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Abstract—Particle accelerators are physically and technically
complex systems. Their operation requires demanding beam
control systems. To support the development of new components
in a beam phase control system for a synchrotron, we present
a CGRA-based hardware/software environment that is capable
of simulating the fundamental beam behaviour, leading to a
hardware-in-the-loop setup. We show that this setup is able to
emulate the longitudinal phase oscillations of the particle bunches
in real-time.

Index Terms—CGRA, real-time simulation, synchrotron LLRF
system, closed-loop control

I. INTRODUCTION

Particle accelerators and related experiments count among
the largest technical facilities on earth. In ring accelerators
like the synchrotron [1], [2], particles with an electric charge
such as electrons or ions can be accelerated to high energies
during thousands of revolutions. After acceleration, they can
collide with other high-energy particles or with fixed targets.
In a synchrotron, the particles do not move individually but in
groups. They can either form a coasting beam, or they can be
confined to so-called bunches if a radio frequency (RF) voltage
is applied by means of one or more RF cavities. Multiple
bunches can travel around the ring at the same time (then
obviously with some time/position difference) if the frequency
fRF = h fR of the RF voltage is an integer multiple of the
revolution frequency fR. The factor h is called the harmonic
number. Observing such a bunch leads to a pickup signal pulse
which is often Gaussian but can have different distributions as
well. All the bunches circulating in the synchrotron form the
so called beam. In this paper, the discussed use cases refer to
the GSI heavy ion synchrotron SIS18 in Darmstadt, Germany.
There, bunches circulate in the synchrotron with a maximum
revolution frequency of fR ≈ 1.4MHz which translates to a
minimum revolution time of TR ≈ 0.7µs.

A central part in such accelerators is the RF and beam con-
trol electronics, which is usually denoted as a Low-Level RF
(LLRF) system [3]. It controls all beam manipulations (such
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as the acceleration, but also sophisticated bunch “gymnastics”
[4]) in order to reach a high beam quality at the desired
energy. The LLRF system makes use of the RF cavities in
the synchrotron. It makes sure that the RF voltage along a
so-called ceramic gap in the evacuated beam pipe (both are
parts of the cavity) is stable and matches the requirements with
respect to amplitude, frequency and phase.

Normally, a sinusoidal gap voltage is applied that acts on
the bunches. In the longitudinal beam dynamics theory [5]–
[7], one defines a reference particle that always has the correct
parameters for the desired acceleration scenario. If a real
particle arrives late (∆t > 0) at the gap, it experiences a higher
voltage than the reference particle and is therefore accelerated.
If the real particle is early (∆t < 0), it experiences a lower
voltage and is slowed down. This behaviour is shown in Fig. 1.
It leads to a complex nonlinear dynamical behaviour that can
be visualised in longitudinal phase space where the energy
of each particle is plotted over its position in time. In the
longitudinal phase space, a bunch is represented by a huge
number of individual particles.

The most simple case is that of a bunch circulating in the
synchrotron at a constant energy. In this so-called stationary
case, the bunch centre is located in the zero crossings of the
sinusoidal gap voltage. In case there are undesired deviations
from the desired ideal signals, it can happen that bunches
oscillate as a whole around the zero crossing point. Such a
longitudinal dipole oscillation is only one possible mode of
oscillation. Others also exist, but are not discussed in this
paper.

As stated above, the beam quality should be preserved
by the LLRF system. Thus, it must be able to damp such
longitudinal oscillations. For this purpose, the LLRF system
includes a so-called beam phase control loop, which measures
the longitudinal position of the bunches and actively changes
the phase of the gap voltage in the cavities [8], [9]. It should be
noted that at GSI, the voltages provided by different cavities
can be several 10 kV. The design and implementation of the
electronic system to measure the beam and to produce the
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Fig. 1: Sample forces that influence a bunch

required signals for the cavities is extremely demanding.
Unfortunately, running such accelerators is a very cost

intensive endeavour. Thus, very little beam time is devoted to
the development of new components for the LLRF system or
other accelerator components. This situation was the starting
point for the research that is described in this paper. Instead
of operating the beam phase control system in the real ring,
we let it run against a simulation of the beam. This simulation
can be used to test new components without interrupting the
normal operation of the accelerator.

In order to produce meaningful results, the simulation must
fulfil multiple requirements:

• The underlying beam model must resemble the true
behaviour of the bunches close enough.

• The simulation must be fast enough to simulate bunches
even at the highest circulation speed in real time.

• The simulation must interface to the beam control system,
ideally without the need to change its setup.

• The time jitter of the outputs of the simulation must be
very small compared to the time of circulation.

Since the bunch simulation code is implemented in a separate
system, whereas the beam control system consists of the
same hardware as used in the synchrotron, we arrive at a
hardware-in-the-loop test bench setup. Such a hardware-in-
the-loop setup only works if the simulation operates in hard
real-time. The remaining paper primarily discusses the system
to simulate the bunch behaviour.

After several investigations, we decided that a pure software
based solution for the evaluation of bunch models is not
feasible. In principle it could be fast enough, but the time
jitter induced by the microarchitecture and the interfacing
to the sensors was too high. An alternative could be a
Field Programmable Gate Array (FPGA) implementation of
the model. This would simplify the interfacing to the beam
phase control system as the FPGA can be easily connected

to Analogue/Digital and Digital/Analogue converters. Yet, it
would make the development of the simulation very tedious,
as we can expect hardware synthesis times of multiple hours.
Thus, we ultimately decided to use an overlay architecture
for the FPGA, which is called a Coarse Grained Reconfig-
urable Architecture (CGRA). It has the benefit of very fast
programmability and at the same time its input/output timing
can be controlled very precisely.

In this paper, we describe the setup, architecture, and
programming of our CGRA based simulator. We evaluate the
quality of our hardware-in-the-loop setup by comparing its
output to the real beam behaviour. We will show that the
same effects can be seen in both cases and the longitudinal
oscillation matches very well between both cases.

The remaining paper is structured as follows. Section II
discusses related research work in the relevant fields. It is
followed by a description of our simulation system realised in
an FPGA in Section III. In Section IV we describe the model
that is used to simulate the bunch behaviour and how we have
implemented it. This is followed by an experimental evaluation
in Section V, where we compare the simulated behaviour to the
real behaviour of the beam. Ultimately, we give a conclusion
and an outlook onto future work in Section VI.

II. RELATED WORK

CGRAs are well established in the literature [10]. They
provide a trade-off between the flexibility that FPGAs can
offer and the lower design complexity and faster iteration times
of software. CGRAs offer high compute performance while
allowing predictable real-time operation, making them suitable
to be used in real-time control engineering environments, e.g.
as was done in Ultrasynth [11]. Similarly, CGRAs have been
found to be suitable for compute intensive simulation tasks
[12] and even for low-power signal processing in wearable
applications [13].

Particle tracking algorithms are widely used in the accel-
erator community. Tools like ESME [14], Long1D [15] or
the BLonD code [16] are used for offline-simulation of the
beam dynamics behaviour. They include many important beam
dynamics effects that often have to be taken into account in
realistic accelerator scenarios, such as beam loading or space-
charge effects. Even on powerful computers, the computation
time is of course far from the real-time requirements that stem
from a hardware-in-the-loop setup.

The high performance of FPGAs has also been used in
particle accelerators for years – not only for control loop
applications with lower complexity, but also for example to
implement real-time feedback control loops based on Rein-
forcement Learning [17].

III. HARDWARE SETUP

A. System-side integration

The simulator introduced in this contribution is based on
the AMD/Xilinx Virtex 7 VC707 FPGA [18] evaluation board.
This board is extended with an FMC151 [19] daughter card
consisting of a two-channel 14-bit Analogue Digital Converter
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Fig. 2: Example for input and output signals with harmonic number h = 2 (non-equilibrium snap-shot)
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(ADC) and a two-channel 16-bit Digital Analogue Converter
(DAC), both running at 250MHz sampling rate, with input
and output amplitudes limited to 2Vp−p in the experiments.
The interface with the beam phase control loop is using two
input voltages, a reference signal and a gap signal, as shown in
Fig. 2 in blue and black respectively. Output of the simulation
is a beam signal consisting of Gaussian distributed pulses,
shown in green colour. A second output channel is providing
a monitoring signal to either show the phase difference cal-
culated in the model or mirror the generated signal, this can
be adjusted at runtime. Gap and reference voltage are scaled
down on the beam side of the setup to fit within the acceptable
ADC and DAC voltage ranges.

B. FPGA Framework Design

Inside the FPGA, a top level framework wraps all other
simulator components. The architecture is shown in Fig. 3.
The SpartanMC softcore processor [20] is a custom 18-bit

processor optimised for FPGA architectures and serves as a
parameter interface. It can control basic parameters of the
simulation, adjust the scaling of output voltages and change
which monitoring signal is produced. Furthermore, it allows
to record the simulation into the DRAM memory of the FPGA
board, which can be read out from a computer via the serial
port.

Sample acquisition is done through a ring buffer for each
input signal that needs to hold at least two full cycles of the
reference voltage to accommodate for positive and negative ∆t
values. The voltages, as measured by the ADC, are recorded
with the full 250MHz sampling rate. A second port on
each buffer allows the simulator to access a sample value
in each cycle without interrupting the capturing process. For
smaller revolution frequencies down to 100 kHz, up to 2500
samples have to be saved per revolution. To accommodate the
requirement to hold two full cycles in the buffer, the buffers
thus have the capacity to store 213 = 8192 input values.

One ADC channel provides the reference voltage input,
which is also connected to a zero crossing detector. This
module both measures the frequency and time of the last
positive zero crossing of the sinusoidal input voltage. A period
length detector determines the frequency of the reference
signal. The measured frequency is averaged over the past four
periods to reduce jitter. The simulation model is executed
within a CGRA as described in section III-C. Output of
the CGRA is the calculated ∆t. Using the previous positive
zero crossing and the current frequency, the correct time to
trigger the next output Gauss pulse is stored in the Gauss
pulse generator module. For the simulation covered by this
contribution, a single module is used. When the timer module
triggers, a single, precalculated, Gaussian distributed pulse is
played back from sample memory through the DAC output.

C. CGRA
Model calculations are performed through a CGRA. CGRAs

are a type of overlay architecture that consist of Process-
ing Elements (PEs), where each PE can have its own
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set of operators to perform numerical operations, with a
selection ranging from pure integer arithmetic to floating
point operations up to Coordinate Rotation Digital
Computer (CORDIC) for trigonometric functions. For this
experiment, basic floating point and square-root operators are
in use. Each PE is connected to its surrounding neighbours
through a configurable interconnect. Results of operations can
be passed on, allowing the routing of operands where no
direct connection exists. The framework design covered in
section III-B is agnostic to the CGRA configuration, allowing
an arbitrary number of PEs (e.g. 3x3 or 5x5) and any inter-
connect structure without manual changes to the surrounding
implementation.

To connect the CGRA to the simulator, a SensorAccess
module was implemented to act as memory. This allows the
simulation model to both read input signal data and set the
output timing for the next Gauss pulse.

The same CGRA framework has been used in a another
hardware-in-the-loop setup in [11]. In this setup, the oscilla-
tions of a motor vehicle during a test drive were captured. In
order to find the sources of noise in the motor vehicle design,
the test setup could then reproduce the exact vehicle motions
of this test drive as many times as needed in a static test
environment. This demonstrates the flexibility of our CGRA
framework.

Programming of the CGRA is done using the C program-
ming language. A code parser converts the program into a
Scheduler Application Representation (SCAR)
control and data flow graph format, which is processed by
the CGRA scheduler. The scheduler is a customised resource-
constrained list scheduler [21]. Output of the scheduler are the
contents for all context memories, which can be inserted into
the final FPGA bitstream without requiring a new synthesis.
This allows very fast iterations of the model, as changes to
the C implementation are available on the experimental setup
in seconds.

IV. MODEL

In the following section we will give a detailed explanation
of the model we have implemented in order to simulate the
behaviour of the ion beam.

A. Particle Tracking Equations

The particles in the synchrotron accelerator reach velocities
well over ninety percent of the speed of light, so the cal-
culations have to be done in terms of special relativity. The
nomenclature used in this paper follows the definitions given
in [22] and will be explained briefly. Two so-called Lorentz
factors are used to describe the current energy of the ions:

βv =
v

c
; γv =

1√
1− β2

v

. (1)

The first factor, βv , refers to the fraction of the speed of light
c that the particle velocity has reached. The second factor,
γv , describes the factor by which the energy of the ion has
increased in comparison with the energy at rest due to special

relativity. These factors are interdependent, so knowing one of
them is sufficient for all further calculations.

In order to simulate longitudinal oscillations our model
of the ion beam consists of only two particles. One so-
called reference particle (index R), which will always remain
on the same orbit resulting in a constant orbit lengthlR
and an asynchronous particle, which can oscillate around
the reference particle. Quantities that apply for the reference
particle are marked by the index R whereas quantities that
are valid for the asynchronous particle have no such index R.
For example, the momentum of the reference particle in the
n-th revolution is denoted as pR,n whereas the momentum
of the asynchronous particle in the n-th revolution ispn.
Another example is the relativistic gamma so thatγR,n refers
to the reference particle and γn to the non-synchronous particle
(both in the n-th revolution). Since the orbit lengthlR of
the reference particle is the same in each revolution, it has
no index n, whereas the orbit length ln of the asynchronous
particle depends on the revolution.

Under normal circumstances, a huge number of asyn-
chronous particles must be assumed to represent a realistic
bunch, but in our case we model a whole bunch by one
asynchronous macro particle. The reference particle does not
exist in the physical world, but rather is a mathematical
construct to describe the longitudinal oscillation. The energy
of the reference particle at a given revolutionn can be
calculated recursively by adding the energy gain of the particle
in the electric field at the gap1 to its energy of the previous
revolution. Due to the high velocity of the particle, it can be
assumed that the gap voltage VR,n−1 is constant during the
time the particle is exposed to the electric field. This leads
to the following equation which recursively determines the
Lorentz factor γR,n:

γR,n = γR,n−1 +
Q

mc2
VR,n−1 (2)

Here, Q is the charge of each particle, and m is its rest mass.
Furthermore, quantities for the asynchronous particle are

expressed as differences from the quantities of the reference
particle using a ∆-symbol.

The difference of the Lorentz factor can be obtained using

γn − γR,n = ∆γn = ∆γn−1 +
Q

mc2
∆Vn−1. (3)

Since the energy of the asynchronous particle differs from
the energy of the reference particle, and because the magnetic
field is controlled in a way to keep the reference particle in a
constant orbit, the asynchronous particle will not move on the
reference orbit. The momentum compaction factorαc can be
used to relate a change in the particle momentum to a change
in orbit length according to (4). αc is a factor specific to each

1The energy gain of the particles takes place inside a so-called gap which
is an interruption of the metallic beam pipe by a short ceramic section. Such a
ceramic gap inside a cavity allows the induction of a radio frequency voltage
that accelerates the charged particles passing the gap.
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individual particle accelerator and the chosen ion optics. For
the accelerator at GSI, as in most cases, αc is a positive value.

∆ln
lR

= αc
∆pn
pR,n

(4)

Following the scheme explained above, pn is the momentum
of the asynchronous particle in the n-th revolution whereas
pR,n is the momentum of the reference particle in the n-the
revolution. The delta quantity ∆pn is the difference of these
two quantities.

The momentum compaction factor can be used to compute
the phase slip factor ηR. This factor has a meaning similar
to αc but instead of relating the change in orbit length to the
change in momentum, it relates the change of the revolution
time to the change in momentum.

∆Tn

TR,n
= ηR,n

∆pn
pR,n

with ηR,n = αc −
1

γ2
R,n

(5)

By means of the following three simplifications of the model,
equation (6) can be derived, which is a recursive way of cal-
culating the difference in the arrival time2 of the asynchronous
particle with respect to the reference particle.

∆γn
γR,n

≪ 1 ;
∆βn

βR,n
≪ 1 and

∆βn

βR,n
≈ 1

γ2
R,nβ

2
R,n

∆γn
γR,n

∆tn = ∆tn−1 +
lRηR,n

βnβ2
R,nc

∆γn
γR,n

(6)

The iterative calculation of equations (2) and (6) can now be
used to update the phase space position of the asynchronous
particle from revolution to revolution (so-called particle track-
ing). This concludes the brief overview of the mathematical
foundations of the longitudinal phase space model for the
synchrotron. A more in-depth explanation can be found in
[22].

B. C Implementation

In this section we present the implementation details of our
simulation and outline the steps taken to translate the math-
ematical model shown in the previous section into functional
code. The model is implemented in C and compiled for our
CGRA hardware.

The reference signal is delivered by a so-called Group Direct
Digital Synthesis (DDS) module. It generates a sine wave that
follows the revolution frequency set values in an undisturbed
way. For the stationary case, its positive zero crossing is
regarded as the position of the reference particle. The phase of
the gap signal is actively controlled by the beam phase control
system depending on the beam signal, which is measured by
a pickup sensor in reality but generated by our simulator to
realise the cavity in the loop emulation.

Due to the recursive nature of (2), (3) and (6) it is essential
that the coding provides a proper initialisation. Therefore,
the program first waits for a valid measurement of four full

2By arrival time we mean the time when the particle arrives at the cavity
gap.

sine waves before starting the initialisation process. In this
initialisation step, the program requests the revolution time of
the reference particle measured by the period length detector.
The sensor returns the number of clock cycles between two
positive zero crossings of the reference sine wave. To increase
accuracy, the sensor applies a simple average filter by accu-
mulating the last four period lengths measured. Knowing the
length of the orbit and the sampling frequency of our sensor,
we can compute the velocity of the reference particle. Using
(1) we can obtain initial values for βR,0 and thus for γR,0.

The input voltages of course do not contain any information
about the asynchronous particle. Therefore, initial values for
∆γ0 and ∆t0 must be provided as constants in the code. In our
test case, we do not want to stimulate an oscillation by hard-
coding the initial values, but by changing the input voltages
and then damping the oscillation again by means of closed-
loop control. Therefore we set these initial values to zero.

Once the initialisation is complete, we enter the main loop,
which we will go through once per particle revolution. The
main loop starts by requesting the most recent revolution time
of the sine wave from the period length detector. Using the
Lorentz factor from the previous iteration, we can calculate the
time it took the reference particle to complete one revolution
at the energy it currently has. By calculating the difference
between these two revolution times (∆TR,n−1) we know the
time relative to the zero crossing of the reference signal at
which the reference particle reached the gap. This relative
time is translated into a number of clock cycles via the
sampling frequency and then sent as an address to the ring
buffer capturing the reference signal. The buffer, using the
address of the zero crossing as address offset, returns the
voltage measured for that time step. Since ∆TR,n−1 is rarely
ever an integer multiple of the period length of the sampling
frequency, a second value is requested from the buffer to
perform linear interpolation to increase the accuracy. This
value is then multiplied by a scaling factor to obtain VR,n−1,
since the voltage at the input of the ADC is several orders of
magnitude smaller than the voltage at the gap.

A similar procedure is performed for the asynchronous
particle to obtain the voltage Vn−1. In this case, the different
revolution time of the asynchronous particle needs to be taken
into account by adding ∆tn−1 to ∆TR,n−1 before requesting
the voltage from the ring buffer that captures the gap signal.

With the voltage VR,n−1 we can update the Lorentz factors
for the reference particle according to (2) and with this a new
value for the phase slip factor can be found using (5). The
difference between VR,n−1 and Vn−1 inserted in (3) allows us
to compute the updated ∆γn. Using the Lorentz factor γR,n

this also allows us to calculate γn. Inserting all our results so
far into (6), we obtain the updated value ∆tn. Finally, we write
back the ∆tn to an actuator responsible for generating the
output of our simulator, as this is the time relative to the zero
crossing of the reference signal voltage when the simulated
bunch reached the gap.

Due to the strict real-time requirements of the system, i.e.
that the calculation must be completed within one period
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length of the reference sine wave, which can be faster than
one microsecond, it is not possible to simply use the C-model
as described above. It is too sequential and therefore too slow,
because it does not take full advantage of the parallel structure
of our CGRA. To reduce the sequential nature, we manually
pipelined the loop by a factor of two. This means that the
execution of a single calculation takes two iterations of the
loop, however, there is still a new calculation started and
finished each iteration. At the end of the loop any results from
the first loop iteration that are needed for the second iteration
are assigned to new variables. This allows the scheduler to
run both parts in parallel, as they do not depend on the results
they produce in this iteration, but on the results of the previous
iteration instead.

The pipelining is done by splitting the loop after the voltages
have been calculated. In addition, the write back operation
for ∆tn is pushed into the first loop iteration as it is already
known. Therefore, all IO operations are performed in the first
loop iteration which means that there is no additional delay
induced by the loop pipelining.

With this pipelining, we achieve a schedule length of 111
clock ticks while calculating 8 bunches per revolution. This is
significantly faster than the calculation without loop pipelining
which results in a schedule length of 128 clock ticks. In
order to meet timing criteria on our FPGA, we cannot use
the system clock of 250MHz for our CGRA. Therefore, the
CGRA uses its own clock running at 111MHz. This means,
we can simulate particles with revolution frequencies of up to
1MHz due to our loop pipelining instead of the ≈ 867 kHz
without loop pipelining. We can further reduce this schedule
length by reducing the number of bunches simulated. By
simulating only four bunches, we shrink down the length of
our schedule to a total of 99 clock ticks. And if only a single
bunch is simulated, the schedule length is even further reduced
to 93 clock ticks. Doing so, alows us to simulate particles
with revolution frequencies of ≈ 1.12MHz or with revolution
frequencies of up to ≈ 1.19MHz respectively.

V. EVALUATION

In the following section we present an assessment of the
quality of our simulator based on the results of an experimental
test. The aim of the evaluation is to demonstrate the feasibility
of a hardware-in-the-loop system that can accurately emulate
a simplified model of the beam and thus demonstrate the
effectiveness of our simulator, which lies not only in its
real-time capability, but also in its fast reconfiguration time
measured in seconds.

In order to properly evaluate the quality of our simulator,
we used the same parameters for our setup that were used
in a machine development experiment (MDE) at the GSI
heavy-ion synchrotron SIS18 on Nov. 24th 2023. During
this MDE, longitudinal oscillations of the bunches have been
excited deliberately by generating periodic phase jumps, and a
closed-loop control electronics system was used to damp these
oscillations.
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Fig. 4: Experimental setup

The structure of our experimental setup is shown in Fig. 4.
Three DDS modules were used to generate three synchronised
RF signals that have the desired phase relationship [23]. The
synchronicity is ensured by simultaneously resetting the phase
of all DDS modules using a mini control system and by using
the synchronised clock signal from the BuTiS (Bunch Phase
Timing System) of GSI. This system is used to provide a low-
jitter (in the low femtosecond range) synchronous clock signal
throughout the accelerator facility campus with an accuracy of
100 picoseconds per kilometre [24]. The gap voltage must be
phase-shifted with respect to the reference voltage. In our test
setup, this phase jump is created as an analogue signal via
an arbitrary waveform generator (AWG) and converted into
an optical stream via a Calibration Electronics (CEL) module.
The optical stream is then fed back to the DDS. The phase
jump was toggled every twentieth of a second. The constructed
signal that emulates the gap signal of a cavity contains 8
degree jumps which is only slightly different from the 10
degree jumps made in the machine experiment.

Analogue to the setup in the operational accelerator, a DSP
system is used to capture the phase difference between the
beam signal generated by our simulator and the reference
signal. The measurements were performed with a harmonic
number of four, which means that there are four bunches in
the accelerator and therefore the frequency of the gap voltage
is four times the frequency of the reference voltage. Similar
to the MDE, we used input frequencies of 800 kHz for the
reference signal and 3200 kHz for the gap signal respectively.

The frequency of the longitudinal oscillations, the syn-
chrotron frequency, was measured to be 1.2 kHz in the MDE.
Therefore, for our measurement, the input voltage amplitude
was adjusted to achieve a similar synchrotron frequency of
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(a) Our simulator. The acceleration of 14N7+ ions is being simulated. An averaging filter with a width of 5 samples has been applied.

1.16 1.18 1.20 1.22 1.24
Time/s

30

25

20

15

10

Ph
as

e 
Di

ffe
re

nc
e 

/D
eg

re
e

(b) GSI heavy-ion synchrotron SIS18 on Nov 24th, 2023. 14N7+ ions are being accelerated.

Fig. 5: Measurement of the difference in phase between the reference signal and the beam signal.

1.28 kHz. The closed-loop control system uses a Finite Im-
pulse Response (FIR) filter. The parameters of the closed-loop
control were set to fpass = 1.4 kHz, gain = −5 and recursion
factor = 0.99, which are the optimal parameters according to
[8].

Thus, our test setup realistically emulates the MDE setup.

The aim of the experiment with our real-time simulator was
to show, that our system reacts in a similar way to the SIS18,
i.e. that the phase jump would cause the simulated bunches to
oscillate at a realistic amplitude and frequency, and that the
closed-loop control would manage to damp the oscillation as
in the mentioned MDE. As you can see in Fig. 5, our measured
results match the expectations.

The results show a constant offset in the phase difference
because the dead times in the test setup differ from those in
the real sychrotron (due to the position of the synchrotron

components and due to different cable lengths). However, this
offset is not important for the evaluation of our experiment
because only the relative differences of the phase before and
after the jump matter. There is also a constant offset between
the two time axes, which is also irrelevant since the time
interval between the phase jumps is identical. Apart from these
two minor differences, there is a remarkable similarity between
the behaviour of the simulator and real accelerator.

The beam signal of the simulator realistically reacts to a
phase jump by starting to oscillate. Initially, the peak-to-peak
phase amplitude of this oscillation is twice the amplitude of
the phase jump. This can be observed on the first peak after
each jump and is in line with the expected behaviour which
can also be observed in the SIS18 experiment.

The control loop is effective in damping the longitudinal
dipole oscillation. A strong decrease of the amplitude of
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the phase oscillation can be observed. Without the control
loop, the real particle bunch in the accelerator would also
experience a decrease of the phase oscillation amplitude due
to Landau damping [25] and filamentation. In this context,
the damping of the coherent oscillation results from the large
number of particles in the bunch which have a certain energy
spread. Although each particles oscillates with its synchrotron
frequency, the oscillation of the bunch centre will therefore
decrease. This effect is obviously not simulated in our system,
as we have simplified our model to include only a single
macroparticle. It would require the simulation of tens of
thousands of individual particles to see this effect. However,
since the damping from the control loop is much stronger, the
effect of filamentation and Landau damping can be neglected
for the controlled system. Therefore, our results closely match
those measured in the MDE, as can be seen in Fig. 5.

VI. CONCLUSION

In this paper we have demonstrated that a hardware-in-the-
loop setup for a complex LLRF system in a synchrotron is
possible. Its real-time performance allows that the beam con-
trol system can be run against this simulation. The simulated
bunch behaviour shows similar longitudinal bunch oscillations
as observed in machine development experiments with the real
beam. The usage of a CGRA to carry out the simulation has
proven extremely useful as the turn-around time after model
changes is only in the range of seconds (compared to a full
FPGA synthesis that can easily take hours).

Currently, we are also implementing the ramp-up case,
which simulates the bunches after injection into the ring. At
that point bunches have much smaller energies and longer
revolution times. Therefore, the challenge is to emulate the
acceleration phase with variable RF frequencies and ampli-
tudes.

In the future, we want to improve the level of detail in
our simulation by replacing the single macro particle with a
set of macro particles. This will allow us to simulate other
oscillation modes (like quadrupole oscillation). Also, it allows
us to replace the synthetic Gauss pulse by a parametric version
that adapts to the energy/phase distribution of the bunch.
Ultimately, we will also extend the simulation to support
multiple bunches circulating in the ring at the same time.
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