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Abstract—Containerized computing is quickly changing the
landscape for the development and deployment of many HPC
applications. Containers are able to lower the barrier of entry
for emerging workloads to leverage supercomputing resources.
However, containers are no silver bullet for deploying HPC
software and there are several challenges ahead in which the
community must address to ensure container workloads can be
reproducible and inter-operable.

In this paper, we discuss several challenges in utilizing con-
tainers for HPC applications and the current approaches used
in many HPC container runtimes. These approaches have been
proven to enable high-performance execution of containers at
scale with the appropriate runtimes. However, the use of these
techniques are still ad hoc, test the limits of container workload
portability, and several gaps likely remain. We discuss those
remaining gaps and propose several potential solutions, including
custom container label tagging and runtime hooks as a first step
in managing HPC system library complexity.

I. INTRODUCTION

Containerized computing has gained adoption in both High
Performance Computing (HPC) and scientific computing and
is currently being utilized across many different computing
centers, academic communities, and even enterprise HPC [1].
This is driven by in part by a promise to increase produc-
tivity and flexibility of scientific workloads through enhanced
reproducibility and portability. Since the container image can
notionally contain all the required libraries and dependencies
and the running environment, this provides an abstraction and
removes dependencies on the host system.

The promise of reproducibility with containers has the po-
tential to have a profound impact on scientific computing. For
example, to support the DOE NNSA’s mission of extending the
lifetime of the stockpile without underground testing [2], large-
scale modeling and simulation applications that incorporate a
multitude of physics and engineering models are executed on
leadership-class supercomputers [3]. The inherent complexity
of simulations and the environmental factors affecting them
require studies involving several application runs over long
periods of time. The importance of any single simulation may
not be known initially, and subsequent analysis, validation,
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and verification efforts may identify key results that need
to be further analyzed or reproduced, potentially years later.
Encapsulating applications together with the entire support-
ing software environment in a containerized workflow could
greatly improve traceability and reproducibility of simulations
[4] and improve overall system efficiency in HPC.

However, there are still several areas to consider before
containers can deliver on these promises. Containerization and
OS-level virtualization promises the potential to improve flex-
ibility, portability and reproducibility for developers through
the support of user-defined software stacks [5]. Yet the current
mechanisms used within industry for achieving portability and
reproducibility also can inadvertently sacrifice performance.
The containerized system must still match the host architecture
and be capable of exploiting specialized hardware in HPC. The
current mechanisms for leveraging advanced HPC hardware
and related libraries require pulling in features from the
host itself. This method can be brittle and threaten long-
term reproducibility, effectively moving away from industry
container standards for interoperability.

As the name implies, performance is paramount in High
Performance Computing, and is is typically achieved by a
combination of specialized hardware components, software
to utilize such specialized components, and scale. For an
application to achieve peak performance, it often needs to
be optimized for the architecture and capable of exploit-
ing advanced hardware like accelerators and interconnects.
Achieving this specialization in a containerized application
while maintaining a notion of portability has proven to be
a difficult balance to maintain. Specifically, there are several
considerations to be made with containers for HPC:

• HPC applications need to use specialized interconnects &
libraries not found or optimized for in base OS packages.

• Typical container solution requires mapping in libraries,
which can cause host-to-container incompatibilities.

• There are differing methodologies in container runtimes
for incorporating GPUs and accelerators.

• Users may not know if a given container image can be
ported to a different HPC system.

• If portability is possible, users may not know what
performance implications exist when running a container
on a different HPC system.
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In this paper, we review some these challenges in utilizing
containers for HPC applications and current approaches used
in many HPC container runtimes. Many of these approaches
have been been demonstrated at scale with applications scaling
to thousands of nodes and hundreds of thousands of cores.
However, the use of these techniques are still ad-hoc and
several gaps remain. We discuss those remaining gaps with
a detailed focus on the container & host library compatibility.
While not complete, we propose a partial solution using OCI-
compliant image labels and runtime hooks to resolve HPC-
specific runtime issues. Furthermore, we discuss other options
that could lead to additional investigation of container-enabled
reproducibility in HPC.

II. STATE OF THE PRACTICE

Due to the non-standard hardware found on most leadership-
class HPC systems, system-specific libraries are needed within
a given HPC container image to best utilize such hardware.
A method that has been adopted in most of the HPC-centric
container runtimes is to use a combination of bind mounts
and dynamic linking to inject optimized libraries from the
host into the runtime environment. A common example is MPI
applications, which require libraries that have been optimized
for the target interconnect. It has been standard practice to
include optimized MPI libraries for HPC interconnects for
over a decade, with examples including CrayMPI, IntelMPI,
MVAPICH, and more.

The HPC container runtime will bind mount the optimized
version of the libraries into the container at runtime and force
the MPI application to use these libraries in exchange for
the versions present in the image (such as a default MPICH
installation). This can be done by two ways. The first method
is to directly bind mount over the library in the image. For our
MPI example, this means overlaying libmpi.so and any other
necessary libraries. The other method includes bind mounting
all libraries into a separate directory (eg: /host and modifying
LD LIBRARY PATH to prepend that directory. Similar
techniques can be used for accelerators like GPUs, and rely
on dynamic linking [6], which is generally becoming com-
monplace in HPC. This approach has proven very successful
and has been demonstrated to be robust across different
architecturally compatible systems and system upgrades. For
example, NERSC has images that were built and deployed
around 2016 with Shifter that can still be run on the Cori
system, despite multiple system upgrades.

While the approach described above is generally adopted
by different HPC container runtimes, the method of im-
plementation and the user interface can vary. For example,
Shifter provides a module mechanism that allows a site to
specify different extensions that can be selected by the user to
customize the runtime including MPI and GPU support [7].
This has lead to near-native performance of containerized apps
built with commodity MPICH MPI libraries [8]. Singularity
[9] also allows the site to specify default bind mounts that
are injected into the container with similar near-native results
[10].

However, one downside to these bespoke approaches is the
community cannot easily reuse an implementation from one
runtime to another. Another issue is the user interface and
interaction varies between runtimes, sometimes considerably.
As a result, the user may need to learn the right combinations
of command-line options between different systems, compli-
cating the adoption of containers for HPC workloads. Further-
more, this approach relies on the application binary interface
(ABI) compatibility of the library being overloaded. While
MPICH, CrayMPI, IntelMPI and other MPI implementations
are ABI compatible [11], OpenMPI and some other proprietary
MPI implementations do not offer such flexibility.

For OpenMPI [12], [13], the user must either know the
build configuration to match the target machine in advance
of the build or leverage an exact module of OpenMPI which
is compatible between versions, as well as all of OpenMPI’s
RPATH dependencies. This can be cumbersome for users
new to containerization models who would like to simply take
advantage of new container methods for their own application.
Furthermore, the customization of host-specific libraries in the
container can effectively hamper future ability for baseline
reproducibility. The container build must stay inline with a
particular cluster or host configuration, such as with user-space
MOFED drivers for InfiniBand fabrics, for instance. Recently,
Mellanox kept MOFED 4.4 and 4.5 drivers ABI compatible
between versions, and is seen as a first step for the container
community influencing vendor library compatibility through
the help of HPC Container Advisory Council. However, there
are no long-term guarantees for future driver releases or for
new hardware.

There are emerging standards that could play a role in bring
some order to this problem. The Open Container Initiative
(OCI) is an open standard for container runtimes and images.
The runtime includes standards on hooks that can be used
to address some of the use cases in HPC. This standard is
already being used by the Sarus runtime [14], among others.
While the OCI runtime hooks can play a role, there can be
assumptions made in individual hooks that may not work with
all runtimes. For example, they may make assumptions about
container privileges, which do not translate to current un-
privileged container runtime models in HPC.

III. REMAINING GAPS

While the approaches described above are generally func-
tional today and emerging standardization can address many
issues, gaps still remain. For example, there are currently no
tools or conventions for how image creators can specify and
communicate requirements for their image to the runtime. The
runtime cannot easily determine if an image requires or would
benefit from injecting libraries to support HPC hardware, such
as GPUs or MPI libraries necessary for Exascale container
computing.

While the library injection approach works in many sit-
uations, there are still potential issues with this approach.
When injecting host libraries into the container, they too have
dependencies. These dependencies can be as simple as the
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$ s r u n −n 1 s h i f t e r / app / h e l l o
. . .
/ app / h e l l o : / l i b / x86 64−l i n u x−gnu /
l ibm . so . 6 : v e r s i o n ‘GLIBC 2 . 2 3 ’ n o t found
( r e q u i r e d by / o p t / ud i Image / modules / mpich /
l i b 6 4 / dep / l i b q u a d m a t h . so . 0 )
. . .

Fig. 1. Example error for a glibc mismatch

GNU C Library, otherwise referred to as glibc. Glibc is the
implementation of the C standard library used throughout
GNU/Linux systems which provides core library support and
interfaces to kernel features [15]–[17]. However, glibc from
the host could be either significantly older or newer than that
in container images. This variation in core system libraries
can introduce symbol mismatches between the glibc version
in the container and the version used to compile the injected
libraries.

This is not a theoretical problem with HPC containers, but
in fact a real issue today. A recent major OS update on Cray
systems included updated MPI libraries and its dependencies
that were built against glibc 2.26 from SuSE SLES15. Trying
to inject these optimized MPI libraries into older container
images, such as Centos7 images with glibc 2.17, would fail in
Shifter. An example of the error is shown in Fig. 1. Fortunately,
MPI libraries from the previous Cray OS release still work
on the updated system and work with the older images.
However, future changes in, for example, the interconnect
firmware could break the legacy libraries. This points to a
potential long-term challenge in trying to maintain backward
and forward compatibility for containerized applications across
major system upgrades. Furthermore, this problem was on a
single machine; experiencing interoperability across multiple
systems even of similar configuration is unlikely.

While this example is only a simple instance of container
incompatibility, it in fact is likely be repeated many times
over the next few years. For instance, there are several new
and emerging interconnect standards with libfabrics, UCX,
and Portals-compliant interfaces; many of which are likely
to be deployed across leadership supercomputing facilities.
Each interconnect will likely outlive any given OS distribution
release and dependency library mismatches are almost guaran-
teed over time. Furthermore, GPUs and accelerators are a key
architectural solution for improving the performance of HPC
applications [18]. Each device will require custom and often
proprietary libraries that will need to be managed explicitly
between the host and the container. Such accelerator libraries
may be even be tied to specific driver and firmware versions
which are specific to a particular facility deployment. If we
continue to bind-mount and tune the library path between the
container images and the host system for performance, it will
be at the expense of portability.

IV. PROPOSED SOLUTIONS

It is unlikely we can provide a ubiquitous solution to all
of the issues outlined above. Many of these challenges are
not even unique to HPC or containers, but instead describe
fundamental limitations of Linux-based operating systems
which become exacerbated by the use of containers. However,
there are several potential approaches that can help address
some of the issues, and any solution will likely require
close collaboration with the HPC vendor community, runtime
developers, and even end users.

A. Custom Image Labels

A mechanism for capturing and communicating image re-
quirements to the container runtime would provide users with
a more seamless experience. This would allow the runtime to
determine if it can’t meet the requirements of the application in
advance and also allow it to determine what set of extensions
should be enabled. One potential model would be to lever-
age the existing label capabilities in the OCI image format
to capture these types of requirements. This would require
establishing some conventions on how to specify these labels.
For example, an image could contain labels indicating that the
execution requires a certain version of glibc, MPICH support,
or CUDA drivers. This would allow the runtime to read these
requirements and determine if it can satisfy those requirements
prior to execution and to perform any initialization. This same
approach could also be used to specify required architectural
details such as processor features, such as AVX512, SSE4, or
SVE. A similar concept has been proposed by others in the
community [19]. Ideally, a common model could be designed
which would allow specifying both hard and soft requirements.
For instance, glibc compatibility may be a hard requirement,
as symbol mismatchs will cause a failure at container launch.
A soft requirement could be simply an older or less-capable
GPU, or a un-optimized MPI for debugging or reproducibility
purposes where performance isn’t a concern.

To demonstrate this approach, we implemented a simple
prototype that would work with Shifter and tested it with some
sample images. The sample images are tagged with LABEL
statement as shown in Table I. An example Dockerfile is
shown in Figure 2. To demonstrate the runtime behavior, we
implemented a Python-based wrapper script that uses Skopeo
[20] to retrieve the metadata for the image and extract the
labels. These labels are then used to select the appropriate
Shifter modules which is Shifter’s mechanism for manipu-
lating the container at runtime to support MPI, GPUs and
other features. The prototype illustrates that with the labels and
runtime integration, the user has to simply add the appropriate
labels to the image and the runtime can determine matching
features.

B. Backwards Compatible Libraries

Given the proprietary nature of many of HPC’s key per-
formance libraries, there is a serious risk of relying on ABI
and library version compatibility between any injected libraries
and the images. For example, if Intel decided to add a new
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TABLE I
EXAMPLE IMAGE LABELS

Label Values Comment
org.supercontainers.mpi {mpich,openmpi} Required MPI support, ABI compatibility
org.supercontainers.gpu {cuda,opencl,rocm, etc} Required GPU library support
org.supercontainers.glibc Semantic version: XX.YY.Z Specific version of GLIBC

FROM c e n t o s : 7

LABEL org . s u p e r c o n t a i n e r s . mpi=mpich
LABEL org . s u p e r c o n t a i n e r s . g l i b c =2 .17

RUN yum −y u p d a t e && \
yum −y i n s t a l l gcc make gcc−g f o r t r a n \

gcc−c++ wget c u r l

RUN B=mpich . o rg / s t a t i c / downloads && V=3.2 && \
wget $B / $V / mpich−$V . t a r . gz && \
t a r x f mpich−$V . t a r . gz && \
cd mpich−$V && \
. / c o n f i g u r e && \
make && \
make i n s t a l l

ADD h e l l o w o r l d . c / s r c / h e l l o w o r l d . c

RUN mpicc −o / b i n / h e l l o / s r c / h e l l o w o r l d . c

Fig. 2. Example Dockerfile with Labels

features to IntelMPI that required an ABI change, it could no
longer be swapped into the container from the host at run time
via a bind-mount. Furthermore, mismatched glibc errors and
other system library ABIs between containers and host systems
demonstrated in Section 3 points to a more challenging issue
of forward compatibility.

One method of addressing this issue for HPC vendors
provide multiple libraries, each supporting a cross-product of
glibc and other sub-library dependency layers. While tenable,
the approach of multiple binary builds will eventually become
cumbersome for vendors and HPC facilities to provide long-
term and could cause eventual performance degradation or
delayed advancement in system software libraries. At best,
this is as cumbersome as requiring administrators to maintain
multiple custom lmod module installations, as is often done
for system software on supercomputers today.

Another approach would be for HPC vendors to provide
full source code for each library in order to build into the
container images directly. This would enable container devel-
opers to compile the various libraries specific to and with the
tools from their container image. Entire project development
teams could provide base container images with pre-compiled
libraries for targeted deployments. It would also allow for
supercomputing facilities to support several common builds
for container binding, without the entire cross-product of build
configurations necessary.

While straightforward, this is essentially intractable ap-
proach in reality. Many HPC vendors have spent years fine-
tuning their MPI implementations and are unwilling to dis-

tribute source code. Expecting Cray to provide the full source
to build CrayMPI for every container user would be equivalent
to Coca Cola divulging the recipe for Diet Coke on the label
of each can.

Currently, there is no simple way to detect or correct for
ABI or glibc version mismatches before execution. In the
example from Figure 1, a previous version of the library build
was sufficient to address the issue and provides a potential
solution. If the vendors commit to providing builds against a
small range of major library versions, this could potentially
provide compatibility over the life of a given supercomputer.
Still, further investigation is required to identify what range
of versions would be required. Do supercomputing facilities
require full compatibility from RHEL6 onward? At what point
do we allow the vendors and system software developers
advance their library environments? Is there something more
structured that the Linux community can do collectively to
avoid glibc symbol mismatches?

C. Container Compatibility Layer

Another possible method that could be leveraged is to
implement a lower-level container runtime library that man-
ages supercomputing-specific device and library mappings
between the host and container images. Specifically, a library
would first leverage OCI labels like those in Table 1, or
provide mechanisms for detecting hardware and gating access
within a container. This tool would run a container image
introspection scan at initialization to determine image features
and requirements (eg: glib version), which would then be
mapped to host-level libraries and handle LD PRELOAD
and bind or overlay mounts to project the correct and matching
system software libraries into the container.

Currently, this concept is utilized by Nvidia through the
libnvidia-container library [21]. This provides a base mech-
anism for handling the driver/library matching at container
runtime, as well as a convenient CLI which can be called
by users or by container runtime implementations. However,
such a technology is particular only to Nvidia GPUs and
extending to other hardware and libraries would likely require
a significant re-write.

The Cloud Native Computing Organization also started to
investigate the usage of a compatibility layer for networks
via the Container Network Interface (CNI) [22]. CNI is both
a specification and set of plugin interfaces and libraries to
implement network configurations for Linux containers. CNI
is written in Go, is currently under consideration for wider
adoption in Kuberetes [23], and has limited usage in latest
versions of Singularity. However, CNI has focused on the
Linux network namespaces, no HPC interconnect vendors or
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providers have currently adopted the CNI usage model to
date and integration with HPC-centric interconnects outside
the scope of TCP/IP is still relatively unknown.

In reality, such a container compatibility layer would be
difficult to gain traction. First, all major HPC container
runtimes would have to agree to leverage this shared low-
level tool. Given the variety of different runtime implemen-
tations and dependencies, this alone would be a significant
challenge. Second, it would also need at least partial support
from various interconnect, GPU, and accelerator providers and
vendor to have any impact on future supercomputing systems.
Furthermore, this method would still rely on ABI matching
between the container image and the host. While such hurdles
are significant, a HPC-focused compatibility layer may be the
best way to quickly and seamlessly provide some notion of
portability across HPC deployments and container runtimes. A
container compatibility layer may also help standardize library
and dependencies and help minimize the effects of boutique
implementations seen today from various interconnect and
accelerator vendors at Exascale.

D. System Virtualization

If providing reproducibility is of paramount concern for
the HPC community, it may be viable to to leverage other
virtualization technologies beyond just OS-virtualization (aka
containers), including ISA-level virtualization technologies
which support a Virtual Machine (VM) [24], [25]. Unlike
containers, VMs provide full system encapsulation including
system-level drivers, a full OS kernel, and emulation of other
hardware. The OS kernel and driver pairings could be be
tightly controlled to ensure backwards or forwards compatibil-
ity with the container runtime, depending on the needs of the
container image developers. With this model, it is possible to
construct a lightweight hypervisor that instantiates a prepared
set of configured OS kernel and driver pairings which have
been curated across the life of an supercomputing system,
such as for each system upgrade. Then, a container image
could be invoked atop the custom-configured Linux kernel and
underlying hypervisor in userspace. The result of this dual-
virtualization method would be that glibc incompatibilities
could be avoided due to the particular matching between
the glibc in the container and OS kernel versions. Driver to
library ABI mismatches could also be avoided in the same
way. Furthermore, root-level operation could be prohibited
through the use of an un-privileged container runtime, so the
hypervisor still provide access to custom interconnects and
accelerator hardware or mount a shared filesystem just as a
host OS kernel does natively.

While the combinations of containers and VMs may be a
viable approach for ensuring reproducibility in HPC, there
are hurdles to overcome. While recent VMs and hypervisors
have shown near-native performance for HPC applications
using HPC interconnects and GPUs [26], their usage in HPC
introduces a measurable source of overhead that may adversely
affect performance. Significant implementation would be nec-
essary to enforce user-level operation of container images,

integration with current HPC systems, and integration with
current vendor software stack and base OS configurations.
Also, the use of a hypervisor would not solve all problems
of interoperability between system libraries and advanced
hardware. For instance, updates in hardware firmware for
particular interconnects over time could cause issues with
outdated drivers provided within VMs. Furthermore, it would
remain an open question whether VMs could help in ensuring
portability of software stacks any more-so than container
runtimes do today.

Within industry, the combination of virtual machines and
containers is much more common, largely due to the relative
acceptable tradeoff of performance with hypervisors. Today,
most containerized workloads on Amazon’s AWS cloud run
atop EC2 virtual machines. Docker for Mac leverages xhyve,
a lightweight hypervisor for OS X based on bhyve [27].
However, the dual-use of virtualization and containerization
within the HPC community does not currently exist in pro-
duction supercomputers. Any potential design would require
significant investments in implementation and general backing
from the vendor community to be successful, as well as a
method to properly pair container images with compatible OS
kernels.

V. DISCUSSION

Since the introduction of container-based computing and
associated runtimes in HPC, there is a new hope for both
portability and reproducibility of user-defined software envi-
ronments. While bit-wise reproducibility is unlikely, container
usage in HPC may help encapsulate critical software for
years to come by providing a foundation for traceability, a
critical first step towards long-term reproducibility of scientific
software. Furthermore, containers can also help expand the
horizon of deployed software ecosystems on HPC resources
themselves, effectively paving the way for next generation
system software supporting data analytics, machine learning,
and next-generation simulation capabilities.

However, current HPC container runtime implementations
must make a difficult trade off of these features for perfor-
mance by swapping in specialized libraries at runtime. In this
paper, we have outlined the challenge and trade-offs in detail,
with current example problems from real-world supercomput-
ing deployments. We also explore several potential methods
for solving or elevating container interoperability, including
OCI label standardization and associated runtime hooks, con-
solidated vendor support, a container compatibility layer, and
a dual-virtualization approach. Our hope is that all these
methods can be investigated cooperatively and concurrently
to eventually find a tractable solution to performant repro-
ducibility. The idea and work proposed in this position paper
is only in its infancy and more efforts are needed to ensure
performance, portability, and some degree of reproducibility
in HPC is possible. As software complexity continues to
rise along with the dependency on national supercomputing
capabilities, the need for key container features becomes
evermore important in the quest for Exascale and beyond.
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