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Abstract—We explore the development of a performance-
portable CPU/GPU ecosystem to integrate two of the US Depart-
ment of Energy’s (DOE’s) largest scientific instruments, the Oak
Ridge Leadership Computing facility and the Spallation Neutron
Source (SNS), both of which are housed at Oak Ridge National
Laboratory. We select a relevant data reduction workflow use-
case to obtain the differential scattering cross-section from data
collected by SNS’s CORELLI and TOPAZ instruments. We
compare the current CPU-only production implementation using
the Garnet Python multiprocess package based on the Mantid
C++ framework against our proposed CPU/GPU implementation
that uses the LLVM-based, just-in-time Julia scientific language
and the JACC.jl performance-portable package. Two proxy apps
were developed: (i) an app for extracting relevant Mantid kernels
(MDNorm) in C++ and (ii) the Julia MiniVATES.jl miniapp. We
present performance results for NVIDIA A100 and AMD MI100
GPUs and AMD EPYC 7513 and 7662 CPUs. The results provide
insights for future generations of data reduction software that
can embrace performance portability for an integrated research
infrastructure across DOE’s experimental and computational
facilities.

Index Terms—Performance portability, experimental facilities,
High-Performance Computing, Julia, LLVM

I. INTRODUCTION

Oak Ridge National Laboratory (ORNL) hosts two of the
US Department of Energy’s (DOE’s) largest scientific user fa-
cilities: the Oak Ridge Leadership Computing Facility (OLCF)
and the Spallation Neutron Source (SNS). The OLCF houses
two of the most powerful supercomputers in the world—the
GPU-accelerated Frontier and Summit.1 ORNL is also home
to experimental neutron science facilities, including the SNS,
the High-Flux Isotope Reactor (HFIR), and the next-generation
Second Target Station (STS). The OLCF has been pushing the
limits of leadership computing for scientific discovery over
the last two decades, and, with the deployment of Frontier,
recently ushered in the exascale era [1]. SNS, HFIR, and
the upcoming STS provide cutting-edge experimental neutron
scattering facilities to study the structure and properties of
materials used across several industries and domains. ORNL’s
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world-class expertise and rich history in high-performance
computing (HPC) [2] and neutron science [3] have had sig-
nificant impact on DOE’s scientific mission.

To continue this tradition of excellence, computation and
data management must scale up with every generation of
instrument and data acquisition technique [4]. As such, the
recent DOE Integrated Research Infrastructure (IRI) [5] pro-
gram aims to provide a seamless integration of computa-
tional, experimental, and observational capabilities to advance
DOE’s science mission. IRI’s requirements for performance,
interoperability, and extensibility require rethinking existing
algorithms and implementations for future applications.

In this paper, we describe incorporating HPC capabilities,
specifically performance-portable CPU/GPU computing, into
a science use-case that connects the SNS and OLCF facil-
ities. We focus on a computationally expensive algorithm
for calculating the neutron scattering cross-section of single-
crystal materials [6]. The current CPU-only implementation
is widely used in the data reduction of time-of-flight (TOF)
measurements on the SNS’s CORELLI [7], [8] and TOPAZ [9]
instruments. Given the large volume of data, increasingly com-
plex data processing techniques, and the relative stagnation
of single-core CPU performance, portable HPC paradigms
offer a significant opportunity to advance science through
accelerated and efficient computation (e.g., near–real time data
processing, raw data processing). To this end, we developed
proxy applications [10] to capture relevant computational
aspects and enable performance portability by using the Julia
language [11] and the JACC.jl [12] package. In the narrative
that follows, we will

• provide an understanding of the unique challenges to con-
necting ORNL experimental and computational facilities
(Section II),

• outline a methodology for applying our proposed
performance-portable ecosystem using proxy applications
for existing SNS neutron science cases (Section III),

• quantify the potential performance improvements from
the proposed ecosystem on CPU/GPUs from multiple
vendors (Section IV), and

• provide future directions that can impact the science
missions of ORNL facilities (Section VI).
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Fig. 1. Representation of current (blue) and potential (red) integrated facility workflows for performance-portable codes.

II. BACKGROUND

As depicted in Fig. 1, the targeted workflow components
consist of five stages: (i) experiment conducted at target
instrument; (ii) instrument data acquisition; (iii) data pro-
cessing/reduction on SNS compute systems; (iv) remote user
access (portal, notebook, or ssh console); and (v) connection
with OLCF’s heterogeneous test beds.

Below, we provide descriptions of several components in-
volved in connecting ORNL facilities as we work toward a
performance-portable ecosystem.

Data generation at neutron facilities. In the past decade,
ORNL neutron facilities have adopted event-based data col-
lection techniques [13], which represent a great opportunity to
obtain higher-fidelity recordings of experimental data, includ-
ing detector pixel id, neutron TOF from source to detector,
and proton pulse wall-clock time [14]. Raw event data at
ORNL neutron instruments is collected at a rate of nearly
1.4 TB/day for a grand total of roughly 1.8 PB since its
construction is 2006, with plans to expand as next-generation
instruments become available. The raw, event-based data for
each experiment run is stored by using the metadata-rich
NeXus schema [15], which is built on top of the widely
adopted HDF5 [16] file format. Each instrument stores a subset
of the NeXus schema according to their characteristics. Data
is hosted at ORNL computing facilities and available to users
via remote access [17].

Single crystal CORELLI and TOPAZ instruments. SNS facili-
ties at ORNL offer a suite of neutron single-crystal diffraction
instruments [18]. TOPAZ is a high-resolution, single-crystal
diffractometer, whereas CORELLI has energy discrimination
to improve diffuse scattering measurements of single-crystal
samples. These instruments enable the study of a wide range of

materials with different molecular sizes. The selected science
cases in our study represent the workloads used to process raw
data on these beamlines.

Data reduction workflows. To transform the raw data into
a meaningful, interpretable, and reduced form of histograms
and plots that reveal material characteristics, an ecosystem of
specialized software is required. The Mantid [19] framework
began in 2007 as an international collaboration between mul-
tiple user facilities (ISIS, ILL, ORNL, CSNS, and more) to
provide a common C++ software package for data reduction,
visualization, and analysis of neutron and muon scattering
experiments. As shown in Fig. 1, users remotely access and
analyze their data on computing resources hosted at the SNS.
Mantid’s performance is determined by a combination of
CPU-only compute, available memory, algorithm improve-
ments, and file I/O [20]–[22]. Currently, Mantid primarily uses
OpenMP [23] for multithreaded CPU parallelism and lacks
multinode HPC capabilities. Moreover, next-generation data
reduction software (e.g., Scipp [24], ScippNeutron [25]) do
not target HPC applications. Recently, emphasis has shifted
toward using Mantid as a back end driven by Python front
end frameworks. The target for this work, Garnet, is one such
interface that focuses on single-crystal diffraction instruments.

OLCF ACE Test Beds and ExCL. In preparation for IRI,
the OLCF has deployed the Advanced Computing Ecosystem
(ACE) test bed systems. ACE encompasses a diverse array
of cutting-edge computing environments designed to propel
scientific discovery and innovation. ACE offers a sandboxed
environment designed to deploy and evaluate heterogeneous
computing and data resources. The ACE test bed is structured
around several key areas of interest that are pivotal to the
evolution and enhancement of HPC systems as we target
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novel drivers in science (e.g., AI): (i) IRI workflow pat-
terns; (ii) emerging architectures, networking, and storage; and
(iii) HPC resources moving to the cloud. Future efforts will
focus on further enhancing the test bed’s capabilities, thereby
expanding its range of applications. The Experimental Com-
puting Laboratory (ExCL),2 also hosted at ORNL, was used as
part of our initial code validation for single-GPU architectures.
ExCL provides a set of accelerator-ready systems3 that enable
us to experiment with vendor hardware and software stacks
prior to launching jobs on OLCF systems. It also serves as
point of reference for correctness and performance across
similar GPU models (e.g., MI100 on OLCF’s Defiant and
ExCL’s cousteau). A summary of the hardware used in our
experiments is listed in Table I. We are particularly interested
in running on NVIDIA and AMD GPUs, at least initially, with
plans to extend this to future architectures.

TABLE I
SYSTEMS OVERVIEW

System Characteristics

Defiant Nodes: 36 (3 cabinets of 12)
(OLCF) CPU: 64-core AMD EPYC 7662 Rome, 4 NUMA

GPU: 4 AMD MI100 32 GB HBM2
Memory: 256 GB, DDR4

Milan0 Nodes: 1
(ExCL) CPU: 2 × 32-Core AMD EPYC 7513, 2 NUMA

GPU: 2 NVIDIA A100 80 GB
Memory: 1 TB, DDR4-3200

bl12-analysis2 Nodes: 1
(SNS) CPU: 16-core AMD EPYC 7343, 1 NUMA

GPU: 1 NVIDIA T600 4 GB
Memory: 512 GB, DDR4

Julia, LLVM, and JACC.jl. Powered by just-in-time (JIT) com-
pilation via the widely adopted LLVM compiler toolchain [26],
Julia offers a high-performance, dynamic, and science-friendly
syntax and ecosystem for HPC [27]–[29]. JACC.jl is developed
at ORNL as part of our portfolio of performance-portability
capabilities for DOE. As shown in Fig. 2, the package uni-
fies the existing Julia ecosystem that targets CPU and GPU
vendors. It provides a simple memory Array and kernel
parallel_for and parallel_reduce API for appli-
cation development. The primary difference between JACC.jl
and existing solutions, specifically KernelAbstractions.jl [30],
is that JACC.jl targets more than just GPU performance and
can adapt between coarse and fine granularity. This enables
scientists to focus on their kernels rather than on lower-level
computational aspects to achieve performance-portable code.

III. METHODOLOGY

Figure 3 shows an overview of our proposed methodol-
ogy. To capture computational characteristics for exploring
performance-portable solutions, the existing Garnet/Mantid
workflow was used as a reference for developing proxy
applications in C++ and Julia.

2https://docs.excl.ornl.gov/
3https://docs.excl.ornl.gov/system-overview

Fig. 2. JACC.jl performance portability architecture showing available LLVM
and Julia CPU/GPU back ends.

A. Garnet/Mantid Workflow

The current workflow starts with each experiment’s run
stored in a NeXus/HDF5 file and tagged with a particular
identifier. For simplicity, we use 1-to-N. Each raw dataset is
reduced by using a generic LoadEventNexus that creates a
memory structure called MDEventWorkspace. The Mantid
MDNorm algorithm is then applied to each component of the
dataset and can be broken down into two parts: (i) histogram-
ming (BinMD) an array of individual events and (ii) calcu-
lating the associated normalization (MDNorm) on a grid. The
differential scattering cross-section is therefore the sum of all
histograms over the sum of all normalizations (Fig. 3). The
overall process is shown in Fig. 4 using the Bixbyite case as
an example [31]. First, we see a single run (one per file) in
which a symmetry is applied. The same symmetry operation
process is then applied to all runs in the experiment, resulting
in the cross-section for the entire measurement. The overall
cross-section calculation is represented in Algorithm 1.

Algorithm 1 Cross-Section Calculation using MDNorm and
BinMD
start, end← range(MPI Rank,MPI Size)
0← mdnorm, binmd
for i = start to end do

event data← LOAD events, rotations, charge, ...
mdnorm += MDNorm(events)← CPU/GPU
binmd += BinMD(events)← CPU/GPU

end for
cross section← f MPI Reduce(binmd)

f MPI Reduce(mdnorm)

B. Proxy Applications

We developed proxy applications that calculate the cross-
section with Algorithm 1 and used C++ to capture current
Mantid CPU workloads and the Julia-based MiniVATES.jl
package for adding performance portability with JACC.jl.
We also made improvements over the monolithic closed-
box nature of the current Garnet/Mantid workflow. Breaking
the algorithm into smaller pieces can potentially future-proof
the process for adaptable performance. These algorithmic
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Fig. 3. Proposed proxy applications in C++ and Julia and JACC.jl used to evaluate CPU/GPU performance-portable implementations for the current Garnet
reduction workflow that uses Mantid.
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Fig. 4. Cross-section scattering data reduction ensemble measurement steps:
single run (upper left), single run + symmetry (upper right), multiple (22)
runs (lower left), and multiple runs + symmetry (lower right) [31].

enhancements include improving the complexity of linear
searches with a more adaptable region-of-interest strategy.
Also, we experimented with more HPC-oriented data struc-
tures: instead of sorting an array of structs, we sort an array
of indices using primitive types. Benefits of this approach
should increase with the number of dimensions. The Message

Passing Interface (MPI) was used for the outermost loop over
files. Each process allocates its own histogram, and the MPI
reduce function is used to add histograms that contain the
results of MDNorm and BinMD on a single process. These
two histograms are then divided to calculate the scattering
cross-section.

#pragma omp parallel for collapse(2) private(idx,
momentum, intersections, xValues, yValues)

// Symmetry transformations ˜ 6 and 24
for (const auto &op : transforms)

// CORELLI 372K and TOPAZ 1.6M
for (size_t i = 0; i < ndetectors; ++i)

// calculate intersections ˜(600x600x1)
for (size_t i = 0; i < hBins; i++) ...
for (size_t i = 0; i < kBins; i++) ...
for (size_t i = 0; i < lBins; i++) ...
// size for each operation
// < hBins + kBins + lBins + 2
sort(...)
linear_interpolation(...)
append_to_histogram(...)

Listing 1. Parallelization of the MDNorm operation.

The resulting C++ proxy application is outlined in List-
ings 1 and 2. The MDNorm code contains a loop over each
symmetry operation and number of detectors, which get paral-
lelized by using OpenMP’s collapse clause. Each parallel
worker runs 3 for-loops to calculate intersections in reciprocal
space, a periodic lattice in (H, K, L) coordinates. An additional
3 linear operations sort, interpolate, and append the resulting
normalization histogram needed for the denominator in the
cross-section calculation. Hence, the complexity of MDNorm
depends on the instrument and material characteristics.

To capture the simple computational complexities of Man-
tid’s BinMD, we use a straightforward application of the
algorithm applied to a single array of neutron events. Mantid’s
BinMD uses a more adaptive strategy by having a hierarchy
of boxes with equal numbers of events. Hence, the single box
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algorithm in Listing 2 will capture the relevant 2 for-loops
that apply the corresponding symmetry transformations to the
existing number of events.

#pragma omp parallel for collapse(2)
// Symmetry transformations ˜ 6 and 24
for (const auto &op : transforms)

// CORELLI 40M, TOPAZ 280M
for (auto &val : events)

apply_transform(...)

Listing 2. Parallelization of the BinMD operation.

The resulting Julia proxy application, MiniVATES.jl,
follows the structure of the C++ proxy app to per-
form the same set of computations. Listing 3 shows the
JACC.parallel_for implementation for the BinMD al-
gorithm that works on CPUs and GPUs from multiple ven-
dors. Hybrid parallelism is achieved by using MPI.jl [32]
and JACC.jl. JACC.jl maps parallel kernels and allocated
memory to the appropriate back end—Threads, CUDA.jl [33],
or AMDGPU.jl [34]—for different CPU/GPU systems.

For the MDNorm calculation in the Julia proxy app, best
practice is to pre-allocate memory on the GPU. To avoid
excessive allocation, an additional kernel (one for each file)
is called before the main MDNorm kernel to ensure an
accurate estimate of intersections can be computed. An elegant
solution might use JACC.parallel_reduce with a MAX
operator, but this function does not currently support custom
reduction operators (it uses + internally). A workaround in
MiniVATES.jl adds communication between device and host,
and we hope this work will motivate future efforts in JACC
and the Julia HPC stack.

function binEvents!(h::Hist3, events::AbstractArray,
transforms::Array1{SquareMatrix3c})

JACC.parallel_for(
(length(transforms), size(events, 2)),
(n, i, t) -> begin

@inbounds begin
op = t.transforms[n]
v = op * C3[t.events[6, i], t.events[7, i],

t.events[8, i]]
atomic_push!(t.h, v[1], v[2], v[3],
t.events[1, i])

end
end,
(h = h, events, transforms),

)
end

Listing 3. MiniVATES.jl BinMD CPU/GPU implementation using
JACC.jl.

Another challenge in developing MiniVATES.jl is the need
to sort the intersections for each detector within the body of
the kernel. CUDA.jl sorting functions must be called from the
CPU execution context because they launch their own kernel(s)
internally. On the other hand, sorting algorithms in the Julia
standard library (and other packages) all perform dynamic
allocation internally for scratch space and are undesirable
within a repeatedly called GPU kernel. A local implementation
was used in this work. In pursuing an algorithm that does
not allocate scratch space, we settled on comb sort after a
bit of experimentation. Finally, MiniVATES.jl uses its own

implementation of a 3D histogram based on Mantid’s MDHis-
toworkspace. The bin values are thread-safe and incremented
with atomic operations.

IV. EXPERIMENTAL RESULTS

We establish a baseline by using two single-crystal materials
that offer different computational characteristics: (i) Benzil [6],
[35] measured on CORELLI and (ii) Bixbyite [31] measured
on TOPAZ. Table II shows the relevant data and instrument
characteristics that drive the computational costs in the MD-
Norm and BinMD algorithms.

TABLE II
SELECTED USE-CASE CHARACTERISTICS AND WCTS ON

BL12-ANALYSIS2

Experiment CORELLI TOPAZ
Benzil Bixbyte

Files 36 22
Symmetries 6 24
Events/file 40M 280M
Detectors 372K 1.6M
Bin counts (603,603,1) (601,601,1)
Bin bases ([H,H],[H,-H],[L]) ([H],[K],[L])

Garnet/Mantid
WCT MDNorm + BinMD 55 s 102 s
WCT Total 271 s 904 s

Current Garnet/Mantid wall-clock times (WCT) for the
overall workflow execution and the MDNorm + BinMD calcu-
lation are also provided to illustrate user expectations on the
SNS’s shared production system. Bin counts are chosen for
2D slicing (lBins=1) to provide a balance between current
memory, computation, and data movement costs. Speeding up
these calculations enables broader modeling and simulation
options (e.g., 3D volumes, real-time) and dynamically modi-
fying histogram binning parameters while minimizing the need
for data movement.

A. Benzil – CORELLI

Table III shows the execution WCTs for the proposed
C++ and MiniVATES.jl proxy implementations on the Defiant
system. We include JIT times due to the nature of the Julia
language and because it is an amortized cost. As seen, WCTs
for the MDNorm and BinMD proxies largely outperform the
existing Garnet/Mantid implementation on SNS systems by
∼74× on CPU and ∼299× on GPU. Nevertheless, Mini-
VATES.jl total times show that precompilation offsets some
of the benefits of running on Defiant’s M100 GPUs. The
UpdateEvents row measures the time spent loading an HDF5
array with 8 columns and a row for each neutron event.

On Milan0, the NVIDIA A100 provides a significant per-
formance boost: MDNorm is over 3× faster and BinMD
is over 172× faster than on the Defiant’s AMD MI100.
These results suggest that the NVIDIA A100 is atomically
updating the histogram more efficiently than the AMD MI100.
UpdateEvents is slightly faster with MiniVates.jl but the C++
proxy is 16× slower on Defiant. Both proxies use wrappers
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TABLE III
WCT IN SECONDS FOR THE BENZIL (CORELLI) PROXIES ON DEFIANT’S

AMD EPYC 7662 64-CORE CPU AND MI100 GPU

WCT (s) C++ Proxy MiniVATES.jl (GPU)
(CPU) JIT no JIT

UpdateEvents 0.092 0.136 0.064
MDNorm 0.688 4.669 0.174
BinMD 0.057 0.488 0.010

MDNorm + BinMD 0.746 5.157 0.184

Total 7.746 48.932

TABLE IV
WCT IN SECONDS FOR THE BENZIL (CORELLI) PROXIES ON MILAN0’S

AMD EPYC 7513 2 × 32-CORE CPU AND NVIDIA A100 GPU

WCT (s) C++ Proxy MiniVATES.jl (GPU)
(CPU) JIT no JIT

UpdateEvents 1.250 0.090 0.0504
MDNorm 0.456 2.367 0.0532
BinMD 0.034 0.517 0.0000

MDNorm + BinMD 0.490 2.894 0.0532

Total 15.985 30.135

over the C HDF5 API and transpose a 2D array from row-
major to column-major. Substantial optimization opportunities
might exist on certain network file systems.

B. Bixbyite – TOPAZ

Despite having fewer files, more detectors and neutron
events make Bixbyite a much slower and more memory-
intensive calculation. WCTs on a single node take minutes
instead of seconds. To stay within memory limits, the C++
proxy was run with four MPI processes and 16 OpenMP
threads per process. Between algorithmic improvements to
MDNorm and larger file sizes, most time is spent loading
events from disk. In MiniVATES.jl, the 6× slower loading
of subsequent files is repeatable but not yet understood.
Compared to the C++ proxy, MDNorm is over 6× faster and
BinMD is almost 2× faster on the AMD MI100 GPUs.

TABLE V
WCT IN SECONDS FOR THE BIXBYITE (TOPAZ) PROXIES ON DEFIANT’S

AMD EPYC 7662 64-CORE CPU AND MI100 GPU

WCT (s) C++ Proxy MiniVATES.jl (GPU)
(CPU) JIT no JIT

UpdateEvents 23.70 3.12 18.12
MDNorm 2.81 4.51 0.45
BinMD 5.40 3.70 2.95

MDNorm + BinMD 8.21 8.21 3.40

Total 215.98 553.89

As shown in Table VI, MiniVATES.jl BinMD excels on
Milan0’s NVIDIA A100, with iterations after JIT compilation
running over 50,000× faster than the C++ proxy on CPU

TABLE VI
WCT IN SECONDS FOR THE BIXBYITE (TOPAZ) PROXIES ON MILAN0’S

AMD EPYC 7513 2 × 32-CORE CPU AND NVIDIA A100 GPU

WCT(s) C++ Proxy Julia Proxy (GPU)
(CPU) JIT no JIT

UpdateEvents 42.59 3.784 3.037
MDNorm 1.53 3.133 0.518
BinMD 3.08 0.766 5.31E-5

MDNorm + BinMD 4.61 3.899 0.518

Total 306.46 67.02

and on the AMD MI100. MiniVATES.jl’s MDNorm is 3×
faster than the C++ proxy and approximately equal on the
AMD MI100. MiniVATES.jl’s UpdateEvents is 6× faster than
on Defiant. The first file that includes JIT compilation is 0.7
seconds slower, as expected. In contrast, with the C++ proxy,
UpdateEvents is almost 2× slower than on Defiant.

V. RELATED WORK

Recent relevant work has focused on different aspects of
connecting experimental and computational facilities. Veseli
et al. [36], Prince et al. [37], and Parraga et al. [38] demon-
strated improved streaming, computing, and workflow capa-
bilities across the Advanced Photon Source and the Polaris
supercomputer, both hosted at Argonne National Laboratory.
Kommera et al. [39] focused on offloading x-ray diffraction
workflows for image reconstruction to NVIDIA GPUs on the
Summit and Perlmutter systems. Their research highlighted
that performance portability is a desired future capability given
the heterogeneous nature of DOE’s HPC systems.

There are also relevant efforts in connecting ORNL neutron
science and HPC facilities. Shipman et al. [40] introduced
the Accelerating Data Acquisition, Reduction, and Analysis
system, which provides live-streaming capabilities inside the
Mantid framework for seamless interactions with ORNL’s
Compute and Data Environment for Science. This approach
allows scientists with little or no HPC expertise to access HPC
capabilities for real-time experiment analysis and steering if
necessary. Watson et al. presented CALVERA [41], a platform
for integrated services for a more effective neutron scattering
data reduction and analysis. Their work manages resources
at the workflow level, and one of their use cases involves
integration with HPC and leveraging advances in the DCA++
code [42], [43] on the Summit supercomputer for studying
strongly correlated quantum materials. In the INTERSECT
initiative, Engelmann et al. [44], [45] provide an open fed-
erated architecture and microservices to enable connecting
experimental and computational resources, including HPC, to
target mainly automated and autonomous instrument science
and data analysis.

VI. CONCLUSIONS AND FUTURE WORK

We described performance-portable capabilities to connect
and improve ongoing science at two of DOE’s largest user
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facilities: experimental neutron science at the SNS and com-
putational science at the OLCF. The selected science use-cases,
the SNS’s CORELLI Benzil and TOPAZ’s Bixbyte, illustrate
relevant computationally expensive workloads that can be
adapted to existing HPC facilities for better performance
capability.

We argue that the current practice of targeting multithreaded
CPUs and hard-coded frameworks for a particular data hosting
platform is not sustainable with the advent of next-generation
data producers in a heterogeneous, AI-driven, post-Moore era.

In a connected facility setting, we demonstrate that proxy
applications can be used to effectively investigate the fac-
tors (e.g., algorithms, memory movement, CPU/GPU paral-
lelization) that drive performance beyond data movement.
This approach helps scale future experimental workloads
while acknowledging the differences from traditional HPC
simulations. We also demonstrate the promise of Julia as
a single performance-portable language powered by LLVM
to improve developer productivity and user experience over
the traditional decision to split code into a user-friendly
scripting language and higher-performing compiled language.
Addressing performance-portable aspects early on allows for
an incremental co-design effort to balance computation and I/O
improvements. Thus, we expect to contribute toward a more
integrated research infrastructure as the scientific requirements
(e.g., energy efficient, large data volume, AI workloads) evolve
for future HPC and experimental facilities.
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APPENDIX

ARTIFACT DESCRIPTION

All the codes in this study are hosted on GitHub.
• Mantid: https://github.com/mantidproject/mantid
• Garnet: https://github.com/neutrons/garnet reduction
• JACC.jl: https://github.com/JuliaORNL/JACC.jl

Proxy Applications produced for this study are also on GitHub.
• C++ Proxy: https://github.com/quantumsteve/extract

mdnorm
• Julia Proxy: https://github.com/JuliaORNL/MiniVATES.jl
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Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

I. OVERVIEW OF CONTRIBUTIONS AND ARTIFACTS

A. Paper’s Main Contributions

We explore the benefits of performance-portable CPU/GPU
computing using an innovative neutron diffraction data pro-
cessing workflow that calculates the differential scattering
cross-section from data collected at the Spallation Neutron
Source (SNS). We compare the current CPU-only production
implementation against our proposed CPU/GPU implementa-
tion that uses the Julia scientific language and the JACC.jl
performance-portable package. Performance results are pre-
sented for NVIDIA A100 and AMD MI100 GPUs and for
AMD EPYC 7513 and 7662 CPUs.

The paper contributions are:
C1 Provide a baseline wall-clock time of the CPU-only

production implementation utilizing data collected by
SNS’s CORELLI and TOPAZ instruments.

C2 Develop and evaluate proxy applications for calcu-
lating the differential neutron scattering cross-section
on current HPC CPU/GPU hardware.

B. Computational Artifacts

A1 https://github.com/neutrons/garnet reduction
A2 https://github.com/quantumsteve/extract mdnorm
A3 https://github.com/JuliaORNL/MiniVATES.jl

Artifact ID Contributions Related
Supported Paper Elements

A1 C1 Table II

A2 C2 Tables III-VI

A3 C2 Tables III-VI

II. ARTIFACT IDENTIFICATION

A. Computational Artifact A1

Relation To Contributions

Garnet reduction is the current state of the practice for pro-
cessing raw neutron scattering data for single crystal diffrac-
tion. Measured wall-clock times were used as a baseline for
the proxy applications. It was also used to prepare intermediate
data files that became inputs for the proxy applications.

Expected Results

The HDF5 output file from Garnet is the reduced and
normalized data scientists would use for further analysis. It can
be loaded and viewed in Mantid. The Bixbyite output should
match Fig. 4 (lower right) and the Benzil output should match
Fig 8b of reference 7.

Expected Reproduction Time (in Minutes)

Execution times on the order of minutes are presented in
Table II.

Artifact Setup (incl. Inputs)
Hardware: Garnet is typically run on shared memory

workstations with at least 256 GB of memory and depends
on network access to the ORNL Neutron Catalog (ONCAT)
and the /SNS and /HFIR remote data mounts. It will utilize
multiple CPU cores, but will not utilize GPUs or distributed
computing.

Software: All the codes in this study are hosted on GitHub.
Garnet: https://github.com/neutrons/garnet reduction
Git commit ec821be2 was used in this work.
Datasets / Inputs: Data files are stored on a remote filesys-

tem mounted on analysis.sns.gov and instrument computers.
Installation and Deployment: The conda environment was

created an activated with

conda env create -f environment.yml
conda activate garnet_reduction

Artifact Execution
The CORELLI and TOPAZ reduction files were modified

to match the parameters used in the proxies and are available
in the extract mdnorm repository

The normalization workflow can be run with pytest

pytest -s tests/test_normalization.py \
-k test_corelli

pytest -s tests/test_normalization.py \
-k test_topaz

Artifact Analysis (incl. Outputs)
The console output contains the combined wall-clock times

from MDNorm and BinMD for each neutron scattering mea-
surement as well as total execution time for each workflow.

B. Computational Artifact A2

Relation To Contributions
The C++ proxy extracts the minimal relevant code from

Mantid to reproduce MDNorm and BinMD calculations for
single crystal diffraction. This intermediate step was used to
explore potential algorithmic improvements and translate into
Julia.

Expected Results
This proxy application should reproduce the Garnet reduc-

tion output, but be easier to build and run on HPC hardware
outside the SNS and HFIR facilities. It should be faster than
Garnet on similar hardware.

Expected Reproduction Time (in Minutes)
Execution times on the order of minutes are presented in

Tables III-VI.

Artifact Setup (incl. Inputs)
Hardware: The C++ proxy can be run on a single node or

on distributed HPC systems. It will utilize multiple CPU cores
and nodes, but will not utilize GPUs.

2115



Software: The C++ Proxy (Git commit 143641e4 was used
in this work) uses the CMake build system to find MPI,
Boost, Eigen3 and HDF5. HighFive and Catch2 are built using
CMake FetchContent. On milan0, the GCC 13.2.0 module was
loaded and Ubuntu 22.04 packages are used for OpenMPI,
Boost, Eigen3 and HDF5.

On Defiant, cce/15.0.0, cray-mpich/8.1.23, and cray-
hdf5/1.12.2.1 modules were loaded and spack used to build
CMake, Boost 1.74 and Eigen3.

Datasets / Inputs: The input data to Mantid’s MDNorm
algorithm is saved into two HDF5 files per run. Python
code such as this example available in the extract mdnorm
repository is inserted before Garnet reduction or a simi-
lar workflow calls MDNorm. The SaveMD function saves
the MDEventWorkspace containing individual neutron events.
Any additional data not in this file is stored in a second HDF5
file.

Lastly, the VanadiumFile and FluxFile are copied to the
same directory. Benzil data totals 8.5GB, which Bixbyite data
totals 206GB.

Installation and Deployment: milan0

mkdir build
cmake ..
make

Defiant

mkdir build
CC=craycc CXX=crayCXX cmake ..
make

Artifact Execution

On milan0, the proxy was executed from the terminal.

mkdir build
cmake ..
make
time mpirun --map-by numa:PE=8 -np 8 \

--bind-to core ./benzil_corelli
time mpirun --map-by numa:PE=16 -np 4 \

--bind-to core ./bixbyite_topaz

On Defiant, jobs were submitted to a Slurm queue and
executed with srun.

time srun -n 8 -c 8 --cpu-bind=cores \
./benzil_corell

time srun -n 4 -c 16 --cpu-bind=cores \
./bixbyite_topaz

Artifact Analysis (incl. Outputs)

The output text file from each run can be loaded plotted with
tools such as numpy and matplotlib. Bixbyite output should
match Fig. 4 (lower right). Benzil output should match Fig 8b
of reference 7

C. Computational Artifact A3

Relation To Contributions
The MiniVATES.jl proxy extracts the minimal relevant code

from Mantid to reproduce MDNorm and BinMD calculations
for single crystal diffraction. This translation of the C++
proxy into Julia utilizes the JACC.jl performance portability
framework to utilize GPUs.

Expected Results
This proxy application should reproduce the Garnet output,

be easier to build and run on HPC hardware outside the SNS
and HFIR facilities and utilize AMD and NVIDIA GPUs.

Expected Reproduction Time (in Minutes)
Execution times on the order of seconds (benzill) and

minutes (bixbyite) are presented in Tables III-VI.

Artifact Setup (incl. Inputs)
Hardware: The MiniVATES proxy can be run on a single

node. It utilizes the JACC.jl peformance portability framework
to run on multiple CPU cores as well as AMD and NVIDIA
GPUs.

Software: MiniVATES.jl v0.0.9 was built with Julia 1.10.4.
A configuration script for Defiant is available in the Mini-
Vates.jl repository

This script loads PrgEnv-cray-amd, cray-mpich and julia
modules, sets MPIPreferences to use cray-mpich and JACC
to use the “amdgpu” backend.

On milan0, MiniVATES was also built with Julia 1.10.4 and
the same Project.toml file. JACC was set to use the “cuda”
backend.

Datasets / Inputs: The input data to Mantid’s MDNorm
algorithm is saved into two HDF5 files per run. Python code
such availble in the extract mdnorm repository is inserted be-
fore Garnet or similar workflow calls MDNorm. The SaveMD
function saves the MDEventWorkspace containing individual
neutron events. Any additional data not in this file is stored in
a second HDF5 file.

Lastly, the VanadiumFile and FluxFile are copied to the
same directory. Benzil data totals 8.5GB, which Bixbyite data
totals 206GB.

Installation and Deployment: Julia is a just-in-time com-
piled language.

Artifact Execution
On milan0, the proxy was executed from the terminal.

mpirun -np 1 julia \
--project test/benzil_corelli.jl

mpirun -np 1 julia \
--project test/bixbyite_topaz.jl

On Defiant, jobs were submitted to a Slurm queue and
executed with srun.

srun -n 1 -c 1 --gpus-per-task=1 julia \
--project test/benzil_corelli.jl

srun -n 1 -c 1 --gpus-per-task=1 julia \
--project test/bixbyite_topaz.jl
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Artifact Analysis (incl. Outputs)

MiniVATES.jl does not save any output files. Wall-clock
times are printed to the terminal.

2117


