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Abstract—This document presents a new containerized archi-
tecture to enable fine-grain control over the management of on-
node resources for complex scientific high-performance work-
loads. Our approach is introducing a node-local, application-
specific resource manager by extending a container runtime,
which can coordinate with the global resource manager, i.e.,
the system-wide manager that assigns resources to jobs. The
proposed work is based on the extension of a container runtime
to interface running containers with global resource managers,
as well as the implementation of advanced resource management
capabilities to address all the running application’s needs.

Based on this design, the various runtimes that are required
for the execution of scientific applications can interact with the
container runtime under which it is running. This interaction
enables the scalable and dynamic allocation of resources based
on runtime requirements, in opposition to job-level requirements
that are traditionally handled by the global resource manager. It
also enables fine-grain control over the placement of all processes
and threads running in a container on specific hardware com-
ponents, which is critical to achieve performance. Our approach
therefore enables an efficient, scalable, dynamic and trackable
management of resources on behalf of scientific applications;
bridging a gap observed with current solutions.

Our design leverages the PMIx standard [1], [2] in order to
interface with the global resource manager and guarantee inter-
library coordination to get resource requirements from running
applications. Leveraging the PMIx standard allows us to have
a generic and practical solution that can be used with most
resource managers used by the HPC community, as well as some
traditional runtimes such as MPI and OpenSHMEM.

Index Terms—containers, resource management, runtimes,
MPI

I. INTRODUCTION

With the rise of exascale, the High-Performance Computing
(HPC) landscape is drastically changing, from the hardware
to the programming languages. For instance, accelerators are
nowadays considered as commodity hardware and applications
switched from a pure MPI [3] to a hybrid model (a.k.a.,
MPI+X). These changes are increasing the complexity of
the entire software stack, from the operating system to the
application itself.

Fortunately, new technologies have emerged to help address
these challenges: container technologies make it easier to
develop applications, “package” them in a container and run
them on different platforms; while low-level standards such
as PMIx are used in the context of various execution runtimes
(e.g., MPI) to help achieve scalability. The exascale comput-
ing project (ECP) [4], including DOE facilities, has spent

tremendous amount of effort to accelerate adoption of HPC
through container software technologies for HPC leadership
computing platforms. However, from a resource management
point-of-view, the design of HPC systems have not followed
these trends. For example, it is still assumed that resources
are allocated when the job is scheduled for execution, with
very limited capabilities for the addition of extra resources at
runtime. As a result, HPC applications are still considered to
be static through their usage of resources. This assumption
is contradicting emerging needs for flexibility, will it be for
resilience purposes or because applications switch to modular
architectures for which their needs in term of resources cannot
be fully know at job submission time (e.g., composed and
dynamic applications).

In this document, we propose a new architecture that enables
reproducibility of HPC applications, a high-level of security,
including for sensitive data, as well as a fine-grain advanced
management of resources to fit at best the applications’ needs.
This is achieved by extending the Singularity container run-
time to include PMIx support for both the interaction with the
global resource manager and programming languages runtimes
(such as MPI and OpenMP [5]). In other words, with our
proposed design, the container runtime acts as an internal on-
node resource manager for applications running in containers.
This new role for container runtime is fairly natural since
the container runtime is already in charge of managing the
execution of application in containers in a safe and scalable
manner.

The rest of the document is organized as follows. Section II
presents the proposed architecture, while Section III presents
an overview of related work. Finally, Section IV concludes.

II. ARCHITECTURE

Our goal is to provide a local resource manager that act on
behalf of the applications running in containers. This requires
to have a software component that runs on the compute nodes
that can interact with the global manager. By interacting with
the global resource manager, it is possible to manage resources
that are already allocated for the job, as well as request and
manage new resources allocated at run time. This requires
our local resource manager to interact with the runtimes of
the various programming languages that are using by the
applications running in the containers, such as a MPI or
OpenMP.
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A. Requirements

Based on this, our design constraints can be summarized as
follows:

1) Security, we aim at executing applications in a secure
manner where the data that are used can be encrypted
with the application;

2) Reproducibility, the application and the entire software
stack that is needed are provided with the application
and can be executed on compatible hardware, in opposi-
tion to “port” the application to the target HPC platform;

3) Interaction with the global resource manager, all
resources allocated for the execution of applications
should be accounted for and tracked by the global
resource manager;

4) Interaction with application’s runtimes, all scientific
applications rely on various programming environments
(e.g., MPI, OpenMP) which allocate execution contexts
(processes and threads) on designated resources; our
design aims at interacting with these runtimes.

1) Security and reproducibility: In order to provide security
and reproducibility capabilities, we propose to rely on con-
tainers. We propose an architecture based on the Singularity
container technology since it is already the container solution
that is primarily used on HPC systems. Container technologies
are known to enable better reproducibility by “packaging”
applications and its data into an image. By using Singularity,
it is also possible to benefit from the Singularity Image Format
(SIF), an immutable format that packages the application, its
data and the entire software stack that is needed.

SIF images can also be encrypted using a RSA public key.
Upon execution, the private RSA key is used to decrypt the
image using the system device mapper. This is a standard
approach to provide system-wide encryption because it ensures
that the decrypted image is not stored on the file system, i.e.,
provides one of the most secure method to handle encryption.

Finally, Singularity also provides a mechanism for signing
and verifying images. This capability lets users authenticate
images and as a result, ensure that images that are executed
can be trusted. By providing both signing and encryption
of images, it is possible to implement a chain-of-trust from
the creation of the image (and therefore the installation and
configuration of the workload as well as its data in the the
container image).

2) Global resource manager interaction: Most HPC sys-
tems rely on a global resource manager. This manager is in
charge of allocating resources to applications. Traditionally,
most resource managers do not allow applications to dynam-
ically allocate resources at run time, especially outside of the
initial allocation that was allocated to the job. In other words,
most global resource managers perform a static and upfront
allocation of resources. However, with the venue of exascale,
the HPC community is switching to architectures based on
the usage of various programming environments and other
techniques such as application composition. These new trends
make it difficult for users to know precisely what resources

are necessary upon job submission and, as a result, a dynamic
allocation of resources is required.

In the context of this project, we intent to provide a local
resource manager that can allocate local resources on behalf
of applications and still interact with the global resource
manager. To all intents and purposes, this means that we
privilege a hierarchical approach where the global resource
manager oversees how much resources is used by applications,
and a local resource manager for the dynamic allocation of
resources.

To achieve that goal, we propose to rely on the PMIx
standard that is developed and widely used by HPC vendors,
facilities and the associated research communities.

3) Application’s runtime interaction: The various runtimes
used by applications, such the MPI or OpenMP runtimes,
have traditionally been designed and implemented without the
constraint of coordinating with other runtimes. They have been
developed in silos. Runtimes usually assume that all local
resources allocated on the compute node can by default be
used, while the intent of the users might be for the various
runtimes to share or partition the available resources. Previous
work has been done for the coordination of such runtimes
but to the best of our knowledge, our design is the first to
integrate such coordination into a local resource manager that
can interact with the global resource manager.

To achieve this goal, we propose to rely on the PMIX
standard once again. Using PMIx has two main advantages:
(i) it is a compatible approach with what the U.S. DOE ECP
project is currently investigating; and (ii) it is already the de-
facto standard for the interaction between the global resource
manager and runtimes.

B. Architecture overview

Figure 1 presents an overview of the proposed architecture.
It highlights the PMIx integration which enables both the
interaction with the global scheduler, as well as the coordi-
nation with the various runtimes running in the container. For
illustration purposes, the MPI and OpenSHMEM [6] runtimes
are both included. Other runtimes could be considered as well.
For example, the research community, especially the OMPI-X
project [7] funded by the U.S. DOE is focusing on runtime
coordination using PMIx in the context of hybrid applications
(especially MPI+OpenMP applications [8]).

By having the Singularity PMIx thread in addition of the
PMIx-compliant runtimes, it is possible to coordinate all the
software components involved in resource management and
therefore be able to implement end-to-end resource manage-
ment strategies.

The rest of this section presents details about both PMIx and
important details relevant to the management of resources.

1) State of the PMIx standard: Singularity, like most solu-
tions available, rely on kernel namespaces for the instantiation
of containers. The PMIx standard also provides a concept of
namespace and while the semantics of these two namespace
capabilities are different, both aims at partitioning resources.
As a result, we do not expect to have to extend the PMIx
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Fig. 1. Architecture overview.

namespace support for a use in the context of containers,
and we expect to be able to full support containers and
applications running in containers without modifications to the
standard. Even if the standard does not need to be modified,
an implementation of the standard will need to be extended
for a full support of containers. This is mainly due to the fact
that the compute entity within PMIx is based on processes
and namespaces, which in a traditional environment translates
into processes and other capabilities such as cgroups. Thus,
PMIx implementations usually directly fork processes, while
in our case, a native support of singularity will be required to
start containers. Furthermore, this would allow the resource
manager to ensure that container images are available and
efficiently staged throughout the system, without creating extra
burden on the users.

Similarly, PMIx provides an interface to facilitate the
connect of debugging and profiling tool to running parallel
applications, namely a tool interface. By using PMIx in the
container runtime, Singularity will therefore benefit from a
standard tool interface for the global debugging and profiling
of processes and threads running in containers. While we
do not believe that the PMIx standard needs to be extended
to support Singularity, a PMIx implementation needs to be
extended to fully support such a tool interface. This is mainly
due to the fact that the processes running in a container are
visible on the host in a way that differs from when they run
outside of a container. An option to address this limitation
is to extend both Singularity and a PMIx implementation to
maintain a map between the process signature running on the
host (all processes running in a container appears in /proc but
differently from normal processes) and the process running in
the container.

We will also leverage existing PMIx interface and ca-
pabilities such as the support for both static and dynamic

allocations. For example, PMIx defines PMIX ALLOC NEW
and PMIX ALLOC EXTEND, which respectively specify that
a new allocation has been requested and that an existing
allocation is extended in terms of time or additional resources.
These concepts can be reused to support advanced resource
management capabilities which will rely on containers for
the deployment. An intuitive example is to consider resource
assigned to a container and applications running in containers
as “allocations”. When the required resources for a container
are known in advanced, a container can be assigned a static
allocation; while it is assigned a dynamic allocation when
resources requirements are known only at run time. This
gives an elegant way to describe the resource required by a
container and ultimately partition available resources between
containers, processes and threads that will be running on a
single host.

In conclusion, based on the latest version of the PMIx stan-
dard, all required PMIx functionalities are already available
for our purpose.

2) Extensions to Singularity: When running a container, the
Singularity runtime creates two threads: (i) the Master thread
and (ii) the container thread. The master thread instantiates
the container runtime while the container thread becomes
the application after executing execve. In order to implement
the PMIx integration, the Singularity runtime will create an
additional thread. This thread is designed to instantiate the
PMIx library, i.e., call at minimum the PMIx Init() function
to initialize PMIx and PMIx Finalize() upon termination.

The PMIx thread behaves as both a client and a server. It
acts as a PMIx client in regards to the closest PMIx server
running either on the node or in the context of the global
resource manager. This design aims at easing the integration
with most configurations that can be found while executing
scientific applications. For instance, MPI implementations
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such as Open MPI can create a daemon on the compute nodes
that is also a node-local PMIx server. Another example is
infrastructures like the IBM job and resource manager on
systems such as Summit at Oak Ridge National Laboratory
that create a persistent PMIx daemon on compute nodes in
order to guarantee scalable start-up of workloads.

Having a PMIx-compliant container runtime enables three
major capabilities: the precise mapping of resource to con-
tainers and applications running in containers; the efficient
and scalable allocation of resources, and finally, inter-runtime
coordination.

a) Resource mapping: The execution of HPC workloads,
in order to perform, requires a careful placement of execution
contexts (processes and threads) on available resources. This
placement is often referred as “mapping” and in the context
of MPI, traditionally done at job deployment time, through
the interaction between the system’s resource manager and
the MPI runtime. A PMIx-compliant container runtime allows
us to precisely describe and control the mapping of processes
and containers on the various hosts composing the system. Our
solution therefore enables the execution of use cases that are
otherwise extremely difficult to fully support. Practically, our
approach enables the execution of native workloads (where
no container is used), container-based workloads (where only
containers are used) but also “hybrid” workloads that are based
on containers and processes running outside of any containers.
This means that a mapper that would support containers could
precisely define where processes, containers and processes
within a container need to be executed, down to the granularity
of cores or hardware threads.

b) Resource allocation and management: As previously
stated, the PMIx thread also acts as a server for the applica-
tion(s) running in the containers. This ensures that resources
allocated to the job are known to the container runtime and
applications mapped to the adequate resources, based on users’
requirements. If applications request additional resources, the
PMIx thread will either directly assign resources if resources
are already allocated to the job or be relayed to the global
resource manager if additional resource are required. In other
terms, the PMIx thread acts as a resource management proxy
between the applications and the global resource manager.
This ultimately creates a hierarchical set of PMIx servers and
clients, which is a preferred option in the context of HPC
to guarantee scalability and performance. With this hierarchy
of servers, it is possible to efficiently implement a precise
mapping between applications and available resources. In fact,
this extends what PMIx already does in the context of MPI.
A direct result of such an approach is to enable process and
thread binding throughout the entire stack and through the
boundaries of containers but in a safe and secure manner.
When the container’s runtime forks processes and threads on
behalf of the application, these processes and threads can be
mapped and bounded to specific hardware resources. Similarly,
devices such as accelerators can precisely be assigned to a
container and eventually to a specific software component that
is running in a container. This provides a level of control

over resource management that is not currently possible with
existing solutions. Finally, since PMIx is both a standard and
an implementation that provides a programming interface, this
opens the door to more advanced and complex structures
where the applications running in containers, the container
runtime and global resource manager could negotiate for
resources. While such approach would enable the interesting
concept of internal resource manager, this is out-of-the-scope
of this document and, to the best of our knowledge, no such
applications currently exist.

Figure 2 illustrates how a PMIx-aware runtime is used when
executing a workload relying on containers. In the example, we
can see that the hierarchy of PMIx servers is used to distribute
the resource mapping assigned to the workload down to the
container runtime, which can then create and bind processes
to the appropriate resources.

c) Process debugging and profiling: Parallel debug-
gers [9], [10] and profilers are tools that are often used to
analyse and optimize parallel applications. To ease the use of
such tools, various “tool interfaces” have been developed and
implemented over the years [11]–[13]. PMIx, as previously
mentioned, also provide a tool interface and by having a
PMIx thread in the Singularity runtime, it is possible to
provide a standardized way to attached to processes running
in containers. However, these tools usually require to parse
and detect processes running on the host to know precisely
to which process to attach. Tools usually rely on entries in
‘/proc’ to do so. In the context of containers, the entries in
‘/proc’ are different. It is still possible to see processes running
in containers from the host but they appear differently and
the standard process hierarchy is hidden (when creating a
new container, a new namespace is created that is attached
to the top process on the host, creating its own process 1) To
address these differences, it is possible to create a map between
the process running on the host and the processes running in
the containers. That map can then be used by tools such as
debuggers to attach to the processes running in a container. Of
course this still requires the tool to have to required software
components available in the containers, but it also gives the
opportunity to have an end-to-end management of processes
from the frontend node to containers running on compute
nodes. As a result, it makes it possible to have a parallel
tool monitor and attach to processes of a parallel workload
regardless of whether the processes are running in a container.

d) Runtimes coordination: PMIx is basically a building-
block for the design and implementation of asynchronous
distributed system software. To achieve this, PMIx is event-
based and provides a distributed key-value store for data
sharing. A typical example is MPI startup: basic information
about the job and hardware configuration is placed in the
distributed key-value store. When a new MPI rank starts on
a compute node, it retrieves all the required data to bootstrap
network communications and fully initialize the MPI library.
In the context of inter-library and inter-runtime coordination,
the approach is similar. All runtimes call PMIx Init(), which
will share a namespace, even if called in the context of a single
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Fig. 2. Mapping and allocation of resources in the context of workloads using containers.

process (in the context of a process using various libraries in
parallel). From there, Singularity and the runtimes running in
the containers can exchange events (notifications) and share
data. In our context, the PMIx thread acts as a server for the
PMIx-compliant runtimes/libraries. The PMIx thread from the
container runtime is therefore capable of coordinating with
the various runtimes running in the container, exchange data
about resource needs and manage the placement of threads
and processes. Practically, the container’s runtime is forking
the various runtimes required by the application (e.g., the
MPI runtime). As such, it is also possible for the container’s
runtime to partition or share resources between these runtimes.
An example is through the use of CPU sets for resource
partitioning: the container runtime can define different CPU
sets to each runtime, for example through hwloc [14], and
therefore ensure that each runtime has its own set of resources.
This fine-grain control over resource management ensures
that resources are shared only when required and otherwise
properly partitioned to ensure performance and scalability.

III. RELATED WORK

We present in this section some relevant projects both in
terms of container technologies and resource management
solutions for HPC.

A. Containers

Container technologies rapidly grow both in the context
of enterprise and HPC computing. For enterprise computing,
containers are mainly used to easily deploy and control micro-
services. In fact, this is still nowadays the main use case

for Docker [15]. But such solutions have been historically
based on design choices that prevented them to be used
on HPC systems, mainly running in privileged mode. As a
result, the community saw the birth of container solutions
that are designed with HPC in mind, e.g., Singularity [16]
and CharlieCloud [17]. For example, Singularity supports the
execution of container in user mode; container encryption to
ensure that guarantee that the data stored within the container’s
image is securely handled, and a well documented interaction
with HPC oriented programming environments such as MPI,
as well as traditional HPC infrastructure components such as
job schedulers.

B. Resource Managers

Resource management is a key capability for large-scale,
multi-tenant, HPC systems. It ensures that the resources are
adequately assigned to all applications running on the system
and also ensures that these resources are charged to the
appropriate projects.

Historically, resource managers have been centralized and
static: upon the scheduling of a job, resources are allocated
and the job is deployed. These resources are assumed to be
allocated for the entire execution of the job and could not
be extended (both in terms of time and additional resources).
The HPC community developed various specifications, mainly
driven by the needs from MPI applications, since MPI was at
the time the dominating programming and execution environ-
ment for HPC applications. PMI [18] is such a specification
and implementation, focusing on the scalable management of
many processes running across many compute nodes. Later on,
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the HPC community and the associated vendors developed the
PMIx specification, which proposes a design and implemen-
tation that fits better modern architectures and requirements
both in terms of performance and scalability.

As the HPC community is moving to exascale, a growing
need for dynamic resource allocation is emerging. Fortunately,
specifications such as PMIx already support the dynamic
management of resources. However, the rest of the ecosystem
is evolving at a slower pace. Global resource managers from
vendors are just starting to consider supporting application-
driven dynamic resource allocations. Furthermore, schedulers,
such as Slurm [19], are not designed to let jobs perform their
own resource management. New projects such as Flux [20]
are investigating such a capability from a scheduling point of
view. Practically, they provide a hierarchical scheduler with
a local scheduler running on compute nodes when necessary,
as well as a well-defined interface that can be used by users.
However, to the best of our knowledge, there is no integration
with container solutions. This lack of integration with con-
tainer solutions is creating a gap: the applications running in
containers find themselves isolated from the host system, lim-
iting the possibilities for resource management. Furthermore,
the container runtime being disconnected from the resource
manager, it is not possible to finely place processes and threads
running in containers. This is especially limiting with the HPC
community moving to highly-heterogeneous systems where
processes and threads will have to be carefully placed on CPUs
and accelerators.

IV. CONCLUSION

While previous work already has been done for runtime
coordination and hierarchical scheduling, to the best of our
knowledge, this is the first architecture that provides se-
curity and reproducibility since based on containers, fine-
grain user resource management since the proposed local
resource manager is an extension of the Singularity runtime
and a direct interaction with the various runtimes used the
running applications, and accountability since interacting with
the global resource manager. Our approach also enables the
support of parallel debuggers and profilers which are common
practice in the context of high performance computing.

As a result, the proposed architecture is the next step for a
HPC-focused container solution.

As future work, we plan to implement the presented archi-
tecture and evaluate its performance using hybrid applications.
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