
Laminar 2.0: Serverless Stream Processing with
Enhanced Code Search and Recommendations

Daniel Rotchford
University of St Andrews

School of Computer Science
dr207@st-andrews.ac.uk

Samuel Evans
University of St Andrews

School of Computer Science
sje7@st-andrews.ac.uk

Rosa Filgueira
University of Edinburgh

EPCC
r.filgueira@epcc.ed.ac.uk

Abstract—This paper presents Laminar 2.0, an enhanced
serverless framework for running dispel4py streaming work-
flows. Building on Laminar 1.0, this version introduces im-
proved dependency management, client-server functionality, and
advanced deep learning models for semantic search. Key inno-
vations include a structural code-to-code search using simpli-
fied parse syntax trees (SPTs) for detecting similar Processing
Elements (PEs) or workflows, even from incomplete code. Ad-
ditionally, Laminar 2.0 optimizes text-to-code search through
better preprocessing of PEs. Our evaluation shows significant
performance improvements over the previous version.

Index Terms—Serverless computing, streaming workflows, se-
mantic code search, Laminar, dispel4py.

I. INTRODUCTION

Serverless computing [Kumar(2019)] has emerged as a
transformative paradigm in cloud computing, offering scal-
ability, cost-effectiveness, and simplicity in deploying ap-
plications. However, the surge in data-intensive applications
and the demand for real-time processing present new chal-
lenges [Shafiei et al.(2022)] for existing frameworks. Tradi-
tional serverless architectures struggle to handle continuous
data streams efficiently, resulting in bottlenecks and latency
issues. Supporting stateful computations within a serverless
environment also becomes complex due to the need to manage
state across distributed, ephemeral instances.

To address these challenges, we introduced Laminar
1.0 [Zahra et al.(2023)], an open-source serverless stream-
based processing framework with deep learning code search.
Unlike traditional frameworks, Laminar effectively handles
data streams and supports stateful computations by leverag-
ing the dispel4py Python library [Filgueira et al.(2014)],
[Liang et al.(2023)]. dispel4py’s support for parallelism
enables concurrent data processing, while abstract workflow
descriptions in Python empower users to construct complex
stream processing pipelines.

Building on the success of Laminar 1.0, we present
Laminar 2.0 1, which introduces significant enhancements,
including advanced deep learning-based semantic code search,
code completion, and code summarization capabilities. A crit-
ical aspect of optimizing workflow development and execution
in serverless environments is the effectiveness of search capa-
bilities within registries. These searches can be categorized

1https://github.com/StreamingFlow

into literal and semantic searches, with semantic searches
further divided into text-to-code and code-to-code searches.

In Laminar 1.0, we utilized the UniXcoder
model [Guo et al.(2022)] for text-to-code searches and
the ReACC-py-retriever [Lu et al.(2022)] for code-
to-code PE searches. While effective, these models had
limitations with partial and structurally diverse code snippets.
To address these limitations and enhance search capabilities,
we have integrated the structural code search approach
proposed in Aroma [Luan et al.(2019)], originally designed
for Java code snippets. This method uses simplified parse
trees to compare code snippets based on their structure,
enabling more accurate code-to-code searches, especially for
incomplete code fragments. Integrating Aroma into Laminar
2.0 significantly enhances code recommendations and search
functionalities. The main contributions of this work are:

• Enhanced client-side functionality with improved usabil-
ity and dynamic workflow execution.

• Full Python 3.10+ compatibility, leveraging the latest
features for better performance.

• Support for dynamic process allocationand real-time data
streams within serverless environments.

• Streamlined workflow registration, resource management,
and auto-provisioning.

• Optimized execution engine with Dockerized architecture
for scalable deployment.

• Advanced search and code recommendation capabilities,
including structural and semantic searches.

• Improved automated description generation for PEs and
workflows, boosting search accuracy.

The paper is organized as follows: Section II reviews rele-
vant technologies. Section III offers an overview of Laminar
2.0, followed by key enhancements in Section IV . Sec-
tion V explores advanced search functionalities. Section VI
details the code recommendation including the integration of
Aroma. Section VII presents performance evaluations, and
Section VIII compares Laminar 2.0 with other frame-
works. Finally, Section IX concludes the paper and suggests
future work.

2088979-8-3503-5554-3/24/$31.00 ©2024 IEEE
DOI 10.1109/SCW63240.2024.00261

II. BACKGROUND

A. dispel4py

dispel4py 2 is a parallel stream-based dataflow frame-
work for data-intensive applications. It simplifies workflow
creation and execution through automatic parallelization and
abstract workflow descriptions. Workflows are directed acyclic
graphs (DAGs) with nodes representing Processing Elements
(PEs) and edges representing data flow, enabling efficient,
concurrent data processing. Key components include:

• Processing Elements (PEs): Fundamental units of com-
putation that perform specific tasks and can be reused
across different workflows.

• Abstract Workflow: Represents logical connections be-
tween PEs, outlining computational sequences and data
transformations. It is what the user describes.

• Mappings: Translates abstract workflows onto execu-
tion systems, including sequential and parallel (e.g.,
MPI [Forum(1994)], Multiprocessing 3, Redis [Eddel-
buettel(2022)]) alternatives.

• Concrete Workflow: During enactment, dispel4py
builds the concrete workflow based on user-specified
mappings and process numbers. This workflow is exe-
cuted by the compute infrastructure.

• Workload Allocation: dispel4py supports static
workload distribution with mpi and multiprocessing
mappings. Dynamic allocation, introduced in [Liang
et al.(2022)], allows adaptive resource allocation to PEs
using the Redis mapping.

Figure 1 illustrates the dispel4py workflow architecture,
showing interconnected PEs within a workflow graph executed
in parallel. Users define abstract workflow graphs, specify
mappings and process numbers, and dispel4py automat-
ically creates and executes the concrete workflow.

Fig. 1: Example of a dispel4py workflow using the Multi
mapping with five processes.

Note that in this work, we also updated dispel4py
from Python 2.7 to Python 3.10+, enhancing performance and
leveraging the latest Python features.

2https://github.com/StreamingFlow/d4py
3https://docs.python.org/3/library/multiprocessing.html

1 class IsPrime(IterativePE):
2 def __init__(self):
3 IterativePE.__init__(self)
4 def _process(self, num):
5 # this PE consumes one input and produces

one output
6 if all(num % i != 0 for i in range(2, num)):
7 return num

Listing 1: IsPrime PE checks whether a given number is
prime and returns the number if it is.

Listing 1 provides the code for the IsPrime PE in the
‘isprime wf.py’ workflow (used in Figure 5a). The core func-
tionality of this PE is within the _process function, where
the prime-checking logic is implemented.

B. Serverless Computing

Serverless computing abstracts server management, allow-
ing developers to focus on writing code. It automatically scales
resources and charges based on execution time, making it
cost-effective for applications with variable workloads. Key
benefits include automatic scaling, reduced operational costs,
and simplified deployment processes. However, it also intro-
duces challenges such as cold start latency, limited execution
duration, and complexities in state management and inter-
service communication.

C. Language Models and Transformers

Advanced transformer-based natural language processing
models have revolutionized code understanding and genera-
tion. They are used for tasks such as semantic code search,
summarization, and completion. Notable examples include
CodeT5 [Wang et al.(2021)], UniXcoder [Guo et al.(2022)],
and ReACC-py-retriever [Lu et al.(2022)]. These mod-
els, leveraging large-scale pre-training and fine-tuning, have
been selected for Laminar 2.0 following extensive evalu-
ation in our previous work [Zahra et al.(2023)].

D. Semantic Code Search and Code Recommendation

Efficient semantic code search in Laminar 2.0 enhances
developer productivity by simplifying the discovery of relevant
code snippets and workflows. In serverless environments, ef-
fective search capabilities are crucial for managing and reusing
code components, significantly streamlining the development
process. Code search can be categorized into text-to-code and
code-to-code searches. Text-to-code search involves retrieving
code that is semantically similar to a given text-based descrip-
tion. This approach uses advanced natural language processing
(NLP) and machine learning models to understand the context
and meaning of the text input and find relevant code snippets
that match the described functionality. In Laminar 2.0, this
capability is implemented using CodeT5 and UniXcoder
advanced deep learning models (see Section V).

Code-to-code search identifies similar code based on an
input code snippet. This search is useful for code completion
and clone detection and can be performed in three ways:

1) Syntactic similarity: Finds identical or nearly identical
code snippets, similar to a text editor search.

2089

2) Semantic similarity: Identifies functionally equivalent
code segments with minor differences, useful for finding
code clones.

3) Structural similarity: Compares the overall structure
of code snippets rather than focusing on exact syntax. It
is ideal for completing partial code snippets and making
code recommendations.

Laminar 2.0 employs structural similarity through the
integration of Aroma (see Sections II-E and VI).

E. Aroma
Aroma [Luan et al.(2019)] 4 is a code recommendation

tool for discovering relevant code snippets in large codebases.
Originally for Java, Aroma uses structural similarity with
simplified parse trees (SPTs) to compare snippets, identifying
common coding patterns.

Fig. 2: Code to Parse Tree to Feature Vector

Fig. 3: Aroma code recommendation pipeline

As shown in Figure 2, Aroma converts code snippets
into parse trees [Candillon(2008)]. The subsequent steps in
Figure 3 ensure efficient code recommendations.:

• SPT Generation: Converts parse trees into streamlined
representations using ANTLR (Section II-F), preserving
structure while abstracting non-essential details.

• Feature Extraction and Search: Generalizes variable
names and encodes context, using matrix multiplication
for quick snippet identification.

4https://github.com/facebookresearch/aroma-paper-artifacts/tree/main

• Prune and Rerank: Eliminates irrelevant segments and
reranks results based on structural similarity.

• Clustering: Groups similar snippets with iterative clus-
tering, enhancing recommendations.

• Creating Recommendations: Prunes a snippet against
others in its cluster to form the final recommendation.

F. ANTLR: ANother Tool for Language Recognition

ANTLR [Parr(2013)] is a tool that generates parsers from
grammar definitions to parse languages, building parse trees
that provide a structural representation of the code. In
Laminar 2.0, we used ANTLR to generate our own parsers
for Python code. These parse trees are then transformed into
SPTs. The process includes: a) Grammar Definition to define
the syntax rules and structure of the target language; b) Parser
Generation where ANTLR generates a parser and lexer based
on the grammar definition; and c) Parsing Code where the
parser processes input code to create a parse tree.

III. LAMINAR 2.0 OVERVIEW

Laminar 2.0 enhances the original framework with new
features for serverless dispel4py streaming workflows. It
supports user operations like registering users, workflows, and
PEs; running workflows in various modes; listing registry
contents; updating descriptions; and performing advanced se-
mantic or literal searches. Additionally, it offers code recom-
mendations, making it a versatile tool for developers and re-
searchers. dispel4py automatically parallelizes workflows,
enabling Laminar 2.0 to support seamless and efficient
parallel execution.

Fig. 4: Laminar 2.0’s new architecture with containerisation

The key components of Laminar 2.0—the client5,
server6, registry, and execution engine7—have undergone sub-
stantial enhancements. Container management has been inte-
grated for easier deployment and scalability. The architecture,
shown in Figure 4, fully supports Python 3.10+, allowing users
to utilize the latest features of dispel4py.

The client provides a user-friendly interface for register-
ing and managing PEs and workflows, performing semantic
searches, running workflows, and retrieving context-aware
code completions. Enhancements improve usability and func-
tionality. The registry stores detailed metadata for users,

5https://github.com/StreamingFlow/dispel4py-client/tree/main
6https://github.com/StreamingFlow/dispel4py-server
7https://github.com/StreamingFlow/dispel4py-execution

2090

PEs, and workflows, facilitating advanced search capabilities
and efficient workflow management. The server coordinates
system functionality, organized into layers for controllers,
services, models, and data access. It handles client requests,
manages resources, and supports dynamic workflow execu-
tion, improving resource management. Finally, the execution
engine executes workflows serverlessly, supports auto-import
mechanisms for dependency management, and operates in
local and remote environments with minimal configuration.

IV. LAMINAR 2.0 CORE ENHANCEMENTS

This section introduces the key enhancements of the main
components that mark the evolution to Laminar 2.0.

A. Client: Client Functions

Laminar 2.0 significantly enhances the client-side inter-
face, streamlining usability by automating complex mapping
parameters. Users can now execute dynamic workflows with
simplified commands. For example, a dynamic workflow with
five iterations and processes can be initiated with a single
command, as demonstrated in Listing 3. This process was
more difficult in Laminar 1.0, as shown in Listing 2. The
execution engine now automatically optimizes the number of
processes, which can be adjusted in the configuration settings.

1 client.run(graph, input=5, process=Process.DYNAMIC,
\

2 args=edict({'num':5, 'iter':5, 'simple':False, \
3 'redis_ip':'localhost', 'redis_port':'6379'}))

Listing 2: Running a workflow dynamically in Laminar 1.0

1 client.run_dynamic(graph, input=5)

Listing 3: Running the same workflow in Laminar 2.0

These changes significantly reduce code complexity and
enhance usability. Laminar 2.0 also introduces parallel
execution options, including static workload distribution with
multiprocessing and dynamic distribution with Redis, ensuring
efficient workflow execution across diverse environments. Ta-
ble I lists all the available client functions in the framework.
Examples using these functions are available at 8.

B. Client: Command Line Interface (CLI)

To further simplify user interactions, a new CLI was
introduced in Laminar 2.0, as shown in Figures 5a and 5b.
The CLI allows users to search, register, and run workflows
easily, providing functionalities for managing the registry and
executing workflows. In Figure 5a, the isprime_wf.py
generates a user-defined number of random numbers (e.g. -i
10, generates 10 numbers) and prints only the prime ones.

The CLI offers commands like remove_all to delete all
registered PEs and workflows, and help to list commands,
enhancing ease of use. Conversely, client functions (Table I)
offer granular control, enabling script or Jupyter notebook

8https://github.com/StreamingFlow/dispel4py-client/tree/main/CLIENT
EXAMPLES

Function Description
register Registers a new user
login Logs in an existing user
register PE* Registers a new PE
register Workflow** Registers a new workflow
get PE Retrieves a PE by name or ID
get Workflow Retrieves a workflow by name or

ID
get PEs By Workflow Retrieves all PEs associated with a

workflow
get Registry Retrieves all items in the registry
describe Provides a description of a PE or

workflow
update PE Description* Updates a PE’s description
update Workflow Description* Updates a workflow’s description
remove PE Removes an existing PE
remove Workflow Removes an existing workflow
remove All* Removes all PEs and workflows
search Registry Literal** Performs a literal search
search Registry Semantic** Performs a semantic search
code Recommendation* Performs a code recommendation
run** Executes a workflow sequentially
run multiprocess* Executes a workflow in parallel
run dynamic* Executes a workflow using REDIS

TABLE I: Client func.: *new functions, **improved functions

(a) CLI: help command and registering a workflow
(isprime_wf.py).

(b) CLI: help run command and running the workflow (ID 169)
in parallel with multiprocessing.

Fig. 5: CLI:(a) Registering a workflow; (b) Running a workf.

integration for tasks like registering, removing, and describing
PEs and workflows. Users can interact with Laminar via the
CLI for command-line tasks or client functions of Table I for
more complex scripting and automation. Instructions for both

2091

methods are provided in the User Manual available at 9.

C. Client: Automatic Descriptions
Laminar 1.0 automatically generated PE descriptions

using the CodeT5 Language model when not provided by
users, crucial for advanced search functionalities (see Sec-
tions V). Laminar 2.0 improves this by utilizing the full
PE class context instead of just the PE _process() method
(where the logic of a PE is programmed), resulting in more
accurate descriptions. It also extends automatic description
generation to workflows, creating a class named after the
workflow and including all PE functions as methods for com-
prehensive descriptions. Users can update these automatically
generated descriptions via the CLI or client functions (see
Table I), with changes reflected in the registry.

D. Registry: Database Improvement
To enhance the stability and scalability of Laminar 2.0,

the database schema was updated to efficiently store larger
datasets. The registry now uses MySQL to hold essential
information about workflows and PEs. Previously, Python
code was stored as a String field, which limited storage size.
We have transitioned to character large objects for storing
code and embeddings, accommodating increased data storage
requirements and ensuring better performance and scalability.

Fig. 6: Updated Database Schema

The database schema has been further normalized to elim-
inate redundancy and ensure data integrity. New attributes
and tables have been introduced to enhance its structure. The
updated schema, illustrated in Figure 6, shows the new tables
and indexes to improve performance. Key elements of the new
registry’s database are summarized in Table II.

E. Execution Engine and Client: True-Streaming
A major improvement in Laminar 2.0 is the shift from

batch to stream-based communication between the client and
execution engine, enhancing real-time data processing. In
Laminar 1.0, the engine used HTTP/1.1, running the entire
workflow, capturing the output to stdout, and sending the
complete response back to the client, which was inefficient for
real-time processing.
Laminar 2.0 now leverages HTTP/2 streaming, allowing

independent, bidirectional frames between client and server10.

9https://github.com/StreamingFlow/dispel4py-client/wiki
10https://www.rfc-editor.org/info/rfc9113

Table Name Description
User Stores user information. Each user can be associated

with multiple workflows, ensuring a one-to-many
relationship.

Workflow Contains details about each workflow. Each work-
flow can have multiple PEs and can be executed
multiple times by different users.

Processing
Element

Stores information about the processing elements.
PEs are reusable components that can be associated
with multiple workflows.

Execution Tracks the execution of workflows. It includes
execution-specific details. Each execution record is
linked to a workflow and user.

Response Captures the results of workflow executions. Each
response is linked to a specific execution.

TABLE II: Key Elements of the Updated Database Schema

This ensures efficient, real-time data processing and minimizes
latency by sending outputs as they become available. The
execution engine uses Flask’s response streaming, transferring
stdout to a concurrent queue, enabling real-time workflow
output reading and line-by-line streaming to the client. The
client was also adapted to receive this stream data.

F. Server and Execution Engine: Resource Management

In Laminar 1.0, managing resources required by work-
flows in dispel4py posed several challenges. Resources,
such as input files or other necessary data, were transferred
to the execution engine by serializing a directory named
resources/ and including it in the HTTP request to the
server. This approach necessitated manual management of the
resources/ directory for each workflow execution, leading
to repeated transmission of potentially large files.
Laminar 2.0 streamlines this process by allowing users

to specify a list of required resources with the execution
request. The server checks its cache for these resources and,
if any are missing, responds with a resources message
detailing the required files. New endpoints on the execution
engine and server accept HTTP multipart requests for these
files. Upon receiving the resources, the execution engine
verifies their presence and proceeds with workflow execution.
This method eliminates the need for a dedicated resources
directory and allows direct file path specification, improv-
ing transparency and easing debugging. Additionally, a new
caching mechanism reduces the need for retransmitting large
files, optimizing the resource management process.

V. ADVANCED SEARCH FEATURES

Laminar 1.0 provided advanced features like literal
term search, semantic code search, and code completion. In
Laminar 2.0, we have enhanced these features to improve
user experience and efficiency. We evaluated several meth-
ods for code and text search, selecting the most effective
approaches to ensure robust search functionalities.

A. Literal Searches

Laminar supports literal searches, enabling users to find
workflows and processing elements (PEs) by matching search
terms in their names or descriptions. This highlights the
importance of having detailed descriptions for all PEs and

2092

workflows as introduced in Section IV-C. Figure 7 shows an
example of a literal search for the term ‘words’ in both PEs and
workflows, displaying the matching results from the registry.

Fig. 7: Search for the term ‘words‘ in both PEs and workflows.

B. Semantic Code Searches
Semantic code search, or text-to-code search (see Sec-

tion II-D), involves retrieving code semantically similar to
a text-based description. In Laminar 2.0, this capability
leverages two advanced deep learning models: CodeT5 for
generating descriptions and UniXcoder for embedding them.
When a user registers a workflow (along with its PEs) or a PE
directly, Laminar automatically generates their descriptions
if not provided and creates normalized description embeddings
using UniXcoder, which are then stored in the registry. The
choice of this model was validated in our previous work [Zahra
et al.(2023)]. When a user performs a semantic code search,
the system encodes the input query and compares it to precom-
puted embeddings of PEs and workflows stored in the registry.
The core mechanism utilizes cosine similarity to measure the
semantic closeness between the user’s query embedding and
the descriptions’ embeddings of PEs or workflows.

Fig. 8: Semantic search for PEs using a descriptive query.

The Figure 8 shows an example of a semantic search, where
the term ‘a pe that is able to detect anomalies’ is used to
find relevant PEs. The semantic search process, begins by
normalizing the response data and encoding the user’s query.
The similarity scores are computed, and the results are sorted
to identify the top matches. By default, the system returns the
top five results, but this can be configured as needed.

VI. AROMA FOR LAMINAR

In Laminar 1.0, code-to-code search was implemented
using the ReaCC-py retriever model, which excelled at
clone detection by recalling functions from identical or seman-
tically equivalent code. However, this approach was limited
in aiding the development process, as it primarily focused
on identifying identical existing PEs based on provided code.
To enhance code recommendation capabilities, we integrated
Aroma (introduced in Section II-E), a tool designed to provide
developers with recommendations of existing functions based
on partial code snippets. This approach better assists develop-
ers by allowing them to see completed PEs that contain code
similar to their snippets. The integration required adapting
Aroma to parse Python code into simplified parse trees (SPTs)
using ANTLR (see Section II-F). Python ANTLR lexers and
parsers are now available in our source code 11.

When a PE is registered, the client automatically extracts
the full class definition, and the source code is then parsed
into an SPT, which is a parse tree that abstracts away non-
essential details while preserving the hierarchical structure.
Features capturing the syntactic and structural elements of the
code are extracted from the SPT and stored in the registry as
embeddings in JSON format (see ‘sptEmbedding’ in Figure 6).
These embeddings enable Laminar to compare code snippets
and provide recommendations based on structural similarity.

A. Code Recommendation Mechanism

When a code recommendation is initiated, the input query is
parsed into an SPT, and features are extracted. These features
are compared against stored PE ‘sptEmbedding’ using cosine
similarity to identify the top similar PEs. The results are
ranked based on similarity scores and formatted to display
details such as name, description, and code snippets. Unlike
the original Aroma algorithm, our implementation uses cosine
similarity for efficiency, simplicity, and scalability, without the
need for complex clustering or reranking steps. By default,
laminar returns up to five PEs with a similarity score above
6.0, a configurable parameter.

Fig. 9: Example of using the CLI for code recommendation.

11https://github.com/StreamingFlow/dispel4py-client/tree/main/Aroma

2093

For workflow code recommendations, the input query
is parsed into an SPT, features are extracted, and simi-
lar PEs are identified. Workflows containing these PEs are
retrieved, ranked by similarity, and detailed information is
displayed. As shown in Figure 9, code recommendations can
still use the ReaCC-py retriever model by specify-
ing --embedding_type llm, but the default is Aroma
(‘spt’). Users can retrieve the source code of PEs or workflows
using the describe command and their IDs.

VII. EVALUATIONS

A. Dataset CodeSearchNet PE Creation

To facilitate a comprehensive evaluation of our system,
we utilized the CodeSearchNet [Husain et al.(2019)] dataset,
which contains a large collection of Python functions (450k)
paired with their corresponding text descriptions. These func-
tions were converted into PEs using ANTLR, ensuring compat-
ibility with Laminar’s proprietary PE format. Additionally,
PEs that were semantically similar, based on their textual de-
scriptions, were grouped together. Each PEs in the new dataset
was given a unique identifier to avoid ambiguity, particularly
in cases where functions might have duplicate names. This
new CodeSearchNet PE dataset served as the foundation for
evaluating various functionalities within Laminar.

B. Description Generation

We evaluated the CodeT5 model for generating PE de-
scriptions in Laminar. In Laminar 1.0, descriptions were
derived only from the _process() method, often resulting
in insufficient context and poor performance. Laminar 2.0
addresses this by expanding description generation to include
the entire class definition, significantly improving relevance
and quality, as shown in Figures 10a and 10b.

(a) CodeT5 descriptions from just the _process method.

(b) CodeT5 descriptions using the full PE class.

Fig. 10: Descriptions generated from different code contexts.

C. Semantic Code Searches Evaluation

We evaluated Laminar’s text-to-code search functional-
ity introduced in Section V-B using our CodeSearchNet PE
dataset. For each PE, descriptions were generated using
CodeT5, and embeddings were created with UniXcoder,
then stored in the system’s registry for semantic search. The

evaluation process involved automated querying with natu-
ral language descriptions from the original CodeSearchNet
dataset. These queries were matched against the stored em-
beddings to measure retrieval effectiveness. Performance was
assessed using precision and recall metrics: precision reflects
the proportion of relevant PEs retrieved, and recall indicates
how many relevant PEs were successfully identified. The F1-
score provides a balanced measure of precision and recall.

Fig. 11: Precision-recall for text-to-code search.

Figure 11 presents the precision-recall curve. Our method
achieved a best F1 score of 0.61, indicating a balance in text-
to-code search performance.

D. Code Recommendation Evaluation

To evaluate the code-to-code search capabilities in Sec-
tion VI, we compared the Aroma algorithm with the previous
ReaCC-py from Laminar 1.0 using the CodeSearchNet
PE dataset. We conducted experiments to assess the precision
and recall of both models, using each PE as a query to test
their retrieval effectiveness. To simulate real-world scenarios,
we progressively reduced the input snippet sizes.

Figures 12 and 13 show that Aroma maintains high pre-
cision with full code snippets (0% dropped) and performs
better with partial snippets (50% and 75% dropped), while
ReaCC-py retriever exhibits a steeper precision decline
as more results are retrieved and code is omitted. At 90% code
omission, both models struggle, but Aroma still outperforms
ReaCC-py retriever. Overall, Aroma achieved a max-
imum F1-score of 0.63, significantly higher than ReaCC-py
retriever’s best of 0.24.

VIII. RELATED WORK

Comparison with other serverless frameworks like
FuncX [Li et al.(2022)], PyWren [Jonas et al.(2017)],
Apache OpenWhisk12, and Apache Flink [Katsifodimos and
etc(2015)] highlights Laminar 2.0’s unique strengths

12https://openwhisk.apache.org/documentation.html

2094

Fig. 12: Precision-recall for Aroma.

Fig. 13: Precision-recall for ReaCC-py retriever.

in handling streaming data and integrating deep learning
models for advanced code search and completion. Laminar
2.0 offers a more developer-friendly environment with its
enhanced search and completion features, making it stand
out in the domain of serverless computing for stream-based
workflows. Furthermore, Senatus [Silavong et al.(2021)], an
improvement to Aroma, further enhances structural code
recommendation using Locality Sensitivity Hashing (LSH).

IX. CONCLUSIONS AND FUTURE WORK

Laminar 2.0 brings enhancements to the original frame-
work, elevating its capabilities for managing serverless stream-
ing workflows, advanced code searches and recommendations.
With improved client functionality, full Python 3.10+ support,
and a scalable, Dockerized architecture, Laminar 2.0 of-
fers a robust environment for developers. Future work will
focus on supporting multiple execution engines, and refining
deep learning models, including LSH for structural code.

REFERENCES

[Candillon(2008)] William Candillon. 2008. Parse Tree.
http://pecl.php.net/package/Parse Tree.

[Eddelbuettel(2022)] Dirk Eddelbuettel. 2022. A Brief Introduction to Redis.
arXiv:2203.06559 [stat.CO]

[Filgueira et al.(2014)] Rosa Filgueira, Iraklis Klampanos, and etc. Krause.
2014. dispel4py: A Python Framework for Data-Intensive Scientific
Computing. 2014 International Workshop on Data Intensive Scalable
Computing Systems (2014). https://doi.org/10.1109/DISCS.2014.12

[Forum(1994)] Message P Forum. 1994. MPI: A Message-Passing Interface
Standard. Technical Report. USA.

[Guo et al.(2022)] Daya Guo, Shuai Lu, Nan Duan, and etc. 2022. UniX-
coder: Unified Cross-Modal Pre-training for Code Representation. In
Proceedings of the 60th Annual Meeting of the Association for Compu-
tational. Association for Computational Linguistics, 7212–7225. https:
//doi.org/10.18653/v1/2022.acl-long.499

[Husain et al.(2019)] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, and etc.
2019. CodeSearchNet Challenge: Evaluating the State of Semantic Code
Search. CoRR abs/1909.09436 (2019). arXiv:1909.09436 http://arxiv.
org/abs/1909.09436

[Jonas et al.(2017)] Eric Jonas, Shivaram Venkataraman, Ion Stoica, and
Benjamin Recht. 2017. Occupy the Cloud: Distributed Computing
for the 99%. CoRR abs/1702.04024 (2017). arXiv:1702.04024 http:
//arxiv.org/abs/1702.04024

[Katsifodimos and etc(2015)] P Carbone Asterios Katsifodimos and etc.
2015. Apache FlinkTM: Stream and batch processing in a single engine.
Bull. IEEE Comput. Soc. Tech. Comm. Data Eng 36, 4 (2015).

[Kumar(2019)] Manoj Kumar. 2019. Serverless architectures review, future
trend and the solutions to open problems. American Journal of Software
Engineering 6, 1 (2019), 1–10.

[Li et al.(2022)] Zhuozhao Li, Ryan Chard, Yadu Babuji, and etc. 2022.
Federated Function as a Service for Science. IEEE Transactions
on Parallel and Distributed Systems 33, 12 (dec 2022), 4948–4963.
https://doi.org/10.1109/tpds.2022.3208767

[Liang et al.(2022)] Liang Liang, Rosa Filgueira, Yan Yan, and Thomas Hei-
nis. 2022. Scalable adaptive optimizations for stream-based workflows
in multi-HPC-clusters and cloud infrastructures. Future Generation
Computer Systems 128 (2022), 102–116. https://doi.org/10.1016/j.
future.2021.09.036

[Liang et al.(2023)] Liang Liang, Heting Zhang, Guang Yang, and etc.
2023. Optimization towards Efficiency and Stateful of dispel4py. In
Proceedings of the SC ’23 Workshops (Denver, CO, USA) (SC-W ’23).
2021–2032. https://doi.org/10.1145/3624062.3624281

[Lu et al.(2022)] Shuai Lu, Nan Duan, Hojae Han, Daya Guo, and etc.
2022. ReACC: A Retrieval-Augmented Code Completion Framework.
arXiv:2203.07722 [cs.SE]

[Luan et al.(2019)] Sifei Luan, Di Yang, Celeste Barnaby, and etc. 2019.
Aroma: code recommendation via structural code search. Proc. ACM
Program. Lang. 3, OOPSLA, Article 152 (oct 2019), 28 pages. https:
//doi.org/10.1145/3360578

[Parr(2013)] Terence Parr. 2013. The Definitive ANTLR 4 Reference (2 ed.).
Pragmatic Bookshelf, Raleigh, NC. https://www.safaribooksonline.
com/library/view/the-definitive-antlr/9781941222621/

[Shafiei et al.(2022)] Hossein Shafiei, Ahmad Khonsari, and Payam Mousavi.
2022. Serverless computing: a survey of opportunities, challenges, and
applications. Comput. Surveys 54, 11s (2022), 1–32.

[Silavong et al.(2021)] Fran Silavong, Sean J. Moran, and Antonios Geor-
giadis etc. 2021. DeSkew-LSH based Code-to-Code Recommendation
Engine. CoRR abs/2111.04473 (2021). arXiv:2111.04473 https:
//arxiv.org/abs/2111.04473

[Wang et al.(2021)] Yue Wang, Weishi Wang, Shafiq Joty, and etc. 2021.
CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
for Code Understanding and Generation. https://doi.org/10.48550/
ARXIV.2109.00859

[Zahra et al.(2023)] Zaynab Zahra, Zihao Li, and Rosa Filgueira. 2023.
Laminar: A New Serverless Stream-based Framework with Semantic
Code Search and Code Completion (SC-W ’23). 2009–2020. https:
//doi.org/10.1145/3624062.3624280

2095

