs for the
ImageProcessing and the ResNet 152 workflows and 50
runs for the XGBOOST because it showed more variability. We
have used a similar job configuration for all the experiments:
2 worker nodes, 4 workers per node, 8 threads per worker.
ImageProcessing pipeline: This workflow consists of
a four-step pipeline: normalization, grayscale, Gaussian filter,
and segmentation. In this workflow only Dask APIs are used
(dask.array and dask.image). The advantage of using
those libraries is that they provide a high-level API and create
the corresponding Dask task graph under the hood. We run
one task graph per step and use the Breast Cancer Semantic
Segmentation dataset [23].

Fine-tuned ResNet152 batch prediction: We have fine-
tuned the pretrained Pytorch ResNetl152 image classification
model on the supervised part of the Imagewang.” The dataset
corresponds to a subset of 20 classes from the original
ImageNet dataset. In this workflow we have three main

Shttps://examples.dask.org/

Shttps://saturncloud.io/docs/examples/python/pytorch/
gs-03-pytorch- gpu-dask-single-model/

https://github.com/fastai/imagenette
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Fig. 3: Relative time spent per workflow in I/O, communica-
tion, and computation and total wall time.

functions decorated with @dask.delayed to create tasks:
load, transform, and predict.

Training a regression model using XGBOOST: This workflow
trains a regression model to predict trip duration using New
York City High Volume For-Hire Vehicle trip records.® We
have used the parquet data records from 2019 through 2024,
with a total size of 20 GiB. High-level methods such as
xgboost.dask.train and xgboost.dask.predict
are used, and the underlying task graph is created au-
tomatically, thanks to the use of Dask libraries such as
dask.array and dask.dataframe.

C. High-level analysis

Figure 3 shows the relative time spent per workflow (Sec-
tion IV-B), and Table I provides a high-level synopsis of
the characteristics of these workflows. This analysis studies
the variability observed in each of the three phases—I/O,
communication, and computation—and the total wall time.
The x-axis of Figure 3 shows the workflows, and the y-axis
displays the normalized average time spent in each phase (we
normalize the y-axis for readability as workflows vary in total
duration). The error bars, a key element, depict variability
across all runs of each workflow.

The I/O bar represents the sum of the I/O operations
collected from Darshan reports, the communication bar is
the sum of all incoming communications to the workers,
and the computation bar is the sum of the computation time
within tasks. The total bar represents the wall time for the
workflow as a whole, including workflow coordination time
(e.g., connecting to the scheduler, waiting for workers, creating
the task graph) in addition to time spent in I/O, communi-
cation, and computation. Note that the I/O, communication,
and computation times are non-exclusive and may overlap,
and they can be different from run to run (see Table I).
The overall ImageProcessing and ResNet 152 workflow
wall times are relatively short (around one hundred seconds)
and do not allow sufficient time to amortize the coordination
overheads, leading to a disproportionately long total time. This
is not the case for XGBOOST. In this figure we gather data
from multiple runs and multiple sources within each run and
present an overview of each phase’s duration and variability.

Shttps://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
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However, this gives only a very high-level summary about
the performance. We delve into more details of each phase
in the next section in order to understand the performance of
individual tasks and workflows.

‘ Workflows ImageProcessing ResNetl52 XGBOOST ‘
Task graphs 3 1 74
Distinct tasks 5440 8645 10348
Distinct files 151 3929 61
1/O operation 5274-5287 2057-2302° 867-1670
Communications 3141-3247 3751-3976 1464-2027

TABLE I. Workflow Characteristics.

D. Detailed analysis

In this section we show the most relevant analysis for
each workflow. These analyses were not possible with the
default Dask dashboard and give important insights about
1/O behavior, communication patterns, task duration, warning
distribution, and all types of correlations between them. This
is a small subset of the type of analysis we are able to perform
but do not show here; examples include task category (type)
analysis within one or multiple runs (performance, variability,
distribution, I/O per task, and so), zooming through a specific
time period (get all events, compute/communication/I/O statis-
tics), and comparison of scheduling strategies over runs such
as whether tasks were scheduled in the same order or not.

1) I/0O distribution within a run

Figure 4 presents the I/O characteristics of the
ImageProcessing workflow across threads, as the
workflow progresses. The x-axis shows the application’s
elapsed time, the y-axis shows the thread ID, horizontal lines
indicate I/O duration, the color represents the type of the
1/O (read in red, write in blue), and the opacity of the lines
represents relative /O size—the darker the color, the larger
the I/O size.

We observe three read phases (red), each followed by a write
phase. The written images in Phases 2 and 3 are smaller (a few
kilobytes, hence appearing as a lighter blue) than the original
images (80 MB). We observe small I/O sizes compared with
the image sizes: 10-25 read operations of 4 MB each are

9The 1/O operation count for ResNet152 is incomplete due to default
Darshan instrumentation buffer limits. We will increase this limit and explore
the impact in future work.
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Fig. 5: Time spent in interworker communication over time
for ResNet152. The color and shape represent whether
the workers were on the same node, and the relative size
corresponds to the transfer size, respectively.

performed per image. This translates to 10-25 1/O per Dask
task calling dask_image.imread, which may be a factor
contributing to performance variability that we were not able
to see at the Dask level.

As noted in Table I, the former workflow comprises three
distinct task graphs while the latter is a single task graph.
The three ImageProcessing task graphs are executed in
sequence, which means that transitions between task graphs act
as a form of synchronization, in turn producing bursts of simul-
taneous I/O activity rather than a uniformly distributed pattern.
This is likely to make the ImageProcessing workflow
more sensitive to fluctuations in storage system performance
at scale and thus hinder performance reproducibility.

2) Communication distribution within a run

Figure 5 illustrates the variability in communication du-
ration as the size of messages varies. The x-axis shows
the sizes of messages transferred by different threads of the
ResNet 152 workflow, the y-axis shows the time spent in a
communication (seconds), and the color indicates whether a
communication is performed across nodes or within a single
node. From the figure we can observe several communications
near the beginning of the workflow where the communication
time was relatively long, and these communications are almost
evenly split between inter- and intranode. Further data is
needed to explain why these small communications exhibit
this performance abnormality.

3) Task duration and Dask warnings

This analysis aims to connect multiple variables to
visualize their relationships and interactions across different
dimensions, highlighting patterns and correlations in the
data. The first column displays the workflow’s elapsed time,
the second shows the task category, the third indicates
which thread performs the task, the fourth presents the task
output size in megabytes, and the fifth column shows the
overall task duration in seconds. We use a color scale from
white to red to represent task durations; red lines indicate
tasks with longer durations. Examples of task categories
include read_parquet-fused-assign, getitem,
random_split_take, and drop_by_shallow_copy.

From Figure 6 we observe that the longest tasks (red lines)
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belong to the read_parquet-fused-assign category,
which includes I/O and other operations. This task category
arises from Dask’s task-graph optimization process, where
I/O operations are combined with consuming tasks into a
single node of the task graph to enhance data locality. We
also notice that the size of these tasks, which represents the
size of the task’s output data in Dask, is significantly larger
than the recommended 128 MB by the Dask developers. This
observation indicates a potential cause of suboptimal work-
flow performance, including performance variability. Note that
tasks with sizes smaller than 128 MB have light grey lines
leading to the bottom of the task duration coordinate.

We also collect warnings from the Dask scheduler
and worker logs regarding the responsiveness of worker’s
event loop'® and garbage collection events. We hypothe-
size that these warnings may be correlated with the slow-
down of the Dask system and running tasks. Figure 7 de-
picts the distribution of these warnings. From this figure
we indeed observe that there are 297 unresponsive event
loop warnings generated in the first 500 seconds of the
workflow, which correlates perfectly with the long-running
read_parquet—-fused-assign tasks (red lines).

E. Task provenance summary

Thanks to our multisource data collection, correlation,
and analysis, we are able to construct a full lineage
of every task in the workflow. Figure 8 shows a sum-
mary of the provenance data of a given task, whose key
is (' getitem—_get_categories—24266c¢c..’, 63).

10Dask is built on Tornado and uses coroutines for concurrency.
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Fig. 8: Example of task provenance summary.

This task comes from the XGBOOST workflow; it has been
submitted within the second task graph. We also have full
dependency information, including status and location, but it
is omitted from this figure because of space limitations. Every
state transition is captured with the location and timestamp
(example of a path under the states node in the figure). Once
the task in computed, the output of the task lives in the
distributed memory of Dask. We capture the data movements
(tasks) between workers, and thus all locations of the given
task, if duplicated. Moreover, we capture high-fidelity 1/O
records including the parallel file system (PES), file path, I/O
type, size, location in the file, and timestamp.

V. LESSONS LEARNED

Performance and data provenance studies are more chal-
lenging with distributed task-based workflows than with clas-
sical MPI workflows, as tasks are dynamically dispatched to
workers at runtime rather than statically assigned to known
processes in advance. This dynamicity results in performance
unpredictibility and variability even when running in the same
environment and configuration. Dask uses various heuristics
to optimize task placement and memory footprint, but factors
such as allocated nodes, physical distance between the sched-
uler and the worker nodes, and network topology contribute
to a high performance variability. Additionally, initial task
placement can lead to different communication patterns (see
number of communications in Table I), further impacting
performance. Moreover, some workflow management systems
implement work stealing strategies, which occur when idle
workers request to run tasks originally dispatched to busy
workers. Work stealing is a runtime decision that may neg-
atively impact overall performance because of expensive data
movements or unforeseen effects in future task dispatching.

Performance and data provenance study is nontrivial. Hid-
den details from the user perspective (e.g., I/Os, communica-
tions, work stealing) render data gathered from a single source
insufficient to fully understand performance and its variability.
Therefore, data from different layers in the software stack is
collected by using various tools to provide complementary
insights into task-based workflow performance.

Furthermore, aggregating and correlating diverse data from
different sources into a single database and ensuring FAIR
principles pose challenges. Even when the data collected at
each layer respects the FAIR principles within the tool/layer,
the aggregated data might not. For instance, without adding
the POSIX thread ID and timestamps to both Darshan and
Dask reports, I/O operations would not be correlated with the



corresponding tasks, thus creating a lack of interoperability.
Even if we do not have a perfect FAIR system yet, we have
stored the data and metadata in a unique tabular format, with
at least one common identifier between every two different
data sources. For instance, tasks are identified by unique keys
generated by Dask, start/end timestamps, the worker where
they ran, and POSIX thread IDs. The scheduler and workers
are identified by their IP/Port addresses and hostnames. I/O
operations are identified by hostnames, POSIX thread IDs,
and timestamps. Depending on the information needed, one or
multiple identification fields can be utilized, and data coming
from different sources is findable with the same identifiers.

VI. CONCLUSIONS AND FUTURE WORK

Performance characterization of HPC workflows is chal-
lenging and complex for distributed task-based workflows,
where low-level aspects may be hidden and there is no
prior knowledge of resource management or task scheduling.
In this paper we proposed a layered architecture to collect
performance and data provenance of HPC workflows. We have
provided an implementation using Dask.distributed WMS,
alongside the proven I/O characterization tool Darshan and
the Mofka streaming service. We have showed a subset of the
analysis we can perform using data collected from multiple
layers, and we have shared our lessons learned on data collec-
tion and aggregation, as well as performance characterization
insights for task-based workflows.

In future work we will run larger-scale studies and ex-
plore collecting data from other sources such as TAU [10]
and system-level network monitoring tools. We will shift to
capturing Darshan records and pushing them to Mofka at
runtime to have a fully online system. We also will explore
options for dynamically adjusting our data capture in response
to changes in workflow behavior. Although anticipated to be
negligible, future work will include a thorough performance
characterization of the overhead of Darshan and Mofka within
Dask workflows. Another direction to consider is how to better
understand distributed workflows running on heterogeneous
architectures such as GPUs and FPGAs. Collecting data from
tools such as NVIDIA NSIGHT and PyTorch Profiler for arti-
ficial intelligence workloads would improve our understanding
of these workflows.
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