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Abstract—X-ray light source facilities such as the Linac Co-
herence Light Source (LCLS) at SLAC National Accelerator
Laboratory generate massive amounts of data that need to be
analyzed quickly to inform ongoing experiments. The analysis of
data streams coming from various parts of the instrument has
potential to feed back into instrument operation or experiment
steering. For example, shot-to-shot images of the beam profile
inform on the quality of the beam delivery while downstream data
read from large area detectors inform on the state of diffraction
experiments carried on samples of interests at various beamlines.
However, the high repetition rate and high dimensionality of
these data streams make their analysis challenging, both in
terms of scalability and interpretability. In this work, we propose
an image monitoring and classification framework that follows
a three-stage process: dimensionality reduction using principal
component analysis on a matrix sketch, visualization using
UMAP, and clustering using OPTICS. In the dimensionality
reduction step, we combine the Priority Sampling algorithm
with a modified Frequent Directions algorithm to produce a
rank-adaptive accelerated matrix sketching (ARAMS) algorithm,
wherein practitioners specify the target error of the sketch as
opposed to the rank. Furthermore, the framework is parallel,
enabling real-time analysis of the underpinning structure of
the data. This framework demonstrates strong empirical perfor-
mance and scalability. We explore its effectiveness on both beam
profile data and diffraction data from recent LCLS experiments.

Index Terms—matrix sketching, dimension reduction, parallel
processing, approximation, rank-adaptive, data exploration

I. INTRODUCTION

The Linac Coherent Light Source (LCLS) facility at SLAC
National Accelerator Laboratory generates X-ray pulses by
spontaneous undulator radiation from electrons. Through these
pulses, X-ray images of atoms and molecules in action are
generated, offering precise atomic-level insights into ultrafast
events. These observations unveil essential phenomena in vari-

ous domains, including materials science, energy sciences, and
biology. By stitching these images together, the LCLS creates
dynamic “molecular movies” that depict chemical reactions
unfolding in real-time [3].

The facility generates images from multiple detectors syn-
chronized by a timing system that timestamps images and
other readouts across the instrument and pools them all into
event objects corresponding to individual shots. Processing of
the shot-to-shot events can have two usages: for instrument
diagnostic or scientific analysis. The analysis of upstream
diagnostic detector data, which are used to monitor the beam
shape, or profile, enables labeling events as good or bad, thus
informing the analysis of downstream measurement detectors
that are collecting diffraction images of studied samples. For
example, events with poor beam shape can be discarded from
the downstream analysis. Or events might be grouped ac-
cording to some beam profile characteristics, and downstream
analysis can be performed on the different groups separately.
Beam profiling can also be used directly as a diagnostic that
helps operators improve the instrument’s performance. And
diffraction data from scientific samples can also be analyzed
on its own merits.

A common challenge for both categories of detector image
analysis is the rate at which the events are built. Typically,
LCLS detectors read out at a frame-rate of 120 frame-per-
second, generating gigabits of detector data each second. And
the recent coming online of LCLS-II will increase these rates
by a few order of magnitudes over the next decade. The
sheer amount of data generated thus calls for scalable analysis
methods that are able to present actionable information to the
instrument operator or user in a timely manner. Examples com-
prise approaches to conveniently visualize these high-volume
high-dimensional datasets or to accurately cluster them. Here,
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we propose matrix sketching as a promising strategy to that
end.

Matrix Sketching techniques find low-rank approximations
to large matrices in a computationally efficient manner which
are significantly smaller and simpler but still approximate it
well. Recent advancements to Matrix Sketching have made it
popular in online data processing and dimensionality reduction
across a broad range of fields. The Frequent Directions matrix
sketching algorithm has stood out in particular for its theo-
retical and practical error bounds, though lags behind other
matrix sketching techniques in run-time performance [5].

II. CONTRIBUTIONS

Our contributions are three-fold. First, we describe a two-
stage rank-adaptive online matrix sketching algorithm to mon-
itor LCLS imaging datasets, combining the priority sampling
and frequent directions matrix sketching algorithms to balance
run-time with error. This algorithm finds a low-rank approx-
imation of the data. Second, we present a scheme for paral-
lelization of this algorithm and provide strong scaling studies
for this scheme. To our knowledge, our proposed modifications
of the frequent directions algorithm in acceleration via priority
sampling, applying rank adaptation, and parallelization in this
branching fashion have not been studied. Third, using this
low rank approximation to project the original data into latent
space, we propose a technique for monitoring imaging datasets
in a scalable and efficient manner by visualizing and clustering
the images using UMAP and OPTICS clustering. We demon-
strate the effectiveness of this technique in monitoring X-ray
beam profiles corresponding to a Boron Mirror diffraction
sample as well as X-ray diffraction images from large area
detectors.

III. BACKGROUND

A. Experiment Overview

LCLS is the first hard X-ray free electron laser facility
(FEL) [7] developed in history and is still pioneering the
development of novel ultrafast X-ray techniques. On average,
FELs are one billion times brighter than synchrotrons which
makes it possible to develop novel coherent diffraction imag-
ing techniques (CDI) [4] such as single particle imaging [14]
and to adopt laser techniques to the hard X-ray regime such
as X-ray photon correlation spectroscopy [13] (XPCS).

During the development and practice of these measure-
ments, however, it is realized that the stochastic temporal
and spatial profile of the hard x-ray pulses from FEL is
significantly hindering the analysis of the signal measurement.
For example, in ptychography, large variation of the X-ray
beam profile will require more sophisticated algorithm to
produce high resolution reconstruction of the sample structure.
The X-ray beam profile change leads to large uncertainty
in speckle contrast measurement in XPCS. While there is a
continuous effort to improve the X-ray beam and its profile
stability, one possible alternative solution is to classify the X-
ray pulses according to their profiles.

Another important aspect of these experiments is related
to the ability of the experimenter to make decisions based on
actionable information readily extracted from the imaging data
as it is being diffracted from streaming samples. Online image
analysis techniques applied to both beam profile and sample
diffraction image data would readily enable optimizing FEL
and instrument parameters.

B. Matrix Sketching

Matrix sketching is a technique used in linear algebra
and numerical computing to approximate large matrices with
smaller, more manageable low-rank representations while pre-
serving important properties of the original matrix [11]. The
fundamental objective of matrix sketching is to represent an
n ⇥ d matrix A as a sketch k ⇥ d matrix B such that
kATA�BTBk is minimized. Doing so enables practitioners
to use the sketch matrix in place of the original matrix in
many operations, speeding up what would be costly matrix
operations.

1) Sampling Methods: One prominent class of matrix
sketching techniques is sampling methods: the fundamental
idea behind sampling methods is to select a subset of rows
or columns from the original matrix, creating a sketch that
retains important characteristics while significantly reducing
the matrix’s size. Typically this is achieved by assigning a
probability to each row of the matrix and then iterating over
the rows making selections based on the probabilities [9]. This
subset selection process is often guided by various considera-
tions, such as leverage scores or spectral properties, to ensure
that the sketch captures key information. In particular, priority
sampling works by assigning a weight to each row given by
wi = kAik, and then a priority is calculated as pi = wi

ui
where

ui is a random number from the uniform distribution [6].
2) Frequent Directions: A different approach to sketching

is known as Frequent Directions (FD) [9]. The Frequent Direc-
tions Algorithm works in a similar way to the Frequent Items
algorithm [11]: similar to how the frequent items algorithm
shrinks ` distinct elements by the same magnitude once its
buffer is full, the Frequent Directions algorithm “shrinks” `
orthogonal vectors by approximately the same magnitude once
its buffer is full. To do so, at each step:

1) Initially, a buffer representing the matrix sketch of size
` ⇥ d is filled with ` � 1 rows of data, with the ` row
being left zero.

2) At each iteration, row ` is filled with a row from the
data.

3) To “shrink” the ` orthogonal vectors, the matrix sketch
is first rotated from the left such that the rows of
the buffer are orthogonal and in descending magnitude
order. This is accomplished by computing the singular
value decomposition U⌃V T and selecting V T .

4) Then, the norm of sketch rows are shrunk so that the
smallest direction (the last row) is set to 0. In practice,
this is achieved by subtracting the singular values in ⌃
by the last entry, followed by left-multiplication of V T .
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Since computing the singular value decomposition (SVD)
is very expensive, in practice, the fast frequent directions
algorithm is used instead, whereby the same iteration is
applied, but for a buffer of size 2` ⇥ d, and shrinking the
last ` rows of the buffer to be zero. In this way, the SVD is
only computed once every ` iterations.

IV. MATRIX SKETCHING

A. Rank Adaptive Frequent Directions
1) Motivation: In online scenarios, estimating the required

number of components can pose challenges for practitioners,
especially when dealing with stochastic processes such as Self-
Amplified Spontaneous Emission mode of the X-ray beam.
Additionally, practitioners are often more concerned with
ensuring the model meets a certain error threshold rather
than precisely determining the number of components to
retain, such as in the case of data compression applications.
Furthermore, when dealing with high-resolution data, such as
2-megapixel images, across hundreds of computational cores,
the memory and storage demands for the sketching process
become significant. Therefore, there is a preference, when
possible, to minimize the sketch size.

2) Estimating Reconstruction Error: Motivated by these
demands, we propose a heuristic approach to determining
and adaptively modifying the number of components at each
batch of images during the sketching process based on the
estimated reconstruction error of the current sample. After
each rotation step, we will compute a low-memory estimation
of the reconstruction error of the freshly processed sample
and determine whether to increase the rank based on this
estimation.

Computing the true reconstruction error of the sketch up
to the most recent time would require storing all the data.
To avoid this, we explored cheaper heuristics. However, even
computing the reconstruction error for part of the data is non-
trivial: a low-memory estimation of reconstruction error is
necessary here since it is very expensive to explicitly compute
the actual reconstruction error given by kX � UUTXk2F for
X = U⌃V t, a 2-megapixel image. Notice that I � UUT

forms a 2M ⇥ 2M matrix, which cannot be easily stored
in memory. It has been shown that an efficient estimation
of the Frobenius Norm can be computed via random matrix
multiplication [2]. We will use this estimation of the Frobenius
Norm for simplicity, but other more effective estimates are
currently being studied, such as Stochastic Trace Estimation
in [6] or GKL Estimator in [10]. These improvements to
the algorithm could be studied in future work and have the
potential to significantly improve runtime and error rates for
rank adaptivity.

Using this fact, we come up with the following heuristic
in Algorithm 1, where ⌫ is an arbitrary constant representing
the number of random matrix multiplications (in practice, we
have found a decrease in error at roughly 10% for every 10
multiplications), X is d features by n samples, and ✏ is a
user-defined error threshold. In theory, this heuristic should
guide the algorithm into increasing the rank if the current most

prominent features of the beam (which is represented by the
most recent set of samples) are not being captured in the matrix
sketch.

Algorithm 1 Rank Adaption Heuristic
Input: X,U, ⌫, ✏
Output: RankAdapt (Heuristic indicating whether or not to

increase the rank)

1: function RANKADAPTHEUR(X,U, ⌫)
2: Avg  0
3: for k  1 to ⌫ do
4: V  Generate Random Gauss Matrix()
5: V  X ⇥ V
6: bV  UT ⇥ V
7: bV  U ⇥ bV
8: Avg  Avg + ||bV � V ||22
9: RankAdapt  n

⌫ ·Avg < ✏
10: return RankAdapt

3) Applying the Heuristic to Frequent Directions: Com-
bining the heuristic with the frequent directions algorithm,
we come up with the Rank Adaptive Frequent Directions
Algorithm 2. We start by filling the buffer with data. Then
we iterate for k from l to n. At each step, we check if the
buffer is full by checking if nextZeroRow is at 2l, and if
there are also sufficient rows left to process. If in addition we
have previously determined that the rank must be increased,
then we increase the rank. Instead, if there are too few rows
left to process or the reconstruction error is low, we proceed
with the FD algorithm as usual. When the buffer is full,
the reconstruction error is computed to determine if the rank
should be adapted in the next cycle. It should be noted that
on line 17, the value under the square root will never be
negative, due to the indicator I`, where it is assumed that
the diagonal values beyond the first `-th terms are zero. At
the end of each iteration, we add new data to our buffer
and perform bookkeeping. Note that this heuristic should not
increase the overall runtime of the algorithm by a significant
margin, since the SVD is already computed during the rotation
step. In addition, one must ensure that there are no zero-
row entries in the sketch between rotations (especially before
merging sketches during the parallelization step discussed in
the upcoming section) to ensure sketching accuracy. Therefore,
care should be taken during the rank adaption step to ensure
that a sufficient number of images are left in the batch before
increasing the size of the sketch.

B. Chaining Priority Sampling with Frequent Directions
Although Frequent Directions provides excellent theoretical

and empirical error bounds, its runtime lags behind competi-
tors such as sampling methods and random-projection methods
[5]. Therefore, in order to accelerate Frequent Directions,
while still attaining strong error bounds, we propose chaining
the faster method of Priority Sampling, described in [6], with
Frequent Directions, in order to select which data points in
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Algorithm 2 Rank Adaptive Frequent Directions
Input: X, ⌫, ✏, `
Output: Sketch (matrix sketch of data)

1: function RANKADAPTFD(X, ⌫, ✏)
2: Buffer  02`⇥d

3: rowsLeft n
4: Buffer[0 : `] X[0 : `]
5: nextZeroRow  `, increaseEll False
6: for k  ` to n do
7: if nextZeroRow == 2` then
8: canRankAdapt rowsLeft > `+ ⌫
9: if increaseEll ^ canRankAdapt then

10: ` `+ ⌫
11: Buffer  [Buffer, 02⌫⇥d]
12: increaseEll False
13: else
14: Buffer`  X[k, :]
15: [U,⌃, V ] svd(Buffer)
16: �  �2

`
17: Buffer  

p
⌃2 � �I` · V T

18: nextZeroRow  `
19: if canRankAdapt then
20: RE  RE(X[k � ` : k])
21: if RE > ✏ then
22: increaseEll True
23: Buffer[nextZeroRow] X[k]
24: nextZeroRow  nextZeroRow + 1
25: rowsLeft rowsLeft� 1

26: return Sketch

each batch are the most important to the frequent directions
sketch. The main idea is to bring down the number of samples
by a significant fraction using sampling methods, such as
80%, but not down to a low-dimensional latent space such
as 50 components, as one would sacrifice too much accuracy
for speed and memory in this case. This addition to the
sketching process will be especially important in extreme data
generation scenarios, such as in the case of LCLS-II generating
1 million 16-megapixel images per second. We now write the
full Accelerated Rank Adaptive Matrix Sketching (ARAMS)
in Algorithm 3.

Algorithm 3 Accelerated Rank Adaptive Matrix Sketching
(ARAMS)
Input: X,�, ✏, `
Output: Sketch (matrix sketch of data)

1: function ARAMS(X, ⌫,�, ✏)
2: PQ PriorityQueue(�n)
3: for k  1 to n do
4: PQ.push(X[k])

5: Sketch RankAdaptFD(PQ, ⌫, ✏)
6: return Sketch

C. Parallelization

One of the key properties of the Frequent Directions Algo-
rithm is that the resulting sketch forms a mergeable summary:
suppose we have two sketches of disjoint datasets of equal
size, called data A1 with sketch B1, and data A2 with sketch
B2, where A1 and A2 form the full dataset A = [A1;A2].
It can be shown that to create a single summary B which
approximates A using only B1 and B2, one can simply run
the Frequent Directions algorithm on the matrix B0 = [B1;B2]
of size 2` to generate a new sketch B of size `, which
preserves the same theoretical space/error tradeoff as each Bi

with respect to Ai [9].
In many use cases, however, sequential merging of matrix

sketches turns out to be the main bottleneck. For example, in
the beam profile monitoring scenario, a global matrix sketch
may be desired after only a dozen rotation operations, across
hundreds of cores in parallel. Sequential merging to a single
core would cost hundreds of rotation operations, increasing
the run time by an order of magnitude.

We propose a tree-merge parallelization scheme in which
we successively merge sketches summarizing data subsets of
equivalent magnitude. The resulting sketch after each merge
step summarizes data subsets of identical sizes, and as this
property is invariable across the merge steps, the global sketch
enjoys the same space/error trade-off as the local sketches. We
formalize this in the appendix. Furthermore, since each step
reduces the number of sketches by an order of magnitude, the
merging step performs a logarithmic number of rotations.

V. BENCHMARK PERFORMANCE: ABLATION STUDY

We now compare the rank adaptive accelerated sketching
algorithm on synthetic data across varying parameters to
understand the performance of this algorithm and its scaling
properties.

1) Synthetic Data: Each of the three synthetic data sets
is an n = 15000 ⇥ d = 1000 random matrix, with varying
singular value decay rates. The datasets are generated by first
generating an n⇥ r and an r⇥m orthogonal matrix, where r
represents the intended rank of the matrix. Random orthogonal
matrices with normal distribution can be generated via a
number of matrix decompositions as described in [8], such
as via QR decomposition of a standard normal distribution
matrix. If we are generating data over multiple cores, each
core starts with the same random orthogonal matrices and we
then perturb these random orthogonal matrices by a unique
perturbation for each core. This is supposed to simulate
how we would expect similar but not identical data to look
like in beam profile analysis. We then generate the vector
of singular values, scaling according to the desired weights
of each component. In our case, we used sub-exponential,
exponential, and super-exponential decaying sets of singular
values. The matrix is then assembled in the same way as an
SVD. The top-left panel of figure 1 plots the singular values of
the resulting matrices, with the legend indicating the function
used to generate the singular values.
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Fig. 1. The upper-left panel plots the singular values of each synthetic dataset: the black plots super-exponential, the blue plots exponential, and the red plots
sub-exponential singular value decay. The remaining 3 panels are semilogy plots of reconstruction error versus runtime for each of the datasets. Four variants
of the algorithm are tested: rank-adaptive versus non-rank adaptive frequent directions (user-specified error versus user-specified rank), and with versus without
priority sampling.

2) Impact of Rank Adaptive and Priority Sampling Mod-
ifications: We test four variants of the Frequent Direction
Algorithm on a single core: with/without Rank Adaptivity
and with/without Priority Sampling. It should be noted that
when Rank Adaptivity is enabled, the number of components
dynamically increases to match the user-specified minimum
error tolerance as the algorithm runs, whereas when Rank
Adaptivity is not enabled, the number of rank stays fixed
throughout the runtime of the algorithm. We shall denote
the former as “User-Specified Error” and the latter as “User-
Specified Rank”. In this experiment, we vary the minimum-
error tolerance in the rank-adaptive case or the rank of the
sketch in the non-rank-adaptive case from 0–500, and record
the corresponding runtime and error.

In figure 1, we plot the reconstruction error versus runtime
of the four variants of the FD algorithm. We observe three
broad trends in this experiment. First, we notice significant
improvements in runtime and in the time/error trade-off by
using the priority sampling variants of the FD algorithm.
This is to be expected, since we are processing significantly
less data in these variants, and therefore would expect an
improvement in runtime due to lower amounts of computation.
In addition, since we prioritize ”higher-quality” data points via

the priority sampling step, one would also expect the error/time
tradeoff to be improved.

The second trend we observe is that the normal (User-
Specified Error) and rank adaptive (User-Specified Rank)
variants of the FD algorithm track each other quite closely
(with maximum difference of 2 seconds in runtime for the
most part), with the rank-adaptive variant performing only
slightly worse in most cases. The drop in performance is
even less noticeable in the priority sampling variants of the
algorithm. Importantly, even though the user is specifying
the error rather than the rank, the performance of the matrix
sketching does not suffer too much in both the case where one
uses priority sampling and where one does not, and thus the
rank-adaptive variant may be useful in cases where the rank
cannot be easily ascertained.

The third trend we observe is across the different decay
rates of singular values. We observe that the slower the
decay of the singular values, the worse the performance of
the rank-adaptive methods. Specifically, we see the error/time
tradeoff between the user-specified error and rank for non-PS
variants are closest in the super-exponential case, with gradual
improvement from sub-exponential to exponential and from
exponential to super-exponential. This may be due to the fact
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Fig. 2. Log log efficiency plot. The parallel variant of the algorithm
demonstrates clear benefits compared to the serial variant.

Fig. 3. Log log plot of error versus number of cores. The error of the parallel
variant of the algorithm tracks the serial variant’s error closely.

that for matrices with singular values more evenly dispersed
(as in the sub-exponential decay), it becomes more difficult
to estimate the reconstruction error due to a broader range of
data, and the algorithm therefore tends to over or undershoot
the correct rank. We also notice that these differences are
greatly reduced in the priority sampling cases, which may be
explained by the improved efficiency of the heuristic and lower
data runtimes.

3) Parallelization: We now investigate the strong scaling
properties of the accelerated matrix sketching algorithm.

In this experiment, we use a matrix of size 2000⇥1658880
with cubically decaying singular values generated using the
technique described above and run the vanilla FD algorithm
with sketch size 200 with the proposed parallelization frame-
work, comparing the FD algorithm using our proposed tree-
merge versus using a standard serial-merge of the sketches
across varying number of cores. As we can see in figure 2,
there is a roughly linear correlation between the number of
cores and the runtime of the tree-merge variant. This result
makes sense due to the fact that we perform very few (in
fact, a logarithmic number of) MPI communications and SVD
calculations (at the very least, 10 times fewer SVD calculations
in the 128 core experiment). On the other hand, the serial-

merge variant begins to plateau at just 16 cores. From these
figures, it is clear that merging in a branching fashion is crucial
for the scalability of our sketching system. More concretely,
the LCLS-II upgrade is expected to increase the rate of data
generation from 120 pulses per second to over 1 million pulses
per second. In order to keep up with this rate of production,
such a factor of reduction is required for online image analysis.
Furthermore, we notice in Fig.3 that the error of the tree-merge
variant closely tracks the error of the serial-merge variant,
confirming our expectation that the theoretical error and space
guarantees are maintained in the parallel implementation. This
suggests that as we increase the number of cores to handle
increasingly large volumes of data, we would not expect our
error rates to significantly increase.

VI. IMAGE MONITORING

We now present the full methodology for image monitoring,
and more generally, a general purpose LCLS data exploration
pipeline illustrated in Fig.4. For beam profile analysis, we
performed a variety of image processing techniques such as
thresholding by intensity, intensity normalization, and center-
ing to ensure that the primary shape of the beam profile and its
distribution of intensity were the focus of the analysis. We then
produced a matrix sketch of the processed beam profiles using
the previously described accelerated rank adaptive matrix
sketching algorithm and projected the data onto this lower
dimensional latent space. Likewise, we applied the accelerated
rank adaptive matrix sketching algorithm to calibrated large
area detector images, namely 2 megapixel detector images at
LCLS, followed by latent space projection.

Once the data has been projected, we may apply the popular
Uniform Manifold Approximation and Projection (UMAP)
algorithm [12] to further reduce the dimension of each data
point to 2-d for visualization purposes. Although UMAP is
well known for its scalability, it is not suitable for directly
analyzing extremely high-dimensional data due to the curse
of dimensionality. Furthermore, UMAP would be far too slow
to process such high dimensional vectors in real-time, and thus
would not be suitable for real-time beam profile monitoring.
On the other hand, PCA is a simple linear dimension reduction
method, and cannot capture the intricacies of complex data
sources effectively. Thus, both stages of the procedure are
necessary steps for efficiency and accuracy.

In 2-dimensional space, we may further analyze the data
by clustering this latent embedding or by identifying outliers
using anomaly detection techniques. This can be achieved for
example via the Ordering Points to Identify the Clustering
Structure (OPTICS) algorithm in the former case [1], or fast
Angle-Based-Outlier-Detection methods in the latter case.

A. Experimental Results
1) Beam Profile Data: In figure 5, we provide the results of

applying our technique to beam profile data. Our interpretation
is that the data is separated on the Y-axis by where the center
of mass is: points close to y = 0 correspond to beam profiles
which are symmetric along the y-axis, and points to the right of
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Fig. 4. Schematic depicting the full data processing pipeline. The runs initially arrive as large batches of images. We produce a matrix sketch from this data
in each processing core, and merge these sketches to produce a summary sketch. We then apply principal component analysis to project the original data to
a low dimensional space, followed by UMAP and clustering/anomaly detection methods for visualization purposes.

Fig. 5. Results of the latent space embedding on beam profile data. In this
run, the unsupervised algorithm places beam profiles based on weight to the
left or right on the X-axis and circularity on the Y-axis.

y = 0 correspond to beam profiles which have higher weight
on the left side of the speckle pattern (similarly for the left
region of the embedding having higher weight on the right
side). On the X-axis, the data is distributed by density of mass:
points that are close to x = 0 are highly circular, while points
that are far from x = 0 are elongated or have multiple lobes.
We would like to stress that as an unsupervised algorithm, we
did not select for these features in the data, but rather that the
data naturally separated itself in this way. Additionally, exotic

Fig. 6. Results of the latent space embedding on diffraction data. In this
run, the unsupervised algorithm separates the data into clusters based on their
shape. Roughly speaking, the clusters differ from one another based on the
weight in each quadrant of the ring.

beam profiles which deviate heavily from zero-order mode
beam profiles separate themselves readily in such analyses,
as these outlier shapes do not match primary features of the
other beam profiles. Combined with the corresponding electron
beam parameters for each beam profile, such information can
provide highly valuable feedback for beam operators to modify
the current parameter settings as an experiment proceeds.

2) Diffraction Data: In figure 6, we provide the results
of applying our technique to diffraction data, which is a
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significant departure from the relatively simple Gaussian-like
beam profiles. Applying our technique, the data separates into
clear clusters, and we can analyze the distribution data as
the experiment is being conducted. These results demonstrate
our method generalizes to a broader class of data rather than
being restricted to simply beam profile data. Notably, our
technique does not use any prior knowledge of the experiment
beforehand and is unsupervised.

B. Runtime
To demonstrate the effectiveness of this framework, we ran

our framework on a full run of an LCLS XPCS experiment,
comprising of 12, 0000 2-megapixel images. After cropping,
we processed the full data set at 136Hz using 64 cores, and
the UMAP/OPTICS visualization was produced in less than
a minute. This method of beam profile monitoring exceeded
the current rate of data generation and gives practitioners the
ability to process beam profile and experimental data in real
time which is crucial for the usability of this analysis.

VII. CONCLUSION

In conclusion, we propose a new method for monitoring
beam profile and general data exploration for X-ray image
data. In this method, we propose a new matrix sketching algo-
rithm and parallelization scheme with strong scaling properties
and attractive accuracy-speed trade-off. We demonstrate the
effectiveness of this method by evaluating the beam profile
of a recent LCLS experiment in real-time speed and find that
our technique generalizes to experimental data beyond beam
profiles, such as X-ray diffraction data.

APPENDIX

A. Proof of Correctness of Parallelization Scheme
A sketch is considered a mergeable summary if given data

set A1, A2 with corresponding summaries B1, B2, one can
create a single summary B of [A1;A2] which achieves the
same formal space/error tradeoff as each of B1, B2 to A1, A2,
respectively. In [9], it is proved that the Frequent Directions
algorithm produces mergeable summaries. In our merging
strategy, we apply the same technique as discussed in [9],
though in a branching fashion, thereby achieving the same
formal space/error trade-off, since at each step in the merging
tree, the space/error trade-off is maintained.

We will prove this formally by induction. Assume without
loss of generality that we have 2n� 1 cores, and in each core
we have data Ak with corresponding sketch Bk, summarizing
the data. Our induction hypothesis will be: For A0, ..., An data
sets with summaries B0, ..., Bn where n 2 {ak, k = 0, 1, ...}
where a 2 Z, the branching merging process generates a
merged summary B which maintains the same theoretical
error/space guarantees. As discussed earlier, the base case
of k = 1 is covered in [9]. Proceeding with the induction,
we would like to show that for for datasets A0, ..., Aak and
summaries B0, ..., Bak , we may form a summary B with the
same error/space guarantees. Take any arbitrary partition of
the B0, ..., Bak into a sets. Each partition is a set of ak�1

summaries. By the induction hypothesis for k � 1 to each of
the a partitions, we may form a new summaries (call B0

j the
summary of partition j), each maintaining the same error/space
guarantees of their predecessors. With these new summaries
B0

0, ..., B
0
a, we may apply base case of the induction hypoth-

esis once more to make the induction conclusion for k.
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�PSFE�BS FCDMSFEFB�SFNM
Ntq bnmsqhatshnmr _qd sgqdd,enkc- Hm bnmsqhatshnm B0+ vd cdrbqhad _
svn, rs_fd q_mj,_c_oshud nmkhmd l_sqhw rjdsbghmf _kfnqhsgl sn lnm,
hsnq IBIR hl_fhmf c_s_rdsr+ bnlahmhmf sgd oqhnqhsx r_lokhmf _mc
eqdptdms chqdbshnmr l_sqhw rjdsbghmf _kfnqhsglr sn a_k_mbd qtm,shld
vhsg dqqnq- Sghr _kfnqhsgl ffmcr _ knv,q_mj _ooqnwhl_shnm ne c_s_-
Sn cdlnmrsq_sd sgd d’dbshudmdrr ne ntq _kfnqhsgl+ vd fdmdq_sdc
Ehftqd 0 hm ntq o_odq cdohbshmf sgd dqqnq.qtmshld sq_cdn’ ne ntq
_kfnqhsgl trhmf _qshe_bs =0- =qshe_bs =0 hr sgd �sdrsLd-ox� oqnfq_l
vghbg bnms_hmr sgd lnchffdc eqdptdms chqdbshnmr _kfnqhsgl #_r cd,
rbqhadc hm ntq o_odq( _mc v_r qtm trhmf =qshe_bs =1+ nmd bnqd ne sgd
RI=B R2CE Lhk_mn bnlotshmf bktrsdq- =1 qtmr nm _m �=LC DOXB
Lhk_m 6602�+ vhsg 01/ bnqdr _mc 37/FA odq mncd- Sgd khmtw chrsqh,
atshnm hr fhudm ax �Ihmtw rcff_m_//3 3-07-/,261-21-0-dk7Y5-w75Y53 "0
RLO Eqh Nbs 6 0192490/ DCS 1/11 w75Y53 w75Y53 w75Y53 FMT.Ihmtw
) krbot� _mc sgd _qbghsdbstqd hr w75Y53- Vd trd _ rxmsgdshb c_s_rds
fdmdq_sdc ax =qshe_bs =2+ sgd �fdmC_s_-ox� ffkd+ vghbg oqnctbdr q_m,
cnl l_sqhbdr vhsg rodbhffb rhmftk_q u_ktdr _r cdrbqhadc hm ntq o_odq
_mc rddm hm Ehftqd 0- Vd trdc sgd bnlotshmf dmuhqnmldms _qshe_bs
=3+ �ingmv,_m_,3-/-37,ox2�9 _ bnmc_ dmuhqnmldms bnms_hmhmf L_s,
oknskha+ TL=O+ GCARB=M+ Mtlox+ Rbhox+ Rjkd_qm+ Anjdg+ Rd_anqm+
_mc Gd_oP o_bj_fdr- Sgd a_sbg ina v_r rtalhssdc sn sgd R2CE
bnlotshmf bktrsdq =1 trhmf _qshe_bs =49 sgd rktql rbqhos �rbqhos-rg�-
Nmbd _qshe_bs =0 #sgd �sdrsLd-ox� oqnfq_l( hr bnlokdsdc+ hs oqn,
ctbdr mtlox _qq_xr bnms_hmhmf sgd dqqnq _mc shldr enq d_bg ne sgd
o_q_ldsdqr u_qhdc hm sgd sdrs- Vd qtm _qshe_bs =5+ sgd �oknsLd-ox�
ffkd+ sn fdmdq_sd sgd _bst_k oknsr ne Ehftqd 0 trhmf l_soknskha-

=qshe_bs =01+ �eqdpChq-ox� gntrdr _kk sgd bncd mdbdrr_qx enq sgd
o_q_kkdk _mc qd_k,c_s_ _m_kxrhr #B1 _mc B2(- Hs gntrdr sgd lnchffdc
eqdptdms chqdbshnmr _kfnqhsgl+ c_s_ fq_aahmf _mc oqd,oqnbdrrhmf
rsdo+ _mc sgd bncd enq uhrt_khy_shnm- Vd oqnuhcd _ rs_mc_knmd udqrhnm
ne sghr bncd+ ats sgd nqhfhm_k udqrhnm qdpthqdr _bbdrr sn sgd c_s_ _mc
_ RI=B _bbntms+ ctd sn sgd trd ne sgd ASW khaq_qx _mc rodbh_khydc
RI=B khaq_qhdr- Sgdqdenqd+ hs hr mns onrrhakd sn qtm sghr bncd hm sgd
dw_bs r_ld v_x _r sgd _tsgnqr vhsgnts adhmf _ RI=B trdq-

Rdbnmc+ hm bnmsqhatshnm B1+ vd oqdrdms _ rbgdld enq o_q_kkdkhy_,
shnm ne sghr _kfnqhsgl _mc oqnuhcd rsqnmf rb_khmf rstchdr enq sghr
rbgdld- Sn ntq jmnvkdcfd+ ntq oqnonrdc lnchffb_shnmr ne sgd eqd,
ptdms chqdbshnmr _kfnqhsgl hm _bbdkdq_shnm uh_ oqhnqhsx r_lokhmf+
_ookxhmf q_mj _c_os_shnm+ _mc o_q_kkdkhy_shnm hm sghr aq_mbghmf e_rg,
hnm g_ud mns addm rstchdc- Sn sghr dmc+ vd rtalhs _ a_sbg ina uh_
_qshe_bs =6+ sgd rbqhos �o_q_kkdkrbqhos-rg�+ vghbg qtmr _qshe_bs =7+ sgd
ffkd �o_q_kkdkqtm-ox�- =qshe_bs =7 rhlokx qtmr sgd l_sqhw rjdsbghmf
_kfnqhsgl _bqnrr ltkshokd bnqdr _mc r_udr sgd dqqnq+ qtmshld+ _mc
mtladq ne bnqdr sn _ bru+ sn vghbg vd qtm _qshe_bs =8+ �uhrLd-ox�
sn fdmdq_sd sgd oknsr+ ffftqdr 1 _mc 2+ vghbg _qd sgd l_hm dlohqhb_k
qdrtksr ne sghr rbgdld- Vd trd sgd r_ld bncd eqnl _qshe_bs =2 _f_hm
sn fdmdq_sd sgd rxmsgdshb c_s_rds _mc qtm sghr sdrs nm _qshe_bs =1-

Sghqc+ hm bnmsqhatshnm B2+ trhmf sghr knv q_mj _ooqnwhl_shnm sn
oqnidbs sgd nqhfhm_k c_s_ hmsn k_sdms ro_bd+ vd oqnonrd _ sdbgmhptd
enq lnmhsnqhmf hl_fhmf c_s_rdsr hm _ rb_k_akd _mc dfibhdms l_mmdq
ax uhrt_khyhmf _mc bktrsdqhmf sgd hl_fdr trhmf TL=O _mc NOSHBR

bktrsdqhmf- Vd cdlnmrsq_sd sgd d’dbshudmdrr ne sghr sdbgmhptd hm
lnmhsnqhmf W,q_x ad_l oqnffkdr bnqqdronmchmf sn _ Anqnm Lhqqnq
ch’q_bshnm r_lokd _r vdkk _r W,q_x ch’q_bshnm hl_fdr eqnl k_qfd
_qd_ cdsdbsnqr- =qshe_bsr =0/ _mc =00 bnqqdronmc sn sgd Anqnm
Lhqqnq ch’q_bshnm r_lokd _mc sgd W,q_x ch’q_bshnm hl_fdr eqnl
k_qfd _qd_ cdsdbsnqr- Sgdrd c_s_rdsr _qd mns otakhbkx _u_hk_akd+ rhmbd
sgdx _qd oqhu_sd c_s_rdsr _ss_hmdc uh_ dwodqhldms_khrs bnkk_anq_snqr
vhsg sgd IBIR dwodqhldms _s RI=B- Sgdx bntkc onsdmsh_kkx ad
l_cd _u_hk_akd tonm qdptdrs- Sghr etkk c_s_ _m_kxrhr ohodkhmd hr qtm
trhmf _qshe_bsr =02+ sgd �qtm-ox� rbqhos+ vghbg bnms_hmr sgd rbqhos
mdbdrr_qx enq trhmf sgd bncd hm _qshe_bs =01 rtbg _r rdsshmf to sgd
oxsgnm EqdptdmsChqdbshnmr rjdsbghmf naidbs+ _mc sgd rktql rbqhos
�etkkqtmrbqhos-rg� sn rtalhs sgd a_sbg,ina- Sghr bncd fdmdq_sdr sgd
dladcchmf _mc uhrt_khy_shnmr rddm hm ffftqdr 4 _mc 5+ rtbg _r _
Anjdg GSLI ffkd- Vd qtm sghr bncd nm _qshe_bs =1+ sgd R2CE Lhk_mn
bnlotsd bktrsdq-

Sgd ffkdr _mc rbqhos _qshe_bsr cdrbqhadc _anud _qd _u_hk_akd
hm sgd enkknvhmf otakhb fhsgta qdon9 gssor9..fhsgta-bnl.ingm,
vhmmhbjh.=Q=LRYRtalhrrhnm

PDOPNCTBFAFIFSX NE DUODPFLDMSR
Nsgdq sg_m vgdm mnsdc+ sgd bncd hr g_qc,bncdc hm sgd fhsgta qdon
sn g_ud sgd bnqqdbs o_q_ldsdq rdsshmfr sn qdoqnctbd sgdrd qdrtksr+
_mc rn mn hmotsr mnq hmots ffkdr _qd qdpthqdc adxnmc rhlokx qtmmhmf
sgd oxsgnm ffkdr nq rtalhsshmf sgd rktql rbqhosr-

Sgdqd _qd sgqdd dwodqhldmsr9 nmd oqnctbdr ffftqd 0 snv_qcr B0+
nmd oqnctbdr ffftqdr 1 _mc 2 snv_qcr B1+ nmd oqnctbdr ffftqdr 4
_mc 5 snv_qcr B2-

Hm nqcdq sn oqnctbd ffftqd 0+ nmd _bshu_sdr sgd bnmc_ dmuhqnmldms
=3 _mc fdmdq_sdr _ 04/// w 0/// l_sqhw trhmf _qshe_bs =2- Sghr
rgntkc s_jd kdrr sg_m 4 lhmtsdr- Trhmf sgd ntsotssdc l_sqhw+ nmd
rtalhsr a_sbg ina k_tmbghmf =0 vhsg u_qxhmf o_q_ldsdqr+ trhmf
rktql rbqhos =4- Sghr rgntkc s_jd qntfgkx 1,2 gntqr+ rhmbd hs qd,qtmr
sgd r_ld _m_kxrhr 0/ shldr nudq ltkshokd o_q_ldsdq bnlahm_shnm-
Sgd ntsots hr oknssdc trhmf =5- =kk ne sgdrd rbqhosr rgntkc ad hm sgd
r_ld chqdbsnqx _mc cnmzs mddc _ rodbh_k bnll_mc nq hmots sn qtm
#hs rtfibdr sn rhlokx rtalhs sgd a_sbg ina nq qtm sgd oxsgnm rbqhos(-
Sghr rgntkc s_jd qntfgkx 0/ lhmtsdr #lnrskx ctd sn sgd bnlots_shnm
ne sgd rhmftk_q u_ktdr(- Sgd dwodbsdc qdrtksr _mc du_kt_shnm ne sgdl
hr ffftqd 0 _r rddm hm sgd o_odq+ vhsg sgd r_ld nardqu_shnmr _r
chrbtrrdc hm sgd o_odq-

Hm nqcdq sn oqnctbd ffftqdr 1 _mc 2+ nmd rhlokx rtalhsr _ a_sbg
ina =7 sn qtm ffkd =6+ vghbg rgntkc ad hm sgd r_ld chqdbsnqx _r =7-
Hs b_kkr oxsgnm ffkd =01- Sghr fdmdq_sdr _ BRU ffkd+ vghbg b_m ad
oknssdc trhmf _qshe_bs =8- Sghr rgntkc s_jd qntfgkx 1,2 gntqr sn qtm
sn bnlokdshnm+ ats b_m ad l_cd sn qtm e_rsdq trhmf rdsshmfr ch’dqdms
sg_m vg_s g_ud addm oqd,rds- Sghr rgntkc oqnctbd ffftqdr 1 _mc 2
_r rddm hm sgd o_odq+ vhsg sgd r_ld nardqu_shnmr _r chrbtrrdc hm
sgd o_odq-

Sn oqnctbd ffftqdr 4 _mc 5+ nmd vntkc mddc _bbdrr sn _qshe_bsr
=0/ _mc =00- =rrtlhmf nmd g_r _bbdrr sn sgnrd+ uh_ _ RI=B _b,
bntms+ nmd bntkc b_kk _qshe_bs =02 vhsg sgd o_q_ldsdqr bg_mfdc hm
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.elleaie� cn Wk,sgd oxsgnm ffkd9 dwo ; zwoob//010z+ qtm ; 40/+ cdsYsxod ; zWooDmc,
rs_shnm-/9=kuhtl-0z hm nqcdq sn fdmdq_sd ffftqd 4- Sn fdmdq_sd ffftqd
5+ nmd vntkc bg_mfd hm sgd =qshbkd =02 sgd o_q_ldsdqr sn ad9 dwo ;
zwookw8110z+ qtm ; 133+ cdsYsxod ; zWooDmcrs_shnm-/9=kuhtl-0z- Tr,
hmf 53 bnqdr+ sghr rgntkc ad rtalhssdc sn sgd bnlotsd bktrsdq trhmf
_qshe_bs =02- Sgd ntsots rgntkc ad gslk ffkdr qd,bqd_shmf sgd ffftqdr
4 _mc 5 vhsg rhlhk_q oqnodqshdr _r chrbtrrdc hm sgd o_odq #enq ad_l
oqnffkdr nmd dwodbsr _ gnlnfdmdntr dladcchmf vhsg bhqbtk_qhsx
_knmf nmd _whr: enq ch’q_bshnm c_s_ nmd dwodbsr bkd_q bktrsdqhmf(-
Sgd gslk ffkdr rgntkc ad hmsdq_bshud vhsg gnudq snnksho etmbshnm_khsx-
Sgd drshl_sdc shld ne dwdbtshnm hr kdrr sg_m 4 lhmtsdr-

2153


