
Sample Transfer Optimization with Adaptive Deep
Neural Network

Hemanta Sapkota
Computer Science and Engineering

University of Nevada Reno
Nevada, USA

hsapkota@nevada.unr.edu

Md Arifuzzaman
Computer Science and Engineering

University of Nevada Reno
Nevada, USA

arif@nevada.unr.edu

Engin Arslan
Computer Science and Engineering

University of Nevada Reno
Nevada, USA

earslan@unr.edu

Abstract—Application-layer transfer configurations play a cru-
cial role in achieving desirable performance in high-speed net-
works. However, finding the optimal configuration for a given
transfer task is a difficult problem as it depends on various
factors including dataset characteristics, network settings, and
background traffic. The state-of-the-art transfer tuning solutions
rely on real-time sample transfers to evaluate various configura-
tions and estimate the optimal one. However, existing approaches
to run sample transfers incur high delay and measurement
errors, thus significantly limit the efficiency of the transfer
tuning algorithms. In this paper, we introduce adaptive feed
forward deep neural network (DNN) to minimize the error rate
of sample transfers without increasing their execution time. We
ran 115K file transfers in four different high-speed networks
and used their logs to train an adaptive DNN that can quickly
and accurately predict the throughput of sample transfers by
analyzing instantaneous throughput values. The results gathered
in various networks with rich set of transfer configurations
indicate that the proposed model reduces error rate by up to
50% compared to the state-of-the-art solutions while keeping
the execution time low. We also show that one can further
reduce delay or error rate by tuning hyperparameters of the
model to meet specific needs of user or application. Finally,
transfer learning analysis reveals that the model developed in
one network would yield accurate results in other networks with
similar transfer convergence characteristics, alleviating the needs
to run an extensive data collection and model derivation efforts
for each network.

Index Terms—Sample transfer, Network probing, Transfer
modeling, Deep Neural Network

I. INTRODUCTION

Driven by advancements in instrument technologies and
computing power, many scientific applications have started to
generate massive volumes of data [1]–[4]. For example, high
energy physics and particle experiment ATLAS produces 1
PB of data in each second, which is reduced to 1-2 GB after
filtering [5]. The Dark Energy Survey instrument captures the
pictures of the southern sky and generates nearly 500 GB
of data each night [3]. The successor of the Dark Energy
Survey project, Large Synoptic Survey Telescope [4], will
use 3.2 gigapixel cameras and produce 30 TB data every
night. Enormous amount of data collected by these science
projects often needs to be streamed to remote computing and
storage facilities to be processed and archived. Although high-
performance networks with up to 100 Gbps capacity has been
established to keep up with increasing data transfer rates, it

Thr1

Thr2

Thrn

... Sample	Transfers

Optimal	
Configuration

O
nline	O

ptim
izer

Configuration	1

Configuration	2

Configuration	𝑛

Fig. 1. Online optimization algorithms rely on sample transfer to evaluate
various application layer transfer configurations to discover the ideal one.

has been found challenging to attain full network utilization
in these networks [6], [7].

Researchers have proposed online optimization algorithms
to tune transfer configurations in real-time at the transport
and application layers without relying on historical data [7],
[8]. They work by evaluating various transfer configurations
using sample transfers and cost functions. Then, the out-
put of sample transfers (e.g., throughput and loss rate) are
used to predict an optimal configuration that would satisfy
user’s expectations such as high throughput and low delay
as illustrated in Figure 1. While running sample transfers to
evaluate transport layer configurations is relatively easy due
to being able to access to a large set of network metrics
(e.g., RTT, throughput, loss rate etc.) at fine granularity (i.e.
in the orders of milliseconds), it is rather challenging for
application layer configurations since many commonly used
transfer applications (e.g., scp, FTP, and GridFTP) report only
few metrics (e.g., transfer completion) at coarse granularity
(i.e., in the orders of seconds). Despite these challenges,
previous studies have shown that one can achieve more than
an order of magnitude improvement in transfer throughput
by tuning application layer parameters where transport-layer
solutions are either not available or insufficient.

A typical approach to conduct sample transfers is to transfer
one or more files using the configuration that is being tested
(aka f ixed-size) [9]. However, determining the amount of
data (i.e. the number of files and file size) that is sufficient
enough to evaluate the performance of a configuration requires
significant upfront work since optimal data size depends on
transfer conditions such as network bandwidth and storage

69

2019 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS)

978-1-7281-6666-7/19/$31.00 ©2019 IEEE
DOI 10.1109/INDIS49552.2019.00013

I/O performance. Even one-time data collection and model
derivation may not work well as such models are inherently
susceptible to modifications in network and end systems such
as bandwidth increase, network path change, and file system
upgrade as they need to be re-calibrated with new data to
adapt the changes. Yet, experimental results indicate that fixed-
size sample transfers causes prohibitively long execution time
even after data size optimizations, thus, they do not offer a
feasible solution for online optimization algorithms in today’s
fast evolving production networks.

To avoid performance and training costs of fixed-size sample
transfer models, fixed-duration [10], adaptive [11], and time-
series [12] models have been proposed. Fixed-duration ap-
proach evaluates different configurations based on the amount
of data transferred within a fixed time period (e.g., five sec-
onds). Similar to fixed-size approach, fixed-duration ,method
requires a fine tuning of time duration that sample transfers
will run since short time periods will result in poor accuracy
while long ones will lead to extended execution times. Adap-
tive sampling method starts sample transfer and periodically
(e.g., once a second) monitors transfer throughput to identify
convergence time. The idea behind this is that throughput
of a transfer is supposed to reach to a maximum speed
and stay within a reasonable range afterwards. By keeping
track of reported throughput values in sliding windows, the
adaptive model aims to detect when throughput values in
a window follows a stable pattern at which point, it can
stop the transfer and use the average throughput of the last
window as the throughput of a given configuration. Although
the adaptive approach promises fast convergence time with low
measurement error in dedicated networks, it fails to make a
timely decision in shared networks where transfer throughput
exhibits fluctuating behavior due to congestion and inaccurate
throughput measurements. Finally, in a previous work, we
modeled sample transfers with Autoregressive (AR), Autore-
gressive Moving Average (ARMA), Autoregressive Integrated
Moving Average (ARIMA) time-series analyses to capture
behaviour of instantaneous throughput reports and forecast
future values. Among AR, ARMA, and ARIMA, AR obtained
the best performance by reducing the sample transfer time
below six seconds, however, its error rate can go up to 30%,
potentially causing online optimization algorithms to make
inaccurate conclusions.

In this paper, we propose an adaptive deep neural network
(DNN) to minimize execution time of sample transfers while
keeping error rate low. DNN offers a unique capability to
extract complex patterns to accurately predict convergence
time and throughput of sample transfers in wide range of
conditions where analytical and heuristic models are unable
to perform well. We trained an adaptive DNN model to
take instantaneous throughput metrics from sample transfer as
inputs to predict convergence time and throughput as outputs.
Evaluations in rich network and dataset settings reveal that the
adaptive DNN is able to improve accuracy of sample transfers
by up to 50% compared to the state-of-the-art solutions in
exchange of slight increase in execution time.

The rest of paper is organized as follows: Section II explains
the motivation and presents related work in the area of sample
transfer optimization. Section III describes the data collection
process and Section IV details the proposed DNN model.
Section V discusses the evaluation results. Finally, Section VI
concludes the paper with the summary.

II. RELATED WORK

Throughput of file transfers depends on many factors in-
cluding but not limited to dataset characteristics (e.g., file
count and average file size), network settings (e.g., bandwidth
and round trip time), transfer configurations (e.g., number of
parallel streams and concurrent file transfers), and background
traffic [11], [13]–[15]. Therefore, it is difficult to model and
predict the throughput of a transfer ahead of time. Sample
transfers help to estimate throughput of long transfers by
running micro transfers for a short period of time, however
fine tuning the scale of sample transfers (i.e., duration, data
size, etc.) is rather challenging due to conflicting nature
of execution time and accuracy. As the duration of sample
transfers is increased, the accuracy of throughput estimation
tend to increase as well. Although running sample transfers
for an extended period of time improves the accuracy of
performance estimation, it causes several issues: First, if
sample transfers are used to check the health of a production
network (as done by perfSonar [16]), then prolonged execution
time of sample transfers could negatively affect the production
workload. Second, the performance gain offered by real-time
transfer optimization algorithms that rely on sample transfers
to identify an optimal transfer configuration starts to disappear
as the cost of sample transfers surge since the optimization
process involves assessing the performance of suboptimal
configurations. Previous studies proposed fixed-size [9], [16],
fixed-duration [10], [17], adaptive [11], [18], and time-series
analysis [12] methods to execute sample transfers.

PerfSonar is developed to execute periodic measurements
mainly between research and education institutions that are
connected with high-speed networks [16]. It collects through-
put, delay, packet re-transmission, and packet route informa-
tion using measurement tools such as traceroute and Iperf. Its
end-to-end throughput measurement is done by transferring
a single file (by default 10GB in size) transfer between end
points once in every six hours. However, the choice of using
fixed-size file for sample transfer causes it to underestimate
achievable throughput since it is unable to run long enough to
reach maximum speed when the bandwidth is higher than 2-3
Gbps. Moreover, using one file in sample transfers prevents
sample transfers such from discovering potential throughput
improvements by means of concurrent file transfers, which
helps to improve I/O performance in parallel file systems.

Yildirim et al. proposed a regression analysis to model
dataset size for fixed-size sample transfer approach [9]. They
first run extensive experiments to collect accuracy statistics
for various dataset size values, then run linear regression to
derive a relationship between sample transfer size and transfer
settings such as bandwidth, RTT, and average file size. As

70

TABLE I
SYSTEM SPECIFICATION OF EXPERIMENT NETWORKS.

Specs Storage CPU Memory (GB) Bandwidth (Gbps) RTT (ms) Transfer Count

XSEDE (Stampede2-Comet) Lustre 28 x Intel Xeon Gold 6132 @ 2.60 GHz
24 x Intel Xeon E5-1660 @ 3.20 GHz 64 10 40 53,796

ESnet RAID-0 12 x Intel Xeon E5-2643 @3.40GHZ 128 100 89 16,849
Pronghorn GPFS 16 x Intel Xeon E5-2683 @2.10GHz 192 10 0.1 3,000
HPCLab NVMe SSD 16 x Intel Xeon E5-2623 @2.60GHz 64 40 0.1 41,768

Total 115,413

the model’s accuracy heavily depends on the collected data
logs, it requires a significant upfront work to perform well.
Moreover, the model estimates sampling size to be between
10% and 23% of original dataset size which would incur too
much delay for bulk transfers and result in inaccurate sampling
size for small ones. Moreover, real-time transfer optimization
algorithms would end up transferring the most, if not all, of
whole dataset during search phase in case of requiring multiple
sample transfers, making the discovery of optimal transfer
configuration useless.

Alan et al. introduced the fixed-duration method to measure
throughput of sample transfers to determine the configuration
with the highest throughput to energy consumption ratio [10].
The authors claim that five seconds is sufficient to predict
the performance of any transfer configuration in their test
networks. However, running sample transfers for a fixed time
period involves sensitive tuning of the duration based on
network conditions since a single value could be too short
for some networks and too long for others. Indeed, we have
observed in our experiments that it can take up to 20 seconds
for some transfers to converge due to connection setup and
slow-start costs especially in long fat networks. Balaprakash
et al. proposed a direct search algorithm to tune transfer
parameters in real-time [17]. They use control epochs to run
sample transfers and measure corresponding throughput for
different configurations. To increase accuracy, they set the
control epoch time to 30 seconds which severely limits the
applicability of real-time optimization algorithms for most
transfers in scientific networks as they are dominantly short-
lived [19].

In a previous work, we proposed an adaptive sampling tech-
nique which starts transferring an entire dataset and monitor
throughput periodically [11]. If throughput of two consecutive
monitor intervals are closer than a defined threshold, we
stop the transfer and take the average throughput of last two
intervals as the throughput of the sample transfer. Adaptive
approach works well if transfer throughput does not exhibit
too much fluctuations upon convergence. However, our ex-
periments proved that this assumption does not hold true in
shared networks where I/O and network resource contention is
significant and unpredictable. In another study, we conducted
time-series analysis for instantaneous throughput results to
model and predict future transfer throughput. The experimental
results indicate that among other time-series models, Autore-
gressive is able to predict the convergence time in less than
six seconds, however its error rate reaches to more than 20%
in shared, production networks.

III. DATA COLLECTION

To train the adaptive DNN model, we ran 115K file transfers
in four networks whose specifications are given in Table I.
HPCLab servers and Pronghorn campus cluster are located at
the University of Nevada, Reno (UNR). HPCLab servers are
equipped with direct attached NVMe SSDs whereas Pronghorn
servers are backbed by GPFS distributed file system. ESnet
and XSEDE transfers represent wide-area network conditions
with 89 ms and 40 ms delay between end points. We used
datasets that consists of files with various sizes (ranges be-
tween 1 MB and 100 GB) and counts (ranges between 1 and
10,000) to capture the impact file size and count in sample
transfers. We also tuned application layer parameters such as
concurrency and parallelism to assess their impact. Parallelism
defines the number of network connections for single file
transfer whereas concurrency sets the number of concurrent
file transfers. XSEDE and Pronghorn networks due to which
they are exposed to storage, server, and network interference.
On the other hand, ESnet and HPCLab networks are isolated
environments hence less exposed to unpredictable resource
interference.

We used GridFTP in XSEDE network and custom file trans-
fer application in others and collected instantaneous through-
put logs as reported by the transfer application. Since GridFTP
sends throughput updates at most once a second, XSEDE logs
contain throughput reports on second-basis whereas HPCLab,
ESNet, and Pronghorn logs include instantaneous throughput
values both second and sub-second (i.e. 100ms) granularity
with the help of custom transfer applications. We evaluated
the impact of obtaining instantaneous throughput reports in
sub-second basis in Section V-A, therefore the rest of evalu-
ations are derived from the transfer logs with second-basis
throughput reports. Due to shared nature of XSEDE and
Pronghorn networks, some transfers contained significantly
fluctuating reports such as 1000 Mbps in one second and 0
Mbps in the following. To detect and remove such outliers,
we excluded transfers whose standard deviation is more than
50% of average throughput. This process removed nearly 32K
transfers and remaining 83K transfer logs are split as training
(70%) and test (30%) data to train and test the proposed DNN
model.

Defining the Optimal Solution

Throughput of sample transfers exhibit distinct patterns in
terms of convergence time and stability due to variation in
network and end system conditions such as constant back-
ground traffic in XSEDE network. Thus, we define the optimal

71

solution that can be used to better evaluate the performance
different models since throughput reports are inherently more
unstable in some networks, hampering accurate estimations in
short time frame. We first calculate the average throughput of
a whole transfer by dividing the data size to transfer time.
Then, the optimal solution scans per-second basis throughput
reports starting from first second to identify the time at which
throughput is close to actual average throughput. Once found,
the time is assumed to be the minimum time a sample transfer
can take to accurately estimate the throughput for given dataset
transfer. The accuracy of the optimal solution is calculated as
the percentage of difference between the throughput of optimal
time and average throughput of whole transfer.

We evaluated various threshold values to measure close-
ness of an instantaneous throughput value to actual average
throughput and found that lower threshold leads to higher
execution time in exchange of lower error rates, as expected.
While 5% threshold leads to 12 seconds execution time,
40% threshold reduces execution time to less than 5 seconds
in return of increased error rate. Since, we want to find a
model that can estimate sample transfer throughput within a
reasonable time frame and error rate, we used 10% threshold
to compare against the models in the next section.

IV. ADAPTIVE DEEP NEURAL NETWORK

We aim to reduce the execution time of sample transfer by
analyzing instantaneous throughput reports that are populated
in every second. Hence, the DNN model will be given real-
time throughput readings to predict the throughput of a sample
transfer upon convergence. Since sample transfers converge
at different times in different networks, the model needs to
determine if a sample transfer has converged or not in real-
time, which requires an ability to make predictions using
a various number of instantaneous throughput reports. For
example, at the end of first second of a sample transfer, the
model is expected to use single throughput report to forecast
convergence throughput of the given transfer. However, if
its prediction confidence is low due to lack of information,
then we let the transfer continue running to gather more data
and make new predictions using more throughput reports. We
noticed that throughput of 98% of all transfers in historical
data converge between 3 and 16 seconds, thus the adaptive
model consists of 14 DNNs (from 2-input to 15-input) as
shown in Figure 2.

Rather than using absolute throughput values as inputs
to the DNN models, we use percentage of change between
consecutive throughput values to minimize model bias. For
example, average throughput of HPCLab transfers is around
16 Gbps whereas it is less than 5 Gbps for XSEDE transfers.
Thus, training a DNN model using absolute throughput values
could cause the model to assume a relationship between abso-
lute throughput values and convergence time and potentially
hampers its use in other networks. Instead, if the model can
learn throughput convergence behaviour by analyzing rate
changes, it can be transferred to other networks with similar
convergence behaviour even though network bandwidth is

𝑇ℎ𝑟$%& =
∑ 𝑇ℎ𝑟)&
)*+

𝑡

𝑇ℎ𝑟+

𝑇ℎ𝑟-

𝑇ℎ𝑟+.

𝑇ℎ𝑟+

𝑇ℎ𝑟-

𝑇ℎ𝑟/

Hidden	layers

𝑇ℎ𝑟+

𝑇ℎ𝑟-

2-input	DNN

3-input	DNN

15-input	DNN

⋮

⋮

𝑃𝑟/

𝑃𝑟2

𝑃𝑟+.

⋮

𝑃𝑟/

𝑃𝑟2

𝑃𝑟+.

⋮

Hidden	layers
Hidden	layers

𝑃𝑟/

𝑃𝑟2

𝑃𝑟+.

⋮

Yes

No

Yes

No

t = 𝛼,where	
𝑃𝑟;=max	(𝑃𝑟+@+.)

	P(t) ≥ 𝑃𝑟&DE%
						&	t	 ≤ 4

	P(t) ≥ 𝑃𝑟&DE%
						&	t	 ≤ 3

t = 15

t = 𝛼,	where
𝑃𝑟;=max	(𝑃𝑟+@+.)

t = 𝛼,	where
𝑃𝑟;=max	(𝑃𝑟+@+.)

Fig. 2. The Adaptive Deep Neural Network starts estimating the probability of
convergence times (Pi) by using throughput values from first three seconds. If
the maximum estimated probability (Pα) is greater than a specified threshold
(Prthrs) and convergence time t is smaller than current time, then the
adaptive DNN assumes convergence is satisfied and takes average throughput
of t seconds as the throughput of a sample transfer.

different. To give an example on rate change calculations,
consider a sample transfer with {200, 400, 500, 450} Mbps
throughput reports at its fourth second. We convert these
values to rate changes using Equation 1, which returns {100%,
25%, −10%} values. Note that this reduces the number of
inputs by one as we can calculate first rate change using
two second throughput values. The output of the model is a
convergence time classifier to which is then translated into
convergence throughput by taking the average of observed
throughput results.

Rate =
Throughputcurrent − Throughputprevious

Throughputprevious
(1)

We trained the adaptive model using historical data logs
with optimal solution as the output. For example, if throughput
of first six seconds of a transfer is reported as {100, 220, 560,
610, 550, 600} Mbps with actual average throughput of whole
transfer is being 605 Mbps, the optimal solution will mark the
fourth second as the optimal execution time as it reaches the
10% range of actual throughput in the fourth second. Then,
we train a 2-input DNN with first two rate changes, {120%,
154%}, and output as 4, 3-input DNN with first three rate
changes, {120%, 154%, 9%}, and output as 4 and so forth such
that the generated DNN models can learn various rate change
patterns that leads to 4 second convergence time. The classifier
is then able to identify unique patterns for convergence time
based on rate change input values.

72

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

Pronghorn ESnet HPCLab XSEDE

E
rr

o
r

R
a
te

 (
%

)

Networks

Optimal
DNN

Autoregressive
Adaptive

Fixed-size

(a) Error Rate

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

Pronghorn ESnet HPCLab XSEDE

E
x
e
c
u
ti
o
n
 t
im

e
 (

s
)

Networks

Optimal
DNN

Autoregressive
Adaptive

Fixed-size

(b) Execution Time

Fig. 3. Performance comparison of algorithms in different networks. The DNN models obtains close-to-optimal results for execution time and error rate in
most cases.

To use the model in real-time, we first pass the two rate
change values of the sample transfer to the 2-input model at
t = 3s, which estimates the probabilities of convergence time
to be 3-16 seconds. If the probability of 3s is greater than a
certain than a threshold (Prthrs in Figure 2), we terminate the
sample transfer immediately and take the average of all three
throughput reports as the throughput of the sample transfer.
Otherwise, we wait for another second to try 3-input DNN to
see if it can be make a prediction with high confidence for
output of 3s or 4s. Note that it is possible that a DNN model
can estimate the convergence time to be in the future. For
example, 3-input DNN can predict convergence time to be 10
seconds. While this allows us to possibly terminate the sample
transfer early, we also need to estimate the throughput value at
10s which is not possible with the classifier DNNs. We tried
several regression DNN models to predict throughput value of
future time points, however, the accuracy of regression models
tend to be very low, thus we instead let the transfer continue
its execution. If an estimated convergence time is lager than
current time, we continue gathering instantaneous transfer
throughput in the next time step and testing the corresponding
DNN model rather than simply waiting until the estimated
convergence time. For instance, even if 3-input DNN estimates
convergence time to be 10th second with high confidence,
we keep running 4-input DNN at 4th second and 5-input
DNN at 5th second to see if those models could potentially
estimate convergence time to be less than 10 seconds with
high confidence. Once the adaptive DNN model estimates the
convergence time to be equal or less than current time (i.e.,
the number of inputs is greater than or equal to estimated
convergence time) with high probability, we then terminate the
sample transfer and take the average of all throughput reports
up-to current time to estimate the average throughput of the
sample transfer.

By default, all neural networks in the proposed model con-
sists of 5 layers including input layer and output layer where
all three hidden layers contain 100 intermediate nodes. We use
Limited-memory BroydenFletcherGoldfarbShanno (lbfgs) as
our solver and Rectifier Linear Unit (RELU) as the activation

function with the learning rate of 0.001. We evaluate the
performance of the models based on various training configu-
rations in Section V-B.

V. EVALUATIONS

In this section, we evaluate the performance of different
models in terms of execution time and estimation accuracy.
We compared the adaptive DNN model against following so-
lutions: (i) Fixed-size approach that transfers a predetermined
size of data to run sample transfers and measures time to
calculate their throughput. To determine the optimal size for
sample transfers, Yildirim et al. collected historical data and
run regression analysis to derive a linear model that relates
sample transfer size to file size and bandwidth-delay-product.
The model, on average, estimates data size to be between
10% and 23% of original dataset size [9]. (ii) Adaptive sam-
pling approach which assumes that instantaneous throughput
values stabilizes upon convergence [11]. Thus, it compares
consecutive throughput values to decide if a given transfer
has converged or not. (iii) Autoregressive (AR) model that
uses throughput observations from previous time steps as input
to predict the throughput at the next time step. As opposed
to fixed-size approach, AR is trained in the real-time using
instantaneous throughput observations. Its execution time is
calculated by comparing its throughput prediction for the next
time point with actual throughput. If its prediction accuracy is
less than a certain threshold, then AR models is assumed to
be accurate and its estimation for next 10 seconds are used to
calculate the throughput of sample transfer. We used 15% of
dataset as data size of fixed-size method and 10% threshold
for adaptive sampling and AR models when evaluating their
performance.

Figure 3 shows the performance comparison of the models
when evaluated in different networks. It is clear that fixed-size
approach causes up-to 19 seconds execution time in Pronghorn
and ESnet networks whereas its error rate reaches to 20%
in XSEDE network. In contrast, adaptive sampling method
yields smaller execution times in all networks with less than 6
seconds in the worst case. In exchange, its accuracy degrades
significantly and reaches to more than 20% in XSEDE. In

73

Fig. 4. Comparison of sampling algorithms with sub-second data collection
frequency

overall, error rate of adaptive sampling approach is 2-3x higher
than the optimal one. AR model yields the lowest execution
time for sample transfers in all networks whereas its error
rate is also much higher compared to the optimal and the DNN
model. Although AR is able to keep the convergence time less
than six seconds in all networks, its error rate is more than
20% in XSEDE and considerably higher than optimal value
in other networks. For example, optimal error rate in ESnet is
around 6% whereas AR causes 14% error.

On the other hand, the DNN model yields the close to
optimal results in almost all networks. Its error rate is within
1-2% range of optimal in Pronghorn, ESnet, and HPCLab
networks. However, the error rate jumps to more than 14%
in XSEDE network. Although 14% is far from optimal, it is
still the lowest error rate among all algorithms. The smallest
error rate in XSEDE network after the DNN model is greater
than 20% by the fixed-size approach. As opposed to other
testbeds, XSEDE causes significantly higher error rates due to
its shared nature of end system and network resources. Except
XSEDE, the error rate of the DNN model is less 7% which
is nearly 50% improvement over AR model whose error rate
ranges between 8-21.5%. In overall, the DNN model enhances
the error rate prediction over AR by a significant margin
whose error rate cannot be enhanced much despite increased
threshold values [12].

In terms of execution time, the DNN always yields lower
results compared to optimal solution. For example, the opti-
mal solution estimates the convergence time to be 5.9s for
Pronghorn whereas it is 5.4s for the DNN. Compared to AR
and Adaptive, the DNN has higher execution time values in
all networks though the difference is no more than 2 seconds
at most. As an example, AR yields 5.6s execution in HPCLab
while causing 10.9% error rate whereas the DNN model yields
5.7s execution in exchange of 6.3% error rate, more than 30%
improvement over AR.

A. Sub-second Throughput Measurements

In this section, we investigate the impact of collecting
throughput results in sub-second intervals in attempt to achieve
faster convergence time which is critical to be able to run many

sample transfers in a timely manner. While GridFTP servers do
not report instantaneous throughput information in sub-second
intervals, we configured our custom transfer application calcu-
late and log transfer throughput in every 100ms in HPCLab,
Pronghorn, and ESnet networks. More frequent data collection
allows to incorporate larger number of inputs to the models
without causing long execution time as shown in Figure 5.
While convergence time in any network with one second data
collection frequency cannot be lower than four seconds, it
falls less than 0.6 seconds when data collection frequency is
increased to 100ms, reducing the execution time by more than
an order of magnitude. While sub-second throughput values
increases error rate of AR and Adaptive sampling methods to
more than 10%, the adaptive DNN model manages to keeps
its error rate below 8% in exchange of less than 0.1 second
difference in execution time.

B. Hyperparameter Tuning

In this section, we investigate the impact of the DNN model
parameters on error rate and execution time with the goal of
discovering the parameter setting that leads to low execution
time and error rate. Among many hyperparameters, we found
that the number of hidden layers and the number of maximum
iterations have the highest impact on the performance of the
model. Figure 5(a) shows that the execution time starts to
decrease as more hidden layers are added in exchange of
increasing error rate. Execution time is minimized when there
are four hidden layers which leads to highest error rate in
return. Since we want to choose the number of hidden layers
that yields low error rate and low execution time, we used
three hidden layers in all DNN models for all networks as
more hidden layers do not offer obvious gain when execution
time and error rate metrics are considered together. The three
hidden layers result in 12.23% error rate and 10.8 seconds
execution time on average for all networks experiments. While
we can achieve similar performance with 10 hidden layers as
well, higher hidden layers increases the cost training time of
the model.

Figure 5(b) illustrate error rate and execution time for
different values of maximum iteration. As with the number of
hidden layers, execution time starts to decrease when the max-
imum number of iterations is increased. However, error rate
is also increasing when higher values of maximum iterations
is used. While maximum iteration of 100 yields 10.2% error
rate with 12.7s execution time, these value become 13.4% and
9.5s for 3500 maximum iteration setting. As a result, we set
the value of maximum number of iterations to 1000 at which
point error rate is 12.1% and execution time is 10.8 seconds
for all networks.

As shown in Figure 2, the adaptive DNN model requires
the probability of an estimated convergence time value to be
greater than a threshold to avoid making poor decisions. As
expected, high threshold reduces error rate while increasing
execution time as shown in Figure 6. In addition to defining
a threshold, we also introduce Decrease Rate which aims
to adjust the threshold over time. Since it’s less likely for

74

 9

 10

 11

 12

 13

 14

 0 2 4 6 8 10 12
 9

 10

 11

 12

 13

 14

E
rr

o
r

R
a
te

 (
%

)

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

of Hidden Layers

Error Rate
Execution Time

(a) Hidden Layers

 9

 10

 11

 12

 13

 14

 15

 0 500 1000 1500 2000 2500 3000 3500
 9

 10

 11

 12

 13

 14

 15

E
rr

o
r

R
a

te
 (

%
)

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

of Iterations

Error Rate
Execution Time

(b) Maximum Iteration

Fig. 5. The impact of model hyperparameters on error rate and execution of the DNN.

 9
 10
 11
 12
 13
 14
 15
 16
 17
 18

 0 0.05 0.1 0.15 0.2 0.25

E
rr

o
r

R
a

te
 (

%
)

Decrease Rate

0.95
0.85

0.7
0.5
0.1

(a) Error Rate

 6
 7
 8
 9

 10
 11
 12
 13
 14
 15

 0 0.05 0.1 0.15 0.2 0.25

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Decrease Rate

0.95
0.85

0.7
0.5
0.1

(b) Execution Time

Fig. 6. The impact of model classifier threshold on error rate and execution of the DNN in XSEDE network.

a sample transfer to converge in three seconds, we set high
threshold value for 2-input DNN and gradually lower as time
passes. As an example, 0.95% initial threshold with 0.05%
decrease rate will use threshold of 0.95% for 2-input DNN,
0.9% for 3-input DNN, and 30% for 15-input DNN. The
decrease rate of 0% refers static threshold scenario where same
threshold value is enforced at every input level of the model.
We evaluated the impact of initial threshold and decrease rate
values in XSEDE network where error rate of the DNN model
showed the highest variation compared to the optimal one.

The initial value of 0.1% with 0% decrease rate reduces
execution time to less than 7 seconds while causing error rate
to be slightly lower than 18%. Compared to the performance
of AR in XSEDE, it is 0.5 seconds higher execution time
in return of 4% improvement in error rate. Moreover, 0.95%
static threshold yields less than 10% error rate while causing
execution time to rise above 14 seconds. As a result, one can
tune the threshold value to adjust desired level execution time
and error rate. For example, an online optimization algorithm
can define low threshold to run many sample transfer quickly
if less than 20% error rate is acceptable.
C. Analysis of Transfer Learning

One of the main drawbacks of machine learning models is
poor versatility when not configured properly. In an attempt to
increase adaptability of the DNN models that are trained in one
network condition in other networks, we adopted throughput
rate change as inputs to DNN models rather than absolute
values as discussed in Section IV such that the models will
not be biased toward absolute throughput values.

We evaluated the performance of models that are trained
in one network by testing in other networks as demonstrated
in Figure 7. The error rate for XSEDE network reaches to
24% when the model is trained with Pronghorn network logs.
However, the error rate for the other networks does not degrade
more than 1-2% when they are tested with the models that are
trained in different networks. On the other hand, execution
time reduces when the HPCLab and Pronghorn trained models
are used in any other network. This is an expected outcome
as HPCLab and Pronghorn transfers converge in less than
six seconds as shown in Figure 4. As an example, when
XSEDE-trained model is used to test XSEDE transfers, it takes
8 seconds to converge. On the contrary, Pronghorn-trained
model yields 5.5 seconds of execution time when tested against
XSEDE transfers. In overall, HPCLab and Pronghorn networks
exhibit similar behavior and does so XSEDE and ESnet net-
works. So, when HPCLab-trained model is used in Pronghorn
network, the results do not deviate much compared to the
performance of HPCLab-trained model. Similar observations
can be made between ESnet and XSEDE. Therefore, the
proposed model offers promising results for transfer learning
as long as the training dataset involves networks with similar
characteristics in terms of convergence behavior.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose an adaptive deep neural network
model to predict throughput of sample transfers with high
accuracy in short period of time. The proposed model pro-
cess instantaneous throughput reports to extract relationship
between consecutive throughput values and convergence time.

75

HPCLab ESnet Pronghorn XSEDE
Test Network

 X
SE

DE

 P

ro
ng

ho
rn

 E
Sn

et

HP
CL

ab
Tr
ai
ni
ng

 N
et
wo

rk
4.9 6.4 4.3 15.6

6.6 9.7 5.2 25.6

5.4 7.1 4.7 20.2

6.7 10.4 5.2 24.5
8

12

16

20

24

Er
ro
r R

at
e
(%

)

(a) Error Rate

HPCLab ESnet Pronghorn XSEDE
Test Network

 X
SE
DE

 P
ro
ng

ho
rn

 E
Sn

et

HP
CL
ab

Tr
ai
ni
ng

 N
et
wo

rk

7.3 7.5 7.4 8.0

5.3 5.2 5.3 5.5

6.3 6.7 6.1 6.8

5.4 5.6 5.8 5.7 5.5

6.0

6.5

7.0

7.5

8.0

Ex
ec
ut
io
n
Ti
m
e
(s
)

(b) Execution Time

Fig. 7. Heat map for the DNN models that are trained and tested in different networks show that the proposed solution supports transfer learning

The results in wide range of network, dataset, and configura-
tion settings reveal that the DNN models is able to perform
close-to optimal in almost all cases with less than 6.5% error
rate and less than 8 seconds sample transfer execution time.
Compared to the Autoregressive model, it yields more than
40% improvement with less than 10% increase in execution
time. We further evaluated the impact of gathering throughput
reports more frequently than current-reporting frequency (i.e.
one second) and observed more than orders of magnitude
improvement in execution time without degrading accuracy.
We also analyzed various hyperparameters and model config-
urations to show that the DNN model is versatile and able
to offer wide range of error rate and execution time trade-off
such that users can define their priority to lower error rate or
execution time. Moreover, we investigated applicability of the
models to new networks and discovered that it is transferable
without much of loss in error rate and execution time as long as
tested networks shows similarity to trained networks in terms
of convergence behavior.

ACKNOWLEDGEMENT

The work in this study was supported in part by the NSF
grant OAC-1850353.

REFERENCES

[1] M. Wolf, G. Eisenhauer, and P. Widener, “Rethinking streaming system
construction for next-generation collaborative science.” Sandia National
Laboratories (SNL-NM), Albuquerque, NM (United States), Tech. Rep.,
2016.

[2] J. Loveday, “The sloan digital sky survey,” Contemporary Physics,
vol. 43, no. 6, pp. 437–449, 2002.

[3] “Dark Energy Survey,” 2017, https://www.darkenergysurvey.org/.
[4] “Large Synoptic Survey Telescope,” 2017, https://www.lsst.org/.
[5] “A Toroidal LHC ApparatuS Project (ATLAS),”

http://atlas.web.cern.ch/.
[6] E. Arslan, B. Ross, and T. Kosar, “Dynamic protocol tuning algorithms

for high performance data transfers,” in European Conference on Par-
allel Processing. Springer, 2013, pp. 725–736.

[7] E. Yildirim, E. Arslan, J. Kim, and T. Kosar, “Application-level op-
timization of big data transfers through pipelining, parallelism and
concurrency,” IEEE Transactions on Cloud Computing, vol. 4, no. 1,
pp. 63–75, 2015.

[8] M. Dong, T. Meng, D. Zarchy, E. Arslan, Y. Gilad, B. Godfrey,
and M. Schapira, “{PCC} vivace: Online-learning congestion control,”
in 15th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 18), 2018, pp. 343–356.

[9] E. Yildirim, J. Kim, and T. Kosar, “Modeling throughput sampling size
for a cloud-hosted data scheduling and optimization service,” Future
Generation Computer Systems, vol. 29, no. 7, pp. 1795–1807, 2013.

[10] I. Alan, E. Arslan, and T. Kosar, “Energy-aware data transfer al-
gorithms,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. ACM,
2015, p. 44.

[11] E. Arslan and T. Kosar, “High-speed transfer optimization based on
historical analysis and real-time tuning,” IEEE Transactions on Parallel
and Distributed Systems, vol. 29, no. 6, pp. 1303–1316, 2018.

[12] H. Sapkota, B. A. Pehlivan, and E. Arslan, “Time series analysis for
efficient sample transfers,” in Proceedings of the ACM Workshop on
Systems and Network Telemetry and Analytics. ACM, 2019, pp. 11–
18.

[13] Y. Liu, Z. Liu, R. Kettimuthu, N. S. Rao, Z. Chen, and I. Foster, “Data
transfer between scientific facilities–bottleneck analysis, insights, and
optimizations,” in 2019 19th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGRID), 2019, pp. 122–131.

[14] E. Arslan, B. A. Pehlivan, and T. Kosar, “Big data transfer optimization
through adaptive parameter tuning,” Journal of Parallel and Distributed
Computing, vol. 120, pp. 89–100, 2018.

[15] M. S. Z. Nine, K. Guner, Z. Huang, X. Wang, J. Xu, and T. Kosar, “Big
data transfer optimization based on offline knowledge discovery and
adaptive sampling,” in Big Data (Big Data), 2017 IEEE International
Conference on. IEEE, 2017, pp. 465–472.

[16] A. Hanemann, J. W. Boote, E. L. Boyd, J. Durand, L. Kudarimoti,
R. Łapacz, D. M. Swany, S. Trocha, and J. Zurawski, “Perfsonar:
A service oriented architecture for multi-domain network monitoring,”
in International conference on service-oriented computing. Springer,
2005, pp. 241–254.

[17] P. Balaprakash, V. Morozov, R. Kettimuthu, K. Kumaran, and I. Foster,
“Improving data transfer throughput with direct search optimization,”
in Parallel Processing (ICPP), 2016 45th International Conference on.
IEEE, 2016, pp. 248–257.

[18] R. P. Karrer, “Tcp prediction for adaptive applications,” in 32nd IEEE
Conference on Local Computer Networks (LCN 2007). IEEE, 2007,
pp. 989–996.

[19] Z. Liu, R. Kettimuthu, I. Foster, and N. S. Rao, “Cross-geography
scientific data transferring trends and behavior,” in Proceedings of
the 27th International Symposium on High-Performance Parallel and
Distributed Computing. ACM, 2018, pp. 267–278.

76

