
Long-term Preservation of Repeatable Builds in Occam
David Wilkinson, Luı́s Oliveira, Daniel Mossé, and Bruce Childers

University of Pittsburgh
{dwilk,loliveira,mosse,childers}@pitt.edu

Abstract—In order to provide transparency, wide availability,
and easier reuse of scholarly software, there is a need for greater
emphasis on code preservation. Yet, not just mirroring the source
code, but preserving the ability to build it. Occam is a tool
that offers preservation and distribution using containerization
to provide repeatable execution in both building and running
software. This paper gives detail about the design of Occam and
its potential use within the scholarly community and beyond.

I. INTRODUCTION

Scientific reproducibility is a problem that likely will
require a few hops of progress before we land on a complete
solution. One major problem is software, burdened by unbridled
imperfection and ephemerality. There are bugs to detect.
There are aspects of randomness and noise to control. There
are external actors and unregulated data sources that may
interfere with intended behavior. In truth, there is an unknown
yet appreciable chaos surrounding software determinism and
preservation. And yet, we need to confidently tackle these
problems if we ever wish to preserve our scholarly record. The
urgency of this problem only increases as scientific research
becomes more and more dependent on code. Software we not
only need to keep around but keep running.

Preservation may be thought of as a task within the domain
of archaeologists. That there are people curating interesting
objects and placing them within museums perhaps long after
obsolescence. However, software degrades faster than its
potential usefulness. Within their research work, scientists may
find themselves acting as their own Indiana Jones if they need
to resurrect an older tool.

This is not a problem of digging up the distant past, however.
In a 2016 paper [1] students were given the task of repeating
software-backed research from just four years prior. Although
these students were comprised of computer scientists, they still
suffered two major obstacles. The first was the availability
of code. Only 35% of the studies had their software publicly
available. The second was getting the code to build. In this
case, given they had the code, only 58% of the time could
students build the software within 30 minutes. Of the rest, only
28% of the studies could be built when given considerable
effort, and the students gave up on the remaining 14%.

Here, just four years passed before the reuse of scientific
software became a burden. For the sake of accountability and
scientific reproducibility, we need to reduce that effort to
encourage researchers to revisit older results. Occam is a system
that sees such accountability as a preservation problem. That
is, there is a need to keep software running and to maintain
its behavior.

Beyond the scientific cases, the software community at-large
has also been considering the problem of software determinism

and trust. Recently, there have been a few notable supply-chain
attacks, which occur when a malicious actor introduces bad
code into existing software via a dependency. In response,
package managers and software repositories, such as Arch
Linux’s AUR [2] and the JavaScript community’s npm [3], have
added signature validation as an installation step. This is just
one solution to a problem that is largely about accountability.

One question this addresses is whether or not the software
you are using is the same others are using. A secondary question
manifests as tools age: “If I need to, can I fall back to an earlier
version?” Both concern the reliable distribution of software
and mitigating issues when software is no longer available or
able to run. What does it mean to preserve scholarly software,
and to provide a sense of repeatability? What responsibility
does a repository of scholarly software have?

It is clear the community needs to build a software dis-
tribution platform that proactively addresses both active use
and long-term repeatibility. Considering the importance of
transparency when assessing scholarly artifacts, the preservation
of the build process is also notable. Occam [4] is a system that
implements such a package management system. It is driven by
a goal to be actively useful in disseminating interesting tools
and, at the same time, also preserve the ability to both build
and run those tools in the future. In the following sections,
this paper will address specifically how the system maintains,
deploys, and distributes software in an accountable manner.

II. RELATED WORK

The 2016 reproducibility study was itself motivated by
growing concern of an impending reproducibility crisis [5].
The scientific community has certainly not relegated itself to
just talking about the problem. There is been a significant push
in research and development of a variety of potential solutions
[6] to this important issue. Occam is an ambitious project that
addresses several domains of concern.

The first aspect of Occam or any preservation system is
the storage and distribution of digital objects. In this way,
Occam resembles a package manager and has been influenced
by many such systems already in wide use. Operating system
Debian, including the popular Ubuntu, is arguably in widest use
with its Advanced Package Tool (APT) [7] package manager
and repositories. APT is noted for using GPG signatures to
verify packages and their maintainers, a feature borrowed here.
Arch Linux has the similar Arch User Repository (AUR) [2]
and its package manager tool Pacman. Occam has seeded
its own software repositories by translating Arch packages
only changing them when necessary for stronger preservation
properties. The Node Package Manager (stylized as npm) [3]

21

2019 IEEE/ACM Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-
HPC)

978-1-7281-6028-3/19/$31.00 ©2019 IEEE
DOI 10.1109/CANOPIE-HPC49598.2019.00008

is focused on maintaining packages for use by developers
and not system maintainers. Yet, there is a strong overlap in
features between npm, similar package managers, and Occam.
For example, we have made direct use of npm’s versioning
standard [8] to tag software objects.

While these package managers are generally for keeping
a system merely up-to-date, there are others that apply more
rigorous standards. Both Nix [9] and Guix [10] are two package
managers which allow for multiple versions of software and
their dependencies to be managed simultaneously. These tools
have support for keeping track of software histories, allowing
rollback, and cloning software environments across systems.
Within the scientific space, which has stronger requirements
as hardware becomes specialized, package managers such
as Spack [11] have also become popular. Spack targets
supercomputing domains and allows for installing software
objects into their own environments and restricting packages to
those using particular compilers. Like these three tools, Occam
also emphasizes packages that are built from source, and goes
to somewhat greater lengths to preserve code. Occam also
manages isolated software environments, albeit in a somewhat
different manner, which will be addressed in Section VI.
Overall, Occam focuses not just on package distribution but
also the preserved execution of software.

These package managers do not put a heavy focus on
the software preservation problem, which is another essential
aspect of reproducibility-oriented archive systems. Instead, they
focus on description and distribution of up-to-date software for
everyday use with an occasional feature to maintain a software
environment. Occam builds off of these ideas to provide
stronger preservation properties, yet it is not the only system to
do so. There are quite a few standards for specifying archival
metadata and provenance. The Open Archives Initiative Object
Reuse and Exchange (OAI-ORE) [12] defines an RDF-based
standard for representing collections of digital objects. The
BagIt standard [13] focuses on file layout conventions toward
more consistent packaging of digital artifacts. Occam has a
JSON metadata scheme, discussed in Section IV, that borrows
some of the ideas expressed by these descriptive standards.
In addition, however, Occam has added specific details that
provide flexible and repeatable execution of archived objects.

Umbrella [14] is a reproducibility system that encapsulates
executable objects with metadata that is also used to repeatably
deploy that object using Docker or EC2. The metadata Umbrella
captures specifies the execution environment including the
necessary operating system and provenance information for
externally sourced packages. Although Umbrella can track
information about such packages, and cache them locally,
it does not have nor advise any method of distributing
or maintaining these data dependencies. Occam takes the
stance that distribution and mirroring is integral to the digital
reproducibility problem. In Section V, we will look at the
similar process Occam uses to track but also preserve and
distribute external content.

In contrast to Occam and Umbrella, which largely require
some manual input of metadata, ReproZip [15] is another tool
that actively tracks the execution of running software. This
tool detects when files are interacted with and can create a

distributable package containing all necessary data to repeat
that execution. The value comes from the ease of the tool,
which greatly eliminates the excuse that packaging research
objects is too much work. However, the automation yields a
result that is difficult to dissect and reuse since the package is
effectively a black-box that reruns only the exact input initially
used. Occam takes the stance shared by Umbrella that mere
repeatable execution is not good enough. The core design of
Occam is to promote the interactivity of archived software;
to allow new inputs and data to be used with old software.
Every feature present in Occam, including the work described
throughout this paper, is in service to this goal.

III. OCCAM SYSTEM MODEL

There are several goals toward providing a trusted, repeatable
software repository. First, there is the aspect of origination,
which considers verifying an object came from a particular
origin. Second, there is integrity, which is the assurance that
the transferred content of the object is identical to the one
provided by that origin. Last, there is verification where one
can repeat the work of another actor and see the same output.
With respect to software builds, these all play a role to provide
both accountability and confidence in retrieving the requested
package.

In our system, software is described and stored within a
generic structure we will now refer to as an Object. Any entity
that creates or modifies an Object will be referred to as an
Actor. Each Actor is defined by a private and public key-pair
and referred to with an identifier formed by a hash of that
public key. This identifier universally refers to this specific
Actor throughout the system. Any Object is also universally
identified by hashing together the Actor’s identifier alongside
metadata for that Object. This way, every Object is inherently
associated with its originating Actor, and no Object can exist
without having been created by an Actor. Furthermore, upon
receipt of any Object, a secondary Actor can easily check both
the integrity of the metadata and the id of the originating Actor
by recomputing this hash.

The impact of this design is tremendous. Considering each
identifier does not rely on any actual name or centralized server,
our system model allows for a federated network. In particular,
Actors can be created (i.e., enter the system) at any instance,
and then migrated to any other instance within the federation
as long as they preserve the ownership of their private key.
Similarly, Objects can be mirrored and distributed from any
node while still allowing for the verification that their data
came from a specific Actor. In a later section dedicated to
distribution, a more detailed description of this mechanism is
discussed.

Indeed, it is an overall goal to not rely on a centralized
repository for packages and research artifacts. Due to this
ability to mirror/acquire any such object from any available
server, Occam increases the value of research objects, such
as simulators and scientific data, via wider availability and
reuse. To add such federation support, Occam currently works
alongside the IPFS protocol [16] [17] with consideration toward
supporting the similar Dat protocol [18] in the near future.

22

Furthermore, when an Actor develops a research tool or
curates a useful dataset, they do not also need to individually
or even institutionally host that object. This lessens the burden
by eliminating the need to offer the required bandwidth for
distribution. Dedicated long-term preservation is, instead, a
burden shared among all participating institutions and any that
can contribute the resources.

IV. DEFINING SOFTWARE OBJECTS

In this section, the definition and scope of an Object are
defined. An Object is comprised of a set of files collected
together. Currently, each Object is stored within a Git [19]
repository such that the history of metadata changes are tracked.
This provides a mechanism to cite and make use of an Object at
a particular point in time without hindering future development.
Git was chosen because it is a technology/protocol designed
around distribution. Furthermore, Git is designed around
forking, which specifically allows an Object to be cloned
and altered by independent developers. Beyond technological
advantages, this also furthers Occam’s goal to promote a reuse
culture within and beyond the sciences.

For each Object, there exists at least one JSON file containing
metadata defining the object. This information defines both
what the Object does in an abstract sense and a detailed
description of the computing environment required, if any,
to execute the Object. Both software and data Objects are
crafted in response to a particular problem, but this general
way of describing software will make it easier for others to
find and reuse it in their own work.

With that in mind, the Objects need to be discoverable.
Toward this, several fields are used to define human-legible
labels including a name and description, as seen in Listing
1. These are intended to be used when searching for relevant
artifacts as any need arises. For instance, searching for “memory
simulator” should discover DRAMSim2 [20], a memory
simulator we use as an example throughout this paper.

{
"name": "DRAMSim2",
"type": "simulator",
"organization": "University of Maryland",
"website": "https://wiki.umd.edu/DRAMSim2",
"summary": "A cycle accurate model of a DRAM

memory controller, the DRAM modules which
comprise system storage, and the bus by which
they communicate.",

↪→

↪→

↪→

···
}

Listing 1: General metadata for describing the basic Object

Each Object also has a type which acts as both a general
categorical identifier and as a semantic tag used for determining
when compositions of multiple objects are allowed. The value
is not as obvious when considering any object in isolation.
However, any Object can specify, within its metadata, its
possible inputs and outputs. This simulator can take a trace
as input in order to perform the requisite simulation, as seen
in Listing 2. The “trace” object can then be fulfilled by any
Object with that particular type. In this case the further subtype

“DRAMSim2” constrains this to trace objects of a particular
format this simulator understands.

{
"name": "DRAMSim2",
"type": "simulator",
···
"inputs": [{

"name": "Memory Trace",
"type": "trace",
"subtype": "DRAMSim2"

}],
···

}

Listing 2: Specification of inputs makes use of the type and
subtype fields to provide semantic filtering.

The remaining fields are relegated to describing aspects
relevant to the execution of the Object. Such objects often have
two distinct contexts between building and running. At the end
of the day, however, building and running do not dramatically
differ in how they operate. When you build some software, you
are effectively just executing a different command. For instance,
to build the DRAMSim2 simulator, the process is executing a
script which, in turn, executes a compiler. Between building
the simulator and running it, the system would simply map
in different dependencies into their respective environments
when necessary.

In order to provide each context, the metadata has a
“build” and “run” section containing specific details about each
environment. This subsection includes a list of dependencies,
potentially a set of data that must be copied into the machine,
and a command to run. Specific to our example, in Listing 3,
we need to create an environment with g++ available, pull down
a Git repository, and invoke the provided build script contained
within our Object. The Git repository is the source code for
the simulator, which is being actively developed outside of
the preservation system in a traditional manner. Since it is
from GitHub, an external resource, it has its own preservation
problem we will specifically discuss in the next section. Upon
executing the build script, this code is placed in the directory
specified, in the given case the “package” directory, during the
initialization of the build environment.

After the build environment is established based on the
metadata, the system invokes the given command. Here, it
will run a shell script that contains the operations required
to build the software. Generally, in many cases, this is some
short configuration followed by invoking a build engine, such
as “make”. We will discuss more of the specifics of how the
environments are executed in an upcoming section, and discuss
the merits of different containerization tools for this task.

V. RESOURCE MIRRORING

Although our goal is primarily the preservation of software
builds, in order to accommodate different development styles
and team structures it is not expected that software be actively
maintained within Occam. Like Arch Linux and similar package
managers, the development occurs within its own ecosystem.
For instance, developers may congregate around a service such

23

{
···
"build": {

"dependencies": [{
"id": "QmVseooVZ4dn2Vo4ikwKXz...tKmujP4KC8",
"name": "g++",
"type": "compiler",
"version": ">=5.0"

}],
"install": [{

"type": "resource",
"subtype": "git",
"to": "package",
"name": "DRAMSim2 Source",
"source":

"Git://Github.com/dramninjas/DRAMSim2",↪→

"revision": "5drSurGACruKgke...ZYejLu4TBYX"
}],
"command": ["/bin/sh", "build.sh"]

},
···

}

Listing 3: Build specific metadata to create a specific build
environment. Note: simplified for the sake of space.

as GitLab [21] or GitHub [22], which are private companies
that host source code repositories. Development teams push
changes to code to their own repository without involving any
of the systems that build and distribute it.

Relying on externally sourced data, however, poses a threat
to the goal of long-term software preservation. If source code
disappears, the ability to build it will be drastically damaged.
As an added consequence, modifying or extending that software
will also become more difficult. Ultimately, build systems make
a choice about whether or not they mirror these resources
to mitigate such issues. The Linux distributions Debian and
Ubuntu offer repositories [23] that mirror the source code of
software packages. You can then choose to build many open-
source packages from their archived source code. Repositories
such as Arch Linux’s AUR choose not to do so [24], relying
on detecting when resources are no longer available, flagging
them, and updating them as they break.

The trade-off weighs the long-term ability to use or rebuild
software at any time over the storage and labor cost of
maintaining a source code mirror. In these two cases, the
reasoning behind each choice is clear. Ubuntu offers a Long-
Term Support contract [25] designed around organizations
and businesses that would be interrupted by constant software
changes. Ensuring packages are static and available, even if
software becomes stale, provides that form of stability. On
the other hand, Arch Linux is oriented around individuals and
built around ensuring the latest version of software. In this
case, security and feature development are preferred even when
bumping software to a new version might cause a problem.
Therefore, in Arch Linux, packages are commonly short-lived
before updated, replaced, and rebuilt. Since there is little
emphasis on revisiting older versions, there is less of a need
to mirror source code.

When reflecting on the needs of scientific reproducibility,
neither model seems particularly apt. A researcher will gen-
erally want to use the latest software and keep research tools

up-to-date. The same researcher, when collaborating, would
want others to use the same exact software. Furthermore,
the scientific method is a centuries old idea that relies on
experimentation being well-described and repeatable. This
suggests that there is value in the ability to recreate a software
environment exactly as it was. In this case, we want to have
the accountability of rebuilding any part of our experiment
apparatus from its source code along with the ability to recreate
the software environment for that build. This has value even
years beyond a work’s initial publication. However, this requires
preserving a mirror of external data used in the build.

Focusing on our ongoing example, the DRAMSim2 simulator
is built from source code found on GitHub. Code repositories
hosted on such platforms are relatively common. GitHub
in particular has millions of repositories. [26] Alternatively,
developers may choose to release source code periodically in
the form of compressed archive, such as zip or tar. Regardless
of method, the software build is reliant on this data.

Occam provides a mechanism to preserve and mirror this
information. As seen in Listing 4, the “install” section tells
the system to place files in the given path. Here, a resource is
provided which has a “source” field that points to the externally
hosted Git repository on GitHub. When an Object is created and
pulled into the Occam repository and it encounters a resource
that it has seen for the first time, it will download and locally
store the linked content. The system no longer needs the remote
content as it now makes use of the local mirror instead.

{
···
"build": {

...
"install": [{

"type": "resource",
"subtype": "git",
"to": "package",
"name": "DRAMSim2 Source",
"source":

"Git://Github.com/dramninjas/DRAMSim2",↪→

"revision": "5drSurGACruKgke...ZYejLu4TBYX",
"id": "QmesFhk5cjGB1LxD9QMxa1...Pg8peaXGTB",
"uid": "QmfXe8DzxrFuqUDnYcAea...BsbHegNEpS"

}],
...

},
···

}

Listing 4: External resources are defined and then mirrored
within the system and assigned universal identifiers, which are
truncated here for brevity.

Just as any Actor and Object in the system have a universally
unique identifier, resources have an identifier directly tied to its
source URL. This ensures that if two people on two different
servers pull down the same resource, it has the same universal
identifier and each immediately become a mirror of the other.
Furthermore, since content at a URL may change, the data
itself is hashed such that it refers exactly to the data retrieved
at a given moment. When a build is invoked on the system,
the identifier and hash of all used resources are noted.

There are several ways of preserving external repositories.

24

For instance, mirroring Git repositories could be done by
creating a zip file of the contents. This defeats some of the
purpose of Git, which is designed to capture an entire history
of changes. However, by specifically handling Git repositories,
as Occam does, the system can be more efficient in preserving
them while retaining such interesting properties. Occam takes
this one step further and adds the ability to clone the Git
repository directly from any particular Occam server, as though
it were GitHub. The system is extendable via a plugin system,
and alongside Git support, there is also a similar extension for
Mercurial [27] repositories.

Careful repository preservation is important with respect to
builds. Hosting services such as GitHub allow you to effectively
forget or rewrite the history of your source code. This is not
malicious, but, in fact, a common aspect of development. When
finishing a new feature, there may have been dozens of changes
that constitute the work. Upon releasing a new version of the
software, some teams elect to squash all of these small changes
into a new history that shows large, well-defined progress. This
makes the repository much easier to follow, but it, to some
effect, creates a fake history as to how the software actually
changed. If an artifact were built referring to a point in time
that was erased, that old reference would no longer exist at its
source.

This would absolutely prevent repeatable execution of that
build for systems that do not provide a mirror. This means that
inspecting or modifying the source code of a prior experiment
would no longer be possible, hindering both accountability and
reuse. Most devious is to note that such systems may not know
of this damage until somebody attempts to repeat the work.
This means the damage is only noticed when it would most
hurt the community.

Therefore, updating our local mirror involves managing both
histories at once. To mitigate this preservation issue, Occam
leverages the “alternates” feature within Git that allows it to
manage multiple, potentially divergent, histories of the same
Object. This is the same mechanism used behind the scenes at
both GitLab [28] and GitHub [29]. With this implementation,
when Occam pulls a Git repository, it spends some extra effort
to retain the particular reference.

In the end, this scheme strongly supports the goals of build
preservation with respect to scholarly work. First, the mirroring
of repositories is important to the health of the scientific
community. It strives to treat code with the preservation respect
it deserves when code is so often the impetus to a published
paper which should not outlive it. Furthermore, the careful
handling of mirrored repositories allows for preservation to be
a burden shared among a federated community. That is, by
having repositories retain universal identifiers, it encourages
mirroring across many institutions, and reduces reliance on
hosting services staying active. Finally, Occam implements
resource mirroring as a plugin providing an extensible way for
the system to grow with the needs of the community moving
forward. Overall, this serves to increase the confidence that
useful code remains available.

VI. REPEATABLE DEPLOYMENT

Of course, assuring access to the data necessary to build
software is only one half of the puzzle. In order to build or run
an Object, the system needs to translate the process defined
by the Object into something that can be understood by the
native machine. Furthermore, the method it uses needs to be
backed by a system that can reliably repeat that process.

Toward this, Occam takes an Object and using its metadata
generates a virtual machine manifest that targets a particular
virtualization backend. This manifest contains a short record
of each and every necessary software dependency that must be
available within the machine to complete the requested task.
When the manifest is passed off to an execution backend, it
will spin up the virtual environment and execute the requested
command. As mentioned, this process is identical with respect
to both building and normal execution of any Object, it simply
looks at different sections of the metadata.

Occam is inspired by many modern package management
systems. In these systems, a software package is defined by a
document that describes requirements in terms of versions of
other software that the base package is dependent upon. The
JavaScript implements a dependency system using the npm
[3] package manager, which has greatly inspired the design of
Occam’s dependency resolution. When such a package system
installs a package, it will install each dependency. To do so,
it recursively installs each sub-dependency, and so on, until
every software package is resolved.

It works the same in Occam. Specifically, each object lists
its dependencies as part of its overall metadata, as already
seen in Listing 3. DRAMSim2 is written in C++ and therefore
requires the GNU C++ compiler, g++, version 5.0 or later.
The compiler itself has its own dependencies, which now must
also be included within the virtual machine. Satisfying every
requirement will result in the creation of a task manifest. This
manifest lists the exact version of every Object required.

As established, the algorithm to generate the manifest is
a recursive process. It is given a set of objects tagged with
version requirements and finds a superset of objects that satisfy
them. Each Object has version tags attached to particular points
in its history. The version tags are in the form specified by the
Semantic Versioning standard [30]. Version constraints can be
specified alongside each dependency in the same form used
by npm [8], which allows it to denote ranges of valid versions.
Note that in our example, the tag uses certain symbols to
denote that any version greater than or equal to 5.0 is valid
when building our simulator.

More generally, Occam will recursively resolve each listed
dependency by selecting a possible version and attempting to
resolve each sub-dependency. Each time it visits an Object in
the dependency list, it will make a note about each version
requirement along the way. If a version requirement contradicts
one that was already seen for the same Object, it will fail to
resolve the pending dependency and attempt to take a different
path by selecting a different version somewhere up the chain.
It may also fail if it can select a valid version of an Object
but that Object has not been built. When this is the case, it
may conservatively try to find a version of the Object that

25

has a known build, or elect to restart the whole process in
the new context of building that Object first. Assuming each
required Object is satisfied and has been previously built, the
result will be a list of all necessary objects. This defines the
execution environment and is essentially what comprises the
task manifest.

Much like the resource subsystem described in the previous
section, Occam also has a dedicated, extensible subsystem for
deployment. One can provide, independently and at any time,
a plugin to execute a task manifest on any virtualization stack.
Currently, we have plugins for Docker and Singularity, and an
experimental plugin providing Vagrant [31] support. Each of
these implements an interface where a task manifest is given
as input, which it then executes after establishing the described
environment. This function handles some lower-level details
to track the running process, capture its output, and detect if
the process crashes or reports an error.

One general rule is that the task manifest is a snapshot of
the environment. Each requested version of each requested
Object was previously determined and frozen within the task
manifest. That is, giving the same manifest to the backend
should result in that machine having the same file structure and,
therefore, the same exact software and, thus, the best chance for
deterministic behavior. Repeating a build, and, more generally,
repeating any execution is succinctly handled by distributing
and executing the original manifest. One can then compare the
result of each run to evaluate determinism.

Let’s once again consider DRAMSim2. Our task manifest
to build our Object will contain our compiler, g++, along with
its necessary dependencies. The system gives that manifest to
the backend system to have it actually execute. That backend
respects the manifest by loading into that environment each
given Object and then executes the given command. While it
runs, it compiles each source code file as listed in its build
script. At the end, it links together each compiled file to form
a single DRAMSim2 executable. With that, it will store that
executable such that we can now run the Object via a new
manifest.

To validate build reproducibility, we need several pieces
of information. We would need the task manifest, in order to
provide the same environment. We would also need a previously
built binary to compare against. In Occam, we simplify this
problem by hashing all of the built binaries as a final step.
This is determined by hashing the resulting binaries and any
other files using a SHA-256 variant of the hashdeep algorithm
[32]. The algorithm was modified in a trivial way to order files
alphabetically when it hashes directory structures. This allows
hashdeep to have deterministic behavior across file-systems.

In Occam, we have several hundred software packages.
So far, we have maintained the vast majority of them to
provide build determinism. As noted by other similar package
repository systems, some software have build systems that
are non-deterministic. Therefore, these builds would produce
a unique hash each time. Occam, like those systems, cannot
handle verified build repeatability for these cases. Instead, those
software packages will have to be patched in order to mitigate
this problem.

Another avenue to be explored in the future is repeatable

behavior verification. In this case, the system would execute
a set of tests and check that the output generated matches
a previous invocation. Generally, a combination of the two
methods is ideal. A set of tests is not necessarily complete.
Also, malicious activity may introduce a false-positive test or
circumvent the testing in some way. Nevertheless, ensuring the
integrity of software as it moves around to different machines
will be a core requirement of our broad software ecosystem.

VII. FLEXIBLE VIRTUALIZATION

In terms of execution environment, Occam makes substantial
use of high-level virtualization tools such as Docker [33] and
Singularity [34]. Each of these tools provide a mechanism to
run software within an environment isolated from the rest of
the machine. The benefit of using these tools is that a system
can recreate the same necessary environment on two different
systems without worrying about how software may interact
with the existing system. For preservation use, this means an
environment can be locked to a particular point in time even
when system software elsewhere is more up-to-date.

However, our system does not need many of the features
supplied by these tools in order to provide build repeatability.
Since Occam provides its own object storage and distribution
and has a very specific use-case in mind, it can very carefully
leverage just a subset of each tool. For instance, Occam does
not actually build any independent volumes or containers
in either tool. Instead, it simply builds one container with
effectively nothing but an initialization script in both Docker
and Singularity. Every other Object that must be present within
the running container is simply mounted in read-only direct
from object storage. Thus, it is rather unconventional since it
technically runs the same container for absolutely every case.

This allows the system to craft very divergent virtual
machines quickly, without incurring a cost to generate each
container as needed. It also very efficiently reuses any Object
among multiple running containers, avoiding the cost to
redundantly store them. This is especially true for any Object
which is created by one process and then immediately used as
input to the next.

We do not miss the supposed benefit of independent Docker
containers, either. Distributing such containers is needless since
the task manifest already contains the equivalent information to
recreate the environment elsewhere. It has the benefit, in fact,
of the manifest only taking up a few kilobytes of space. This
design considers the effect of software degradation on container
infrastructure by allowing future invocations to use different
tools. In fact, by not relying on a particular containerization
tool, the system may gracefully, in the future, repeat older
work with more rigorous virtualization or emulation options.

However, our implementation is certainly an unusual usage
for both of these tools, and it is unclear which is best
suited to this particularly peculiar practice. Even with all
cases considered, Docker and Singularity do not differ in any
substantial way. From a software design perspective, neither
Docker and Singularity benefit from language choice as both
are written in Go, a compiled systems language. They both
make use of specific Linux kernel functionality to provide

26

isolated process spaces. These ensure that a process sees a
certain determined view of the underlying system, a particular
view of the file-system, and obscures information about other
processes. The trade-off is that certain aspects of the machine
are not hidden, such as the kernel software, some drivers,
and the characteristics of the processor it is running upon.
Yet, this is true for both tools, and is largely the allure of
these containerization platforms, since simple virtualization
often works well enough. In summary, both tools provide
process isolation while avoiding the burden and inefficiency
of emulating hardware.

However, one difference between Docker and Singularity
is the way processes are spawned and managed. Docker is
structured around a daemon task that is always running as root.
When a container is executed, the daemon interjects and runs
it on a user’s behalf, potentially giving that user root access.
This design emphasizes multiple container orchestration within
a single organization where you run particular software and
trust the users. Singularity, on the other hand, runs only when
invoked, requiring much less privileges to run most containers.
From that perspective, Singularity is a strong choice on more
constrained or more security-focused environments. Particularly,
it works well in situations where tasks are scheduled to run
and deployed within distributed systems with tools such as
Slurm. Singularity has indeed found a stronger foothold within
shared clusters and HPC environments, whereas Docker has a
strong following within industry for deployment at scale and
use with respect to testing, staging, and continuous integration.

Yet, as mentioned, the use of these tools within Occam
does not fall neatly into either of those categories. However,
both tools provide the same necessary behavior and Occam
is purposefully designed to use either in order to be a more
general tool for the overall community. To determine what
impact, if any, the choice of backend had on performance,
we had Occam exhaustively build many different versions of
software within our repository. We chose GCC, a widely used
free and open-source C and C++ compiler, due to its complexity,
long build times, and heavy disk usage during its build process.
Also, it had the advantage of having strong provable build
determinism, which indeed was maintained throughout our
experimentation. That is, each build produced the exact set
of files in both Docker and Singularity when determined by
hashing the resulting binary as described previously.

Using a modest dedicated server with a quad-core Intel i5
running at 3.10 GHz with 16 GiB of RAM, we built different
versions of GCC that span over 5 years of development.
Stepping each version, from 4.7.4 to 8.1.0, we built each
package ten times with Occam using Singularity. Then, we
repeated the entire suite once over using Docker instead.
The average execution time, measured by clock time, of
each build is never dramatically different between the two
container platforms. This is unsurprising considering how
each tool essentially performs the same function with the
same mechanism. Furthermore, this corroborates more rigorous
performance tests [35] between Docker and Singularity, where
the latter only outperforms Docker in specialized cases while
otherwise showing no significant difference. However, Occam
simply does not use such complex features that differentiate

any of these tools.
Indeed, Occam avoids the more complex features of both

tools and still provides substantial value in build management
and software preservation. Simply, in our model, containers
are not the product. Instead, containers are always built as
needed from a set of software packages. The container, as a
result, remains ephemeral as it can be built the same way at
any time, which reduces much of the responsibility required of
the containerization tool. This implies simpler tools to replace
Docker and Singularity may become more valuable in the
context of more specialized software packaging. Furthermore,
as such a smaller, more specialized containerization tool is
developed, its performance can be dedicated toward specific
environments. That is, similar to how Singularity is essentially
a more specialized version of Docker, there is likely room for
other specialized tools. Since our system is agnostic to the
backend being used, Occam can easily support every such tool
as it arrives.

VIII. DISTRIBUTION AND VERIFICATION

In the end, a software repository is only useful as far as it
enables reuse. After all, the scientific method calls for such
transparency in any experimental process. Therefore, a goal of
any such system is to allow software to be distributed while
still maintaining the accountability and repeatability already
demonstrated. There are such existing tools for encapsulating
scholarly software. However, one overlooked aspect to the
publishing of digital science artifacts has been the independent
verification of software builds.

Tools such as ReproZip [15] and Umbrella [14] are valuable
and certainly offer substantial relief to the distribution of
experimental artifacts. ReproZip traces a program or script
as it executes and creates a repeatable executable environment
in the form of a container or tar archive containing any file that
is touched. Umbrella is closer to Occam in that it encapsulates
artifacts with metadata that describes the environment and
creates that context upon its execution. Yet, their use-cases
center around the reproduction of some computational process,
such as a single script, and do not incorporate knowledge about
the environment in which certain software is built.

Occam, in contrast, emphasizes using software that has
been packaged within the system and built in a supervised
manner. As we have established, each Object has metadata
describing the process for building and running it. However, it
is impractical to expect that an Object always be built when it
arrives on a new machine. It is also possible to simply distribute
the result of a build, much like a traditional package manager.
That is, the rigorous verification of a build is now optional.

Generally, when an Object is requested at a particular
machine, the first action is to determine a server that contains
that Object. From there, the metadata and file content is
distributed from that server to the one making the request
via the Git protocol. Depending on its intended use, the system
can then elect to recursively pull down related objects, such
as dependencies, build dependencies, and mirrored resources.
Each time an Object is pulled, this server, if made public, then
becomes a mirror where others can also discover and retrieve
it. This is the federated model at work.

27

Where is QmUxk1fo...?

At node 91.54.171.73

GET object metadata

JSON information

GET owner’s key

Public keypair

GET object data

git repository

Possibly rejects data.

GET built binaries

compressed package

Verifies data...

Possibly rejects data.
Verifies data...

Fig. 1. The simplified steps taken when distributing a build across the federated
network. In both Step 4 and Step 6, a key and signature infrastructure is used
to verify both metadata and the built software.

Once a system has a copy of the Object data, that system
must now provide a build before it can be used. Of course,
the system could build the Object itself after collecting the
dependencies required to do so. Alternatively, one can elect
to pull down a previously built version. Similar to the pulling
of metadata, a build is located and then pulled from the
participating server, and then stored. Again, such a server
can then potentially act as a mirror.

However, pulling a build from anywhere is potentially
problematic. Any system can build an Object and provide the
binary. To ensure proper accountability, the pulling system can
verify the build by repeating the build process and comparing
the resulting hash. However, another avenue we provide is
to trust any particular Actor to provide a build. In this case,
that Actor signs the build metadata, including the hash of the
resulting binaries, with their personal key. Currently, Occam
uses the widely-implemented PKCS#1 signature algorithm
[36] as defined within the RSA standard. As described in
our definition of Actor, the origin of their RSA key can be
independently verified. However, nothing in the design prohibits
future use of other types of signature methods. In the end, this
creates a difficult-to-forge document that asserts the resulting
binaries came from the given task as built by the given Actor.
Considering this and that the signature is public information,
any independent server acting as a mirror of data can also
provide a mirror of the signature.

With this scheme, there are several levels of accountability
that one can lean on. If you trust particular Actors, for instance
the developers of known software, you can use these keys to

trust binaries provided by them and them alone. After pulling
a build of an Object, you hash the binaries independently and
verify the signature matches both that hash and the key of
the trusted Actor, as seen in the final step of Figure 1. Yet,
you can still inspect the source code and rebuild the Object
yourself, if desired. Since Occam can reuse the build task
manifest, which lists each and every piece of software within
the build environment, it can independently repeat that build.
Any Actor that does so successfully may also elect to sign the
build as well which will serve to echo that trust to others. Build
repeatability, therefore, offers the flexibility to not rely on a
centralized trust in a single entity to provide a built package.

Build repetition also ensures the burden to augment, tweak,
and/or remix the source code is also reduced. Once you are
able to reliably repeat builds, you also ensure that most minor
modifications to the code will also build. This is a benefit of
a preservation-focused system that is able to lock the build
environment. Any developer can change the software code as
though modifying it at its original point in time. Since the
environment does not change between edits, the build, given
the new code is valid, should still succeed. Of course, nothing
stands in a developer’s way if they wish to modernize the
environment. Yet, considering the 28% of difficult builds and
14% of failed builds in the previously mentioned repeatability
study, [1] the community has a strong motivation to avoid that
being necessary.

IX. OVERVIEW

This paper has described several important aspects to a
software preservation system geared toward the accountability
required by scientific use. Such a system inherits many of the
problems faced and solved by modern package managers. Yet,
it also acquires a stronger need to preserve the reliable and
deterministic repeatability of execution. In summary, there are
aspects of discoverability, availability, and integrity of data.

In the preceding sections, with a focus on these particular
issues, we have described Occam. Ultimately, this system is
a set of tools that focus on providing software preservation
and repeatable execution environments. Specifically, this tool
provides a federated object storage tuned to the needs of
software distribution. It also provides a flexible way of
generating virtual machines or containers to run this software
without committing to any particular tool. With consideration
to its goal of avoiding existing as a centralized repository, it
has a design based around a federated model. Every object,
build of an object, and author in the system is represented with
a universal key. Furthermore, such data is nomadic and can be
mirrored at any location on the network.

Considering Occam’s focus on general execution, there is still
room to improve with respect to HPC concerns. There is much
to be inspired by when looking at more specialized package
managers, such as Spack [11]. This tool has mechanisms that
allow one to ask not just for a particular version of a tool,
but one that has been built a particular way. For instance, to
use a simulator that was built with a particular version of a
compiler built on or for an exact architecture. Occam does
have limited support for constraining which builds are valid

28

when specifying dependencies, but cannot do so at the same
granularity as Spack. Occam has, instead, put more effort into
providing features toward long-term preservation. Yet, features
to give this level of control over build provenance are currently
under development.

Nevertheless, when you have a robust enough system to
distribute software and repeatably execute it, you can then build
infrastructure on top of it. Occam itself extends its capabilities
in several different directions on the foundation described in this
paper. One logical step, after handling a single piece of software,
is to provide a means of composing several together. Occam
has a web-based portal that allows the graphical construction of
workflows that simplify composing multiple pieces of software
together. A program can take input in the form of a data object
and create new objects in the system as a consequence of
executing. These output objects can then be attached to others
as input, and the process repeats. Each step of such a workflow
generates its own repeatable virtual environment to run within,
eliminating the headache of library compatibility between two
programs. In fact, nodes on this workflow can have different
architectures. For instance, programs running on Arduino that
create data passed to a Python script running elsewhere.

Yet, many other tools and specialized science gateways
can be formed as well. The important point is that a strong
foundation is the first step to providing a stable platform on
which such portals can be built. For instance, the climate
science community could build a website that allows scientists
the chance to use computational infrastructure to run their own
experiments. Perhaps this allows citizen scientists to explore
public data that is otherwise out of their technical reach.

This is a laudable goal that is only made stronger when
built on top of a preservation system. The developers can
focus on the needs of their particular community without
developing features related to the preservation of scholarly
work. Indeed, the question that arises when the portal must
close is retroactively answered. All experiments will still be
mirrored and repeatable since they were created by a platform
derived from such a system.

This is the direction that seems most appropriate for any
community. Specifically, a progressive path to let others build
out infrastructure making use of HPC resources such as large
clusters and supercomputers while limiting the technical burden
required. All while maintaining the scientific importance of
accountability and preservation as a byproduct. In particular,
what we should want, and perhaps what we absolute need
moving forward, is the ability to create this bridge.

29

REFERENCES

[1] C. Collberg and T. A. Proebsting, “Repeatability in computer systems
research,” Commun. ACM, vol. 59, no. 3, pp. 62–69, Feb. 2016. [Online].
Available: http://doi.acm.org/10.1145/2812803

[2] “Arch user repository - archwiki,” Aug. 2019. [Online]. Available:
https://wiki.archlinux.org/index.php/Arch User Repository

[3] “About npm.” [Online]. Available: https://docs.npmjs.com/about-npm/
[4] “OCCAM: Open Curation for Computer Architecture Modeling,”

http://occam.cs.pitt.edu, 2016, [Online; accessed 12-Aug-2016].
[5] M. Baker, “1,500 scientists lift the lid on reproducibility,” Nature, vol.

533, pp. 452–454, May 2016.
[6] D. Wilkinson, L. Oliveira, B. Childers, and D. Mosse,

“Evaluating Interactive Archives,” 10 2017. [Online]. Available:
https://figshare.com/articles/Evaluating Interactive Archives/5483836

[7] “Advanced package tool,” https://salsa.debian.org/apt-team/apt, [Online;
accessed 10-Oct-2019].

[8] “Npm - about semantic versioning,” https://docs.npmjs.com/about-
semantic-versioning, [Online; accessed 07-Sep-2019].

[9] “About nix,” https://nixos.org/nix/about.html, [Online; accessed 11-Oct-
2019].

[10] “Gnu’s advanced distro and transactional package manager — gnu guix,”
http://guix.gnu.org/, [Online; accessed 11-Oct-2019].

[11] “Spack,” https://spack.io/, [Online; accessed 07-Sep-2019].
[12] C. Lagoze, H. Van de Sompel, P. Johnston, M. Nelson, R. Sanderson,

and S. Warner, “Ore user guide - primer,” Open Archives Initiative, Tech.
Rep., http://www.openarchives.org/ore/1.0/primer. [Online]. Available:
http://www.openarchives.org/ore/1.0/primer

[13] J. A. Kunze, J. Littman, L. Madden, E. Summers, A. Boyko,
and B. Vargas, “The bagit file packaging format (v0.97),”
Working Draft, IETF Secretariat, Internet-Draft draft-kunze-bagit-13,
January 2016, http://www.ietf.org/internet-drafts/draft-kunze-bagit-13.txt.
[Online]. Available: http://www.ietf.org/internet-drafts/draft-kunze-bagit-
13.txt

[14] H. Meng and D. Thain, “Umbrella: A portable environment creator
for reproducible computing on clusters, clouds, and grids,” in
Proceedings of the 8th International Workshop on Virtualization
Technologies in Distributed Computing, ser. VTDC ’15. New
York, NY, USA: ACM, 2015, pp. 23–30. [Online]. Available:
http://doi.acm.org/10.1145/2755979.2755982

[15] “ReproZip - About,” https://vida-nyu.github.io/reprozip/, [Online; ac-
cessed 29-Aug-2016].

[16] “IPFS is the Distributed Web,” https://ipfs.io/, [Online; accessed 29-Aug-
2016].

[17] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,”
https://ipfs.io/ipfs/QmR7GSQM93Cx5eAg6a6yRzNde1FQv7uL6X1o4k7
zrJa3LX/ipfs.draft3.pdf, [Online; accessed 03-Sep-2019].

[18] M. Ogden, K. McKelvey, M. Buus Madsen, and C. for Sci-
ence, “Dat - Distributed Dataset Synchronization And Versioning,”
https://github.com/datprotocol/whitepaper/blob/master/dat-paper.pdf, [On-
line; accessed 03-Sep-2019].

[19] “Git Protocols,” http://git-scm.com/book/en/v2/Git-on-the-Server-The-
Protocols, [Online; accessed 05-Nov-2014].

[20] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate
memory system simulator,” Computer Architecture Letters, vol. 10, no. 1,
pp. 16–19, jan.-june 2011.

[21] “Gitlab.” [Online]. Available: https://about.gitlab.com
[22] “GitHub: Build software better, together,” github.com, [Online; accessed

12-Dec-2014].
[23] “Debian worldwide mirror sites.” [Online]. Available:

https://www.debian.org/mirror/list
[24] “Arch linux developerwiki - reproduciblebuilds,” Apr. 2019. [Online].

Available: https://wiki.archlinux.org/index.php?title=DeveloperWiki:
ReproducibleBuilds&oldid=571386

[25] “Lts - ubuntu wiki.” [Online]. Available: https://wiki.ubuntu.com/LTS
[26] “GitHub Blog: 10 Million Repositories,” https://github.com/blog/1724-

10-million-repositories, Dec. 2013, [Online; accessed 29-Aug-2016].
[27] “Mercurial scm,” https://www.mercurial-scm.org/, [Online; accessed 07-

Sep-2019].
[28] “How git object deduplication works in gitlab,”

https://docs.gitlab.com/ee/development/git object deduplication.html,
[Online; accessed 07-Sep-2019].

[29] V. Mart, “Github blog: Counting objects,” https://github.blog/2015-09-
22-counting-objects/#your-very-own-fork-of-rails, [Online; accessed 07-
Sep-2019].

[30] “Semantic versioning 2.0.0,” https://semver.org/, [Online; accessed 07-
Sep-2019].

[31] “Vagrant by hashicorp,” https://www.vagrantup.com/, [Online; accessed
07-Sep-2019].

[32] “hashdeep.” [Online]. Available: https://github.com/jessek/hashdeep
[33] D. Merkel, “Docker: Lightweight linux containers for consistent

development and deployment,” Linux J., vol. 2014, no. 239, Mar. 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2600239.2600241

[34] “Singularity,” http://singularity.lbl.gov/, [Online; accessed 29-Aug-2016].
[35] P. Saha, A. Beltre, P. Uminski, and M. Govindaraju,

“Evaluation of docker containers for scientific workloads in the
cloud,” CoRR, vol. abs/1905.08415, 2019. [Online]. Available:
http://arxiv.org/abs/1905.08415

[36] J. Jonsson and B. Kaliski, “Public-key cryptography standards
(pkcs) #1: Rsa cryptography specifications version 2.1,” Internet
Requests for Comments, RFC Editor, RFC 3447, February
2003, http://www.rfc-editor.org/rfc/rfc3447.txt. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3447.txt

30

