2019 IEEE/ACM Workshop on Containers and New Orchestration Paradigms for Isolated Environments in HPC (CANOPIE-
HPC)

KBase: A Platform for Reproducible Bioinformatics Research

William J. Riehl*, Shane Canon*, Jay R. Bolton*, Boris Sadkhinf,
Gavin Price*, Paramvir Dehal*, Tianhao Guf, Michael Sneddon* and Roman Sutormin®
* Lawrence Berkeley National Laboratory, Berkeley, CA USA,
t Argonne National Laboratory, Lemont, IL
¥ Zymergen, Inc., Emeryville, CA
§ Google, Inc
Email: See https://kbase.us for contact information

Abstract—Reproducibility is a core tenet of the scientific pro-
cess, yet it remains elusive for much of the sophisticated
analysis required in modern science. In this paper we describe
how reproducibility is addressed in the KBase platform, a
web-based platform for performing sophisticated analysis of
biological data with the goal of enabling reproducible, predic-
tive biology. We give an overview of the architecture and some
of the key design considerations. Containers play a key role
in the KBase design and how it achieves a measure of strong
reproducibility. We explain how containers are utilized in the
platform and some of the additional considerations that aid in
the goal for reproducibility. Finally, we compare KBase with
other similar platforms and systems.

1. Introduction

Reproducibility is at the foundation of the scientific
method, but achieving reproducibility in modern scientific
analysis can be challenging. This is especially true in areas
like computational biology, where a wide-range of tools and
complex workflows are often required to carry out even the
most routine analyses. The Department of Energy’s Systems
Biology Knowledgebase (KBase) [1] is a platform that has
been designed to allow scientists to conduct reproducible
analysis that can easily be shared with collaborators and
the broader community. Containers are at the heart of the
design that enables this reproducible analysis. In this paper,
we will describe some of the challenges in achieving re-
producibility in computational biology and explain how the
KBase platform addresses many of those challenges. We will
give an overview of the KBase architecture for executing
analyses and the role of containers in this design. We will
also discuss related works and future plans for KBase related
to containers.

2. Problem Statement

Enabling reproducible analysis in biology is challenging
for several reason. Analysis typically relies on precise ver-
sions of tools or libraries, which can be difficult for a user
trying to reproduce some analysis to determine and gather.

978-1-7281-6028-3/19/$31.00 ©2019 IEEE
DOI 10.1109/CANOPIE-HPC49598.2019.00009

31

These tools may even have conflicting dependencies making
it difficult to construct a single environment to execute all
steps. In addition, these tools may need to be run in a
specific sequence to reproduce a result and tracking and
determining what steps were done to reach a result requires
careful record keeping. Each of these factors contribute to
making it difficult for a scientist to repeat their own analysis
later in time, and even more so for someone reading a paper
and attempting to reproduce a result. As tools and systems
are updated and changed, this problem gets harder.

3. Design

KBase is a web-based platform that enables users to
perform reproducible analysis that can be easily shared with
others. The platform consists of a set of core services that
provide data storage, execution services, user interfaces, user
management, and other basic services. The platform is de-
signed to be extensible via an SDK that allows new functions
to be dynamically added to the system. The platform also
features an advanced data system that handles storing data,
managing access, and tracking relationships and provenance.

Two key design principles influence the architecture of
KBase.

« Enable reproducibility by encapsulating analysis and
capturing provenance on all data in the system.

o Provide an extensible platform that supports the
addition of new data types and applications without
changes to the core platform.

Several KBase components play a role in enabling these
principles. Here, we focus on the software developer kit
and execution engine, but other components such as KBase’s
data services play an equally important role.

3.1. User Experience

Users interact with KBase primarily through a web-
based user interface built on Jupyter. Users generally start by
uploading their data into the KBase platform and transform-
ing it into a data objects that get stored in the KBase data

store. Data can be uploaded via a drag and drop interface
or via a Globus Endpoint [2]. All objects are tagged with
metadata including information about its provenance. This
provenance is used to keep track data’s path through the
system along with any transformations made to it by run-
ning applications. Each time a KBase function is executed,
any generated output objects will include the name of the
function, its version, input objects and parameters in its
provenance. This allows a user to trace up the provenance
chain of an object to see what sequence of actions led to its
creation.

Once data is uploaded, users can run a wide range of
applications (apps) that do either analysis or transformations
to the user’s data. These apps can range in complexity
from simple visualization tools, to a multi-step analytical
software requiring terabytes of reference data and large HPC
resources.

3.2. KBase Software Developer Kit and App Cat-
alog

The KBase SDK is designed to enable third-party de-
velopers outside the KBase project to easily add new func-
tionality into the system while constraining the behavior to
enforce KBase’s guiding principles. A developer can use the
SDK to add an app into KBase that can then be executed in
the KBase framework, taking advantage of the available data
and computational resources. Figure 1 illustrates the flow
and how the various components in the KBase architecture
interact. The developer uses the SDK to generate a set of
template files that they can then modify to add the dependen-
cies and logic specific to their app. The SDK also provides
tools to simplify interacting with the KBase data stores and
local file storage to download data for the applications to
operate on and store results. Along with the KBase-specific
tools, other apps and functionality can be called using the
SDK. These are effectively installed as dependencies, and
called using the subjob call mechanism described in detail
below. This allows developers to better decompose their
code and make common tools more available throughout the
system. Finally, the KBase SDK provides tooling to build a
Docker image that encapsulates the developer’s app and all
requirements and tools to do local testing outside of KBase.
Since everything is containerized, the app developer can be
confident that if the module works in local testing, it will
have the same behavior once it is registered in KBase.

Many modules follow a ”wrapper” style use of the SDK.
The goal here is to add the functionality of existing software
to make available through KBase. For example, MEGAHIT
[3] is a software package that assembles metagenomic read
data into contig sequences that can later be annotated and
analyzed for their biological capabilities and significance.
In essence, it takes in a set of reads (a Reads object),
computes on it, and produces an assembly (an Assembly
object). This complex command-line tool is wrapped into a
KBase module using the SDK. The execution flow of the
module code works as follows:

32

kb-sdk

Local Docker
Testing

Figure 1. Diagram of the key components used for developing and execut-
ing applications in KBase.

1)

2)

An SDK utility function downloads the Reads ob-
ject into the scratch area as a file.

The wrapper function crafts and executes a com-
mand line call to execute MEGAHIT using the
downloaded file, along with other user-input param-
eters.

A second SDK utility uploads the generated assem-
bly file as an Assembly object.

Another SDK-generated module is run on the new
assembly to build a visualization that describes the
quality of the result.

The resulting visualization (an HTML file and at-
tached Javascript code) and other information is
bundled together into a Report that gets saved into
KBase.

These objects are all returned as the result of the
job.

3)

4)

5)

6)

The resulting SDK module, therefore, is a combination of
a wrapper around a command line program, and several
KBase utility functions that enable this functionality in
KBase.

Once the developer has wrapped an application and
implemented any logic to marshal data, the developer checks
their code into a public Git-based repository such as GitHub,
and then registers the public repository in the KBase App
Catalog. The App Catalog, amongst other things, keeps
track of all the apps registered in the system, their release
state, and metrics on their execution. During registration, the
App Catalog builds a Docker image using the Dockerfile
contained in the repository and then saves the image into
a private KBase Docker registry, versioning it with the
git commit id. The Catalog service can also associate a
semantic version tag with the image and manage the process
of promoting a version from development to beta and to
release. Applications in development and beta have limited
visibility to encourage users to only use them for testing,
while released versions are clearly visible to all users.

During registration the Catalog service performs the
following sequence of actions.

D

Performs a local git checkout of the repository

2) Reads a metadata file included in the repository to

determine the name of the module and other details

3) Builds the docker image using the included Dock-
erfile

4) Initializes reference data if required (see below)

5) Executes the new container in a special report mode
to ensure minimal functionality

6) Pushes the image into a local Docker registry

7) Saves metadata and other information about the

module in the app catalog

During registration, the developer can see the log of the
entire process in case any steps fail. Once the application is
registered, it is immediately visible in the Catalog and can
be executed in KBase.

3.3. Execution Services

An end user triggers app execution through the KBase
Narrative interface, a web-based graphical interface based on
the Jupyter Notebook [4]. The Narrative interface generates
the form that guides the user through the process of entering
all of the inputs and parameters required for app execution.
All of these inputs are defined by the developer in the
Git repository and validated between the Narrative interface
and the SDK. Once a user has entered all of the required
information and clicks the run button, the Narrative sends
that information to the KBase execution engine. This service
validates and authenticates the request and submits the job
to an HTCondor Batch scheduler [5]. HTCondor schedules
the job on one of a pool of workers, choosing a worker
based on the application’s requirements (e.g. memory and
processors). When the job starts, a parent job runner process
begins that translates the request into a Docker container
execution. The job runner reads the app id, function name,
and version, and uses these to query the Catalog for the
correct Docker image. The parameters for execution are
written into a file in a scratch area that is mounted into the
Docker container for use as temporary and intermediate file
storage. Once the container is started, the SDK-generated
entry point uses that request to call the appropriate function
in the SDK module. At this stage, the requested command
is run inside the container, and can make use of the scratch
disk area for local storage. In the end, any generated data
objects are uploaded back into the KBase data stores.

The SDK also helps to serialize the output into a file in
the scratch area, that is then read by the job runner when
the application exits. This result is returned back to the
execution engine where it is saved and returned back to
the Narrative for the user to view. The runner also monitors
the console output from the container and streams those
logs back to the execution engine, so that the Narrative
can display these logs to the user. These logs are useful
for tracking the progress of an application’s execution and
diagnosing any errors. The logs remain stored and available
to users and administrators for diagnostic purposes.

To ensure reproducibility, state is not shared from run
to run. Each job run starts a new SDK-based container with

33

=)\ [Submitsand [
) | Schedule Job

Status Updates |
and Logs

Condor
(__ Worker Submit and

monitor
‘ Starts Runner HPC Jobs

Job Runner
Containers
/P{ Container J
Runtime
= ‘\’U:1
Images
e SDK-built

Containers
\Core Services / \

HPC
Scheduler

N
WDL
Runner

J

Submission
and
Monitoring

Submit and
monitor
WDL Jobs

Look up
image ids

4

Worker Node

Figure 2. Diagram of the execution flow for an application.

a freshly initialized scratch space that is cleared at the end
of the run. As noted previously, the Docker image used for
the execution is tied to the semantic version and Git tag of
the repository used to build the image, and that image is
maintained in a private Docker registry. Any data generated
by an application and saved to the KBase data store includes
the application name, version, input data, and parameters
in order to track the provenance of each data object. This
allows the user to understand how data was generated and re-
produce the execution later. This all ensures that each job run
remains independent of other runs, but can be reproduced
by running the app again with the same version and the
same inputs. After the run, runtime performance statistics,
including run length and success state, are uploaded to the
Catalog service for metric tracking. Fig. 2 illustrates these
execution interactions for a job.

3.4. Subjobs

Many KBase applications need to share or reuse logic,
especially related to data access. Rather than having the de-
velopers replicate the code needed for common tasks within
their own modules, the KBase job runner provides a subjob
call mechanism. This allows an SDK module to request
the execution of a function provided by another module.
For example, an assembly application which assembles raw
genomic reads into assembled contigs will need to contain
the logic for loading raw reads from the KBase data store,
do the analysis, generate a report about the quality of the
assembly, and then save the newly assembled contigs into
the datastore. Rather than replicating the logic needed to
access, retrieve and download the raw reads, a developer
can use existing utility apps to do this. Likewise, instead of
installing a quality control report app, such as FastQC, into
the assembly application, the app can leverage an existing
app to perform that step.

Commonly used utility apps are used to stage, trans-
form, and upload data. The runner automatically mounts the
scratch area for the calling job into the subjob’s container,
so it becomes a shared storage space. This avoids any
additional copying or transferring of the data between the
main job and subjobs. Likewise, any data manipulated on
disk by a subjob becomes available to the calling job. The
job runner also keeps track of all the subjobs and parameters
used during the lifetime of a job, and this information can

.

be retrieved and included in the provenance for any data
that is ultimately saved in KBase. In all, calling a subjob
works in a manner very similar to calling the original job,
and makes use of the same resources.

The subjob mechanism was originally developed to sim-
plify interacting with the KBase object model, which can
be complicated to learn. However, it has turned out to be
useful in also building composable workflows. Using sub-
jobs, individual modules can encapsulate certain common
functions through a workflow app, which composes those
individual steps via the subjob call mechanism. One example
of this composition would be a pipeline where a master
app would call several apps in succession to operate on
the results of the previous step. Those sub apps themselves
could then call others as needed. In addition to supporting
on-node parallelism, the workflow job can also submit child
jobs through the execution engine for multi-node parallel
execution.

3.5. Reference Data

Many bioinformatics tools rely on curated reference
data or other supporting data. For example, a genome data
filtering tool may have a database of common contaminants.
These datasets can be tens or hundreds of gigabytes in size,
which is impractical for storage in app images. To address
this, the SDK supports versioned reference data collections.
The SDK metadata includes a semantic version tag for the
reference data that it requires. During module registration,
the system checks if the required version of the reference
data has been loaded. If not, the registration service calls a
special initiation step for the module. It runs the container
and volume mounts the area where the reference data will
be stored in the system. A script provided by the module
developer can download the data from an external location
and can perform any other steps needed to initialize the
data for later use. The prepared data is then saved in the
volume mounted location. Once this process is completed
successfully, the script notifies the registration process that
reference data creation is complete, and the data collection is
versioned. This volume is only writable during registration
phase, and is read-only during app execution in order to
prevent accidental modification. During execution, only the
specified versioned of the data is mounted to prevent tools
from inadvertently picking up the wrong version.

3.6. Support for HPC applications

The majority of the applications in KBase are designed
to run on a single node or use simple parallel execution
(e.g. pleasantly parallel). However, there are a growing
set of applications in the bioinformatics space that can
take advantages of HPC-class systems by using Message
Passing Interface (MPI) or languages like Unified Parallel C
(UPC). To support these applications, KBase can route HPC
enabled jobs to HPC resources (currently only at NERSC,
the National Energy Research Scientific Computing Center).

34

A standard HTCondor worker runs on a service node asso-
ciated with the HPC system. Typically only HPC enabled
jobs are routed to these workers. During execution, the job
runner will start the application as normal, performing the
validation and data staging steps. The data is staged into
the HPC systems parallel file system such as the Lustre
based scratch file system at NERSC. Once the steps that
don’t benefit from parallel execution are complete, the SDK
application code can generate a submit script for the local
batch system (e.g. SLURM at NERSC), and then make a
special callout to the job runner to submit the job to the HPC
scheduler. The submission occurs outside of the container
to avoid the need for the SDK image to include any specific
batch system clients (see Figure 2 for the point in the exe-
cution flow where HPC components can be invoked). Since
the data is already staged in the parallel file system, the HPC
application being invoked by the submission script doesn’t
require any specialization for KBase and would typically
not need to communicate with KBase web services which
could introduce inefficiencies. The job runner will monitor
the progress of the batch job through its execution. Once
the SDK app detects that the HPC jobs has completed, it
can perform any required post processing steps. This would
typically include uploading any generated data products
into the KBase data store. These steps can also use the
subjob mechanism like regular non-HPC applications. Since
HPC sites do not typically allow regular users to run or
use Docker, the job runner can be configured to use HPC
Container Runtimes instead. Currently only Shifter [6] is
supported since it is available at NERSC, but the runner has
an extensible design, so support for other HPC container
runtimes such as Singularity [7] or Charliecloud [8] can
easily by added.

3.6.1. Workflow Language Support. The bioinformatics
space has recently seen a growth in workflow tools that
utilize standardized descriptions. For example, the Com-
mon Workflow Language [9] and Workflow Description
Language (WDL) ! are two examples of standardized de-
scriptions for workflows that then can be implemented by a
tool developer. Both of these standards have native support
for specifying a container image as part of the workflow
description. Given their flexibility and growing community
adoption, the KBase team felt it was important to support
these models. The challenge is marrying a tool that is
primarily file-based with KBase’s object based model.

For the first implementation of this support, KBase is
using an approach similar to what is done in the HPC model
described above. A standard SDK app can be created in
which the application performs validation and data staging
using native KBase modules. The app then generates the
input files and workflow description files and calls out to
the job runner to launch the workflow. KBase currently
uses Cromwell 2 to execute these workflows. Cromwell
was chosen because it offers support for both CWL and

1. https://software.broadinstitute.org/wdl/documentation/
2. https://cromwell.readthedocs.io

WDL and has been adopted by the Joint Genome Institute, a
close partner of KBase. Similar to the HPC model described
above, when submitting a job that uses a workflow language,
the steps up until the Job Runner remain the same. Instead
of instantiating a Docker container, however, the job runner
calls out to Cromwell to start the job using the specified
workflow document. The runner then monitors the execution
of the Cromwell job through completion. Once complete,
the SDK module can do KBase specific post processing
steps like storing the output and generating reports. It then
returns the resulting information to the Narrative interface,
keeping the user experience the same, regardless of the
implementation details of the app. These additional steps
help bridge the gap between the file-based WDL and object-
based KBase data store.

While these workflow specifications provide a standard-
ized way to capture a workflow, they do allow a level
of flexibility that could break some of KBase’s principles
around reproducibility. For example, a valid workflow can
specify soft tags like “latest” for its image tag which would
likely change over time. These standards also do not offer a
well defined way for to handle reference data. Consequently,
KBase must review any apps using WDL to ensure that the
generated workflows adhere to the KBase principles.

4. Related Work and Discussion

The KBase project has many goals related to biosciences
and computing. These include giving users the ability to
freely upload and analyze their data, share the results of
their analysis along with any narrative documentation, and
eventually the ability to relate various data objects to each
other in a meta-analysis that can lead to novel predictions
of biological significance. The primary computing chal-
lenge that KBase faces revolves around giving users and
developers the freedom to analyze their data using tools
of their choice. That is, users should be able to bring the
computational tools they want to use to their data in KBase,
and apply them there. Once these tools have been applied,
the results should be stored in a way that make them easy
to (1) reproduce those analyses, and (2) compare the results
to each other. That implies storing all information necessary
to repeat the computational jobs, and storing the results in
a format-agnostic way.

To approach these goals, KBase makes use of several
technologies, both built specifically for the project, and oth-
erwise available to the computing science and bioinformatics
communities. To approach the problem of making compu-
tational jobs reproducible, KBase makes substantial use of
container technology, particularly through Docker images.
As described above, this allows KBase to compile and store
images that contain all code necessary and sufficient to run
an analysis, along with specific version tags that can be used
to re-invoke the same tools at a later time. There are many
tools and platforms that address some of the motivations
and aspirations of the KBase platform, so an exhaustive
list is impractical. We will briefly discuss a few common
examples, to illustrate the overlap and differences. The

35

workflow space is particularly broad with a rich set of tools.
CWL and WDL, already discussed, provide a standardized
description of a computational workflow that can be imple-
mented independently, and can be coupled with an execution
engine like Cromwell for running. There are dozens of tools
that follow these standards®. Many of these build on standard
container technologies including Kubernetes and Airflow or
integrate with HPC batch schedulers such as SLURM and
PBS. As described above, KBase has elected to use one
of these existing tools (Cromwell) versus implementing the
standard directly into the KBase execution engine.

There are also web-based workflow tools that aim for
reproducibility and leverage many of the same technologies
as KBase such as containers and Jupyter. Galaxy [10] is
a mature project that is popular in the biology space and
allows workflows to be graphically constructed and exe-
cuted. GenePattern [11] is another platform for reproducible
bioinformatics research that includes the construction of
pipelines and workflows. The chief difference between these
platforms is KBase’s larger vision of building a platform that
allows data from all users in the system to be connected
together and drive insight. The KBase vision requires that
data stored in the platform contains additional context so
that it can be automatically computed on. Many of the tools
listed above operate at a file level and maintain minimal
provenance metadata about those files.

This work is primarily focused on a discussion of
KBase’s SDK and execution environment, some of the
ways it aims to achieve reproducibility, and the role con-
tainers play in this architecture. However, the SDK and
the execution environment are just one component in the
overall architecture. The data storage components also play
a critical role in reproducibility by maintaining provenance
about all data in the system and ensuring that any individual
with access to a given object can access any other data
object that contributed to its creation. We have omitted
a deeper discussion on these components. We also note
here that container technologies are used throughout the
KBase platform. For example, the core services, including
the data stores and execution engine, are containerized and
managed via Rancher . In the discussion above we fo-
cused on using the SDK to describe analysis applications
that run for some bounded period of time, but the SDK
can also be used to build and package dynamic services.
These are semi-persistent microservices that are typically
used to provide APIs or backend-for-frontend utilities. For
example, a dynamic service exists to serve small pieces of
metagenomic data (which typically ranges from gigabytes to
terabytes in size) for rapid visualization in a web browser,
while another acts as a data search API. These containers,
while they persist, are also intended to act as temporary
caches, reducing the time necessary to repeatedly access the
results of heavy database calls or the intermediate results of
long-running compute jobs. Another use of containers is in
the Narrative platform. The Jupyter-based Narrative service

3. https://www.commonwl.org/
4. https://rancher.com

starts a container for each individual user to ensure data and
privileges cannot leak between users.

5. Future Work

KBase is exploring several enhancements related to the
execution environment. For example, we are exploring an
interface that would allow users to create custom pipelines of
existing apps through the Narrative interface. User-created
and curated pipelines will be saved and versioned as well,
and can be shared among users. This would allow non-
developers to generate workflows and share them with the
community. In the future, KBase plans to enable support
for users to ”"Bring your own compute” to the platform.
In this model, users can run an agent on local resources or
cloud provisioned resources that can be used to offload their
jobs. This mode of execution could become important as the
KBase user community grows and potentially outpaces our
ability to provide resources. Clearly, ensuring reproducibility
in this model requires careful thought and consideration.

Another future item is to provide more sophisticated
ways to express complex workflows. The recent addition of
support for WDL should address many of these use cases,
but this support needs to be integrated throughout the system
with careful consideration given to the user experience. For
example, how should results and output be presented to a
user who has run a parallel analysis of thousands of data
sets?

There is also a growing set of tools emerging in the
container space and Kubernetes ecosystem that could in-
fluence the future of KBase. KBase plans to transition
to Kubernetes for managing its core services in the near
future, but Kubernetes could potentially be utilized for other
aspects of the platform such as workflow execution. KBase’s
execution engine has been specifically designed around the
needs of bioinformatics workloads, therefore, finding the
appropriate role and model for integration with Kubernetes
for workflow execution requires investigation. Kubernetes-
based workflow frameworks like Argo could potentially
be integrated into the platform either as a substitute for
HTCondor or as a separate execution model. For example,
similar to how WDL and HPC execution have been enabled,
the SDK developer could express complex workflows as
an Argo workflow that would be executed inside KBase.
Regardless of the approach, careful consideration will be
needed to ensure that reproducibility is not sacrificed.

6. Conclusion

The KBase platform strives for strong reproducibility
and relies on container technologies to play a key en-
abling role. Achieving reproducibility requires treating it
as a fundamental design principle that is factored into
all aspects of the design of the platform; from how the
software is packaged and tracked, to how execution takes
place and how data is handled. Every step of analysis
execution in KBase has been designed and implemented

with reproducibility in mind. The ability for containers to
encapsulate all of the software and configuration used for
execution, as well as provide access control for data has been
instrumental in building out this architecture, and making
analysis reproducible. Future work will focus on expanding
this architecture to better embrace available HPC resources
and supporting larger scale analyses against increasingly
growing data sets.

Acknowledgments

This work is supported as part of the Genomic Sci-
ences Program Department of Energy Systems Biology
KnowledgeBase (KBase) funded by the U.S. Depart-
ment of Energy, Office of Science, Office of Biologi-
cal and Environmental Research under Award Numbers
DE-AC02-05CH11231, DE-AC02-06CH11357, DE-ACO5-
000R22725, and DE-AC02-98CH10886.

References

[11 A.P. Arkin, R. L. Stevens, R. W. Cottingham, S. Maslov, C. S. Henry,
P. Dehal, D. Ware, F. Perez, N. L. Harris, S. Canon et al., “The doe

systems biology knowledgebase (kbase),” BioRxiv, p. 096354, 2016.

[2] I. Foster and C. Kesselman, “The globus toolkit,” The grid: blueprint

for a new computing infrastructure, pp. 259-278, 1999.

D. Li, C. M. Liu, R. Luo, K. Sadakane, and T. W. Lam, “MEGAHIT:
an ultra-fast single-node solution for large and complex metagenomics
assembly via succinct de Bruijn graph,” Bioinformatics, vol. 31,
no. 10, pp. 1674-1676, May 2015.

[3]

[4] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov,
D. Avila, S. Abdalla, and C. Willing, “Jupyter notebooks — a publish-
ing format for reproducible computational workflows,” in Positioning
and Power in Academic Publishing: Players, Agents and Agendas,

F. Loizides and B. Schmidt, Eds. IOS Press, 2016, pp. 87 — 90.

T. Tannenbaum, D. Wright, K. Miller, and M. Livny, “Condor: a
distributed job scheduler,” in Beowulf cluster computing with Linux.
MIT press, 2001, pp. 307-350.

[5]

[6]

D. M. Jacobsen and R. S. Canon, “Contain this, unleashing docker
for hpe,” Proceedings of the Cray User Group, 2015.

[71 G. M. Kurtzer, V. Sochat, and M. W. Bauer, “Singularity: Scientific
containers for mobility of compute,” PloS one, vol. 12, no. 5, p.

e0177459, 2017.

[8] R. Priedhorsky and T. Randles, “Charliecloud: Unprivileged contain-
ers for user-defined software stacks in hpc,” in Proceedings of the
International Conference for High Performance Computing, Network-

ing, Storage and Analysis. ACM, 2017, p. 36.

P. Amstutz, M. R. Crusoe, N. Tijani¢, B. Chapman, J. Chilton,
M. Heuer, A. Kartashov, D. Leehr, H. Ménager, M. Nedeljkovich
et al., “Common workflow language, v1. 0,” 2016.

[9]

[10] J. Goecks, A. Nekrutenko, and J. Taylor, “Galaxy: a comprehensive
approach for supporting accessible, reproducible, and transparent
computational research in the life sciences,” Genome biology, vol. 11,

no. 8, p. R86, 2010.

M. Reich, T. Tabor, T. Liefeld, H. Thorvaldsdéttir, B. Hill, P. Tamayo,
and J. P. Mesirov, “The genepattern notebook environment,” Cell
systems, vol. 5, no. 2, pp. 149-151, 2017.

[11]

