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Abstract—Transferring big data over Wide Area Networks
(WAN ) is challenging because optimization is dependent on the
specifics of multiple parameters. Network services, paths, and
technologies have different characteristics, including loss rate,
latency, and available capacity. Yet, frameworks currently used
to configure and orchestrate transfer systems, measure perfor-
mance, and analyze results have limited capabilities. We propose
a framework, DTN-as-a-Service (DaaS), for high-performance
network data transfers using and integration of techniques,
including virtualization, network provisioning, and performance
data analysis. This framework has a modular design for support-
ing multiple transfer tools, optimizers and orchestrators for the
data transfer environment, including Docker and Kubernetes. We
present a Jupyter based workflow for high-speed network data
transfer in data-intensive science and evaluate the performance of
the transfer with a simple programmable visualizer implemented
in the framework. This framework has been implemented as a
prototype at two recent SC supercomputing conferences. With
the increase in the number and the capacity of WAN links at
the conferences (multiple 100 Gbps WAN circuits), the chal-
lenges involved in setting up, testing, debugging, verifying and
running applications on high-performance systems connecting to
the conference SCinet WAN circuits also increase. The SCinet
implementation of the DaaS framework for the conference
community allowed users to control hardware, software, and
network infrastructure for high-speed network data transfer,
primarily for large scale applications. Through the evaluation
of the framework in our test setup, we demonstrated that NVMe
over Fabrics with TCP is twice as efficient compared to using
conventional TCP in high-speed NVMe-to-NVMe transfers. We
also implemented a 400 Gbps LAN experiment to evaluate the
DaaS framework.

Keywords-Data Transfer Nodes, NUMA, measurement, NVMe
over Fabrics, SCinet

I. INTRODUCTION

Transferring data among highly distributed locations is an
essential part of national and international collaborative sci-
ence research. Data Transfer Nodes (DTNs) play a critical role
in collaborative science, by enabling optimized performance
in transferring data at high-speed.

SCinet DTNs provide services to allow users to transfer
data over high-capacity networks, including over 100 Gbps
paths. SCinet DTN projects require a systematic approach to
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optimize, test, and monitor the performance of the data flows
over LANs and WAN:S.

In our previous study, we revealed the performance varia-
tions among different NUMA and storage configuration in a
specific local area network [1]. The study showed no single
optimization can address all of the different sets of transfer
environments to obtain optimal performance. Instead, each
DTN needs to be optimized for each specific transfer. It is also
essential to monitor the performance of DTNs to anticipate
potential failures that may impede high-performance network
data transfers.

This study complements the previous work by proposing a
framework for orchestrating and measuring the performance
of DTNs in high-performance network data transfers. The
framework can identify and optimize configurations in DTN
for OS-level virtualization technologies, orchestrating data
transfer, and evaluate the performance of the transfer.

Existing frameworks orchestrate high-speed transfers and
allow monitoring transfer results [2]-[4]. These frameworks
optimize the underlying system using a static set of parameters
or require system administrators to configure the system to
fully optimize the DTNs in limited environments.

Our framework complements the existing frameworks by
integrating OS, hardware, and software using a Jupyter [5]
controller to evaluate the performance of DTNs for high-
speed network data transfer in different containerization tech-
nologies, including Docker and Kubernetes [6]. Although our
framework can be used as the basis for a high-performance
network data transfer system, this framework focuses on the
ability to test different optimizations in the system for high-
speed data transfers and help system administrators examine
optimization parameters for a specific transfer. The modular
design of the framework allows integrating a broader set of op-
timizations, configurations, transfer tools, evaluation methods,
and other variables. We describe the components of the DaaS
framework and how they can be implemented, and we present
our example implementation. We evaluate the framework by
measuring the performance of NVMe over Fabrics (NVMEOoF)
with TCP over 100 Gbps WANs and discuss the implications
of the results.

By providing the framework for testing high-performance



network data transfers, we innovate in techniques for mea-
suring performance of DTNs systematically and show how to
analyze the result and to optimize for a specific transfer.

Our framework integrates both hardware and software opti-
mization, configuration, testing, and evaluation of high-speed
network data transfer using Jupyter, a workflow manager.
Users of the DaaS framework can specify their workflow in
their Jupyter controller. The controller can call modules to
perform tasks that fit their needs.

Our framework ensures consistent performance of high-
speed data transfers for data intensive science. It is out of the
scope of this study to develop another transfer orchestrator or
transfer protocols for WAN. Instead, we focus on integrating
different optimizations and analyzing their impact on the un-
derlying system using a framework to test and monitor DTNSs.
We are building our framework to support existing transfer
orchestrators and to allow testing these transfer services with
specific optimizations the framework provides. Furthermore,
because of the flexibility of this design, we anticipate this
framework to assist in migrating such systems from static con-
figurations and deployments to dynamic models that enhance
optimizations by adjusting to particular circumstances.

In the next section, we provide background knowledge
related to our study. We provide an overview of relevant work
in section III and the design rationale of the framework in
section I'V. We describe the implementation of our prototype of
the DaaS framework in section 3. In section VI, we provide our
evaluation and discussion. We conclude our study in section
VII and describe future works in section VIII.

II. BACKGROUND

A. DTNs

Data Transfer Nodes (DTNs) are systems specifically de-
signed for high-performance network data transfers. General-
ized systems cannot be used for these types of services. DTNs
can be built with different hardware and network capabilities
to allow for sharing data among DTNs in WAN. Typically
DTNs run software tools for high-speed data transfers between
remote endpoints, e.g., GridFTP [7], Globus [3] or XrootD [4].

DTNs are essential components for Science DMZs [8],
which allow for segments of networks to be optimized for large
capacity transfers. DTNs are typically connected to Science
DMZ switch/routers and serve data to both local site and
remote sites over the special circuit over LANs and WANS.

To achieve high-performance network data transfers in
WAN with DTNs, the DTNs need to be optimized for the
specific transfer. This optimization includes specialized tuning
and configuration of hardware, firmware, BIOS, OS, and
application-level tuning as well as using the transfer protocol
optimized for the high-speed network data transfer.

B. DTN-as-a-Service

DTNs are commonly used in diverse scientific implemen-
tations in different large scale research facilities, such as
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National Lawrence Berkeley Laboratory!, DOE?, Argonne
National Laboratory® and those at research universities.

Each of the DTNs has different hardware, network con-
nectivity, workloads, and software used for different projects.
Consequently, no standard set of DTNs can be assumed. It
is necessary to anticipate a heterogeneous environment. To
support these diverse implementations, our DTN-as-a-Service
provides a framework that helps to implement tools to optimize
them for specific needs and establish performance baseline of
the DTNs. We define a science workflow in a DTN and map
the workflow with our framework to resolve DTN performance
issues in high-performance network data transfers.

The DTN-as-a-Service allows a user to measure the perfor-
mance of DTNs using an interactive Jupyter controller. The
controller invokes functions to set up, optimize, and measure
high-performance network data transfers. The controller also
provides a function to evaluate and monitor each transfer.

C. SCinet DTN

Since SC17, the DaaS project has been partnering with
technology companies and the SC community to define re-
quirements, select technology components, implement new
DTN functions and features, integrate new hardware and
software stacks, and reach out and support to additional SC
community users. These activities resulted in the development
of a SCinet DTN-as-a-Service framework that meets the
specific need for SCinet DTNs. A SCinet DTN was first
implemented as an integrated prototype service to set up, test,

Thttp://scs.Ibl.gov/dtn
Zhttps://fasterdata.es.net/science-dmz/DTN/
3https://www.alcf.anl.gov/user-guides/data-transfer



tune, verify, debug, monitor and run data-intensive applica-
tions on high-performance systems that connect to the SCinet
WAN circuits and other SCinet high-performance networks,
including the conference WAN. This service demonstrated that
it enabled high-performance network data transfers for data-
intensive science projects before and during SC conferences.
The SCinet DTN provides integrated infrastructure hardware,
software stacks, and continuous DevOps integration to enable
researchers to transport their big science data over network
quickly, reliably, and straightforwardly.

Encouraged by the success of the prototype, we are now
transitioning the SCinet DTN service to become a standard
SCinet offering for future SC supercomputing conferences.
The DaaS framework is implemented as shown in Figure 1.
A key point is that DaaS can be implemented not only as
a single static service, but as a flexible service can adjust
dynamically to the requirements of multiple applications. DaaS
is a platform that can support many flavors of a transfer service
to ensure it can meet the precise individual requirements of
the researchers and demonstrators who use them to transfer
large amounts of data over high-performance networks.

D. OS-level virtualization

This approach uses OS-level virtualization, which allows
multiple user-space instances to share a kernel running on a
host. Compared to full virtualization, OS-level virtualization
reduces the overhead by using a host OS system call from the
user-space instance.

OS-level virtualization is used to provide an isolated envi-
ronment for different applications. Different technologies exist
to implement OS-level virtualization, such as LXC, Docker [9]
and Singularity [10].

Some orchestrators provide a platform for managing OS-
level virtualization [6]. These orchestrators control selection
of virtualization technologies, allocation of resources, and
deployment of user instances to specific hosts and networks.

E. NUMA

Non-Uniform Memory Architecture [11] allows multiple
processors in a system to access the main memory simultane-
ously. The NUMA architecture reduces the memory access
time for multi-processor systems when each processor ac-
cesses the local memory allocated from the main memory but
causes overhead when accessing memory allocated for other
processors because of the nature of cache-coherency.

NUMA in DTNs allows faster data processing with multi-
processors operate on their local memory when applications
run in parallel with each other. However, the applications need
to access foreign memory through the processor interconnect
if the NIC is located at the foreign NUMA node.

In high-speed WAN transfer, transfer applications may
benefit from NUMA by avoiding use of foreign memory by
binding processes to the processor the network interface is
connected to. On the other hand, it is possible to use the other
processors when there are not enough processing resources
available in the local processor.

FE TCP

TCP [12] is the most popular transport layer protocol used
on the internet. It provides reliable transport between end hosts
using sliding window and acknowledgments. Many applica-
tions rely on TCP for its reliability and ordered delivery.

TCP uses congestion control to achieve max-min fairness
among the flows in a shared path. It increases the congestion
window size for each flow to increase the size of segments
on-the-fly when the link is underutilized. TCP reduces the
congestion window size when there is a signal for congestion,
usually a packet loss detected by the sender.

This behavior allows TCP flows to avoid congestion col-
lapse when many flows share a network path. At the same time,
it may lead to under utilization of the network capacity of a
long fat pipe when the path loses packets without congestion.
Because the congestion window size increases when the sender
receives an acknowledgment, it takes a longer time for flows
in a high-latency path to recover the congestion window after
each packet loss.

G. NVMe over Fabrics

NVMe over Fabrics (NVMeoF) [13] exports an NVMe
interface over networking fabrics by mapping NVMe com-
mands to transport layer protocols. NVMeoF allows a local
machine to issue NVMe commands to storage devices attached
remotely, enabling it to provide block devices to the OS and
applications running on the local machine.

Unlike iSCSI, NVMeoF does not need to translate SCSI
command for NVMe devices. Instead, the NVM subsystem
forwards the NVMe command directly to the storage devices.

NVMeoF can be implemented in many different network
fabrics, such as Fibre Channel, Infiniband, RoCE, and TCP/IP.

III. RELATED WORKS

In this section, we review the related literature and how our
study complements the related works.

Several studies proposed a framework for orchestrating
high-speed data transfer in WAN. Globus Striped GridFTP
Framework [7] orchestrates high-speed network file transfers
and manages accessing, processing, and security. The resource
management of the framework relies on Globus Toolkit, which
provides broader services including execution management,
web information services, and the discovery of services.
GridFTP uses Globus eXtensible I/O (XIO) system [14] to
implement its transfer protocol, supporting FTP and UDT [15].

Big Data Express [2] provides a scalable system architec-
ture and transfer orchestration for high-speed WAN transfer
with resource management and modular transfer protocols.
It consists of service scheduler, transfer protocol, network
provisioning, and authentication.

These frameworks focus on orchestrating data transfer,
optimize the underlying system and transfer protocol, resource
management, and developing high-speed transfer protocol. Our
framework complements these frameworks with the ability
to test systems with different hardware to component level,
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Fig. 2. Design of SCinet DTN-as-a-service framework

OS, and application settings for DTNs with different OS-
level virtualization. Furthermore, the framework can imple-
ment orchestrators for existing transfer applications to benefit
from their performance. Our framework is not tied with a
single transfer application; instead, it focuses on orchestrating
different systems and compare each other to achieve better
performance in high-performance network transfers.

Kubernetes [16] provides a framework for managing the
deployment of user-space instances to a cluster of systems
hosting OS-level virtualization techniques. Our framework sets
up an environment for transfer applications in Kubernetes
and other orchestrators. Our framework allows configuring the
most efficient networking environment with OS-level virtual-
ization such as using host networking* in Docker and Ku-
bernetes. The framework also orchestrates transfer protocols
to establish a connection between two instances running in
different OS-level virtualization techniques.

The DaaS framework has a modular design for easy inte-
gration with existing data-intensive science. The framework
can be integrated with many SCinet DTN projects to provide
better performance and analysis of DTNs.

IV. DESIGN

Our framework is designed for systematic testing of SCinet
DTNs and to comply with a SCinet DTN science workflow

“https://docs.docker.com/network/host/

NUMA Scheme

0OS_Controlled Sender ineConf
BIND_TO_NUMA
BIND_TO_CORE
— Nég‘fﬁ Jupyter controller
Disk config Container Type
INDIVIDUAL e _ _
MD_RAID Disk Manager Receiver:MachineConf
ZFS_RAID
— NUMA
Test:TestCase CPU Init—
Container type
(o] 1 test
-Optimize-|
— Test Loader ) Transfer test
Optimizer procedure
Provision-|
Optimization
Network Provision ——Transfer
OpenNSA
Kubernetes
Docker Extract Draw
Server Nuttcp
Thread | SSH le— Monitor Manager
ort Thread i
P port Prometheus Visualizer
InfluxDB
Server iperf3
Thread Il SSH < J
dport Thread
doort
Fig. 3. Overview of SCinet DTN-as-a-service implementation

shown in the figure 2. Our framework consists of system
optimization and network provisioning and result-analysis
modules. Each of these modules exposes their API for a
testing module specifying a sequence of tests to evaluate the
performance of transfer.

Each module is mapped to a science workflow for DTN, as
shown in Figure 2. Modules mapped into the science workflow
provide APIs for a testing script. The testing script specifies
which modules and parameters to use in each step.

The system optimization module provides functions to
optimize systems for high-performance WAN transfer. This
module is prepared for system administrators with an elevated
privilege to prepare an optimal environment to experiment
with high-performance network transfers. These optimizations
include kernel parameters, NIC ring buffer size, IRQ optimiza-
tions, and NVMeoF target and host configuration.

The network provisioning module provides functions to
establish a path between two DTNs on the WAN. This
module includes configuring the network for high-performance
data transfers in cluster networking and requires deploying
controllable network devices along the path.

The transfer module translates standard API function calls
into execution functions for each transfer protocol. This func-
tion includes locating data, executing transfers, and verifying
the transferred data in the destination.

An evaluation module provides functions that extract trans-
fer data from monitoring systems and prepare data for analyz-
ers. The module provides API to query data from monitoring
systems and output results to feed to visualization.

A typical data transfer procedure follows the science work-
flow in SCinet DTNs shown in the figure 2.

This section describes our prototype implementation of the
framework for SCinet DTNs. Figure 3 shows an overview of
the implementation detail.

V. IMPLEMENTATION

A. Init modules

Init modules identify system hardware configuration and
provide APIs for transfer modules. A Machineconf module is



implemented to scan NUMA configuration, specify container
type and initialize. Disk Manager scans Storage configuration
and provides API to format, mount, and build RAID.

These modules include a system setup tool to configure the
NVMeoF target and initiator on the SCinet DTNs.

B. Optimization modules

The system optimization module consists of several tests
and optimizers. Each test looks for values from kernel TCP
buffer sizes, the Linux traffic control, Maximum Transmission
Unit (MTU), CPU governor profiles, default Linux system
services, NIC drivers, and PCl-express link status to check
if they are optimal for high-speed WAN transfer.

These tests are implemented as a python unittest TestCase
object and are called from a python TestLoader class and
output the result of the test. The main module will accept the
network interface names as parameters and set the baseline
optimization by default. The test cases can be loaded from a
testing script, and individual optimizer functions can be called
from the main optimization module.

C. Network Provisioning Modules

The network provisioning module establishes a high-
performance network path between DTNs to enable network
data transfers. This module is responsible for identifying
DTNs in the framework, finding a path between DTNs, and
requesting a high-speed path for network data transfers.

The modules include cluster network orchestrator to set host
network on the containers running in Docker and Kubernetes
to avoid bottlenecks when using overlay network. These
modules also include an NSI-compatible client to set up layer
2 circuits between two hosts running the framework. These
modules require additional configuration to allow it to connect
to the external network management system and communicate
to virtualization orchestrators.

D. Transfer modules

Transfer modules implement common API for different
transfer protocols for the testing script. The prototype imple-
mentation contains nuttcp and iperf3 module that can be used.

Transfer modules are NUMA aware and implement CPU
core-binding schemes for the transfer tools.

1) Pinned to Core scheme where each transfer process is
bounded to a specific core in the local NUMA node.

2) Pinned to NUMA scheme where each transfer process
is bounded to local NUMA node using numactl, which
allows the O/S to schedule the process on any core in
that processor but not the other.

3) System Balanced scheme where each transfer process
is not bounded to any processor so the O/S can schedule
the process in any online processor core in the system
with the Completely Fair Scheduler (CFS).

We chose to implement transfer modules for iperf3
(memory-to-memory), nuttcp (NVMe-to-NVMe) and dd

TABLE 1
PARAMETERS AVAILABLE FOR TESTING PROCEDURES

Parameter Description
Sender Machineconf for sender
Receiver Machineconf for receiver
num_thread Number of transfer threads to use
cport_num Control ports to use
dport_num Data ports to use
disk_conf NVMe configuration scheme used in the transfer
scheme NUMA scheme to use
src_path Path to directory for files to send in sender
dst_path Path to directory for files to receive in receiver
file_size Size of files to create in src_path

(NVMeoF NVMe-to-NVMe) because of their zero-copy trans-
fer support and they consume fewer resources compared to
other tools, such as bbcp and GridFTP.

The transfer module supports two types of integrity checks
on each file transferred; file size and checksum. When there is
a mismatch between the original and the transferred file due to
lost connection or corrupted during transmission, it adds the
file to the retransmission queue and retransmits the file.

Currently, orchestrating the transfer is done using paramiko,
an SSH library for python for nuttcp and iperf3 servers. The
library allows users to authenticate against the SSH server.
The performance of each transfer depends on how efficient
the underlying transfer tool and also the kind of congestion
control the tool uses.

E. Evaluation Modules

The evaluation module implements extracting data from the
monitoring system and visualization of the data. The current
implementation supports Prometheus and influxdb using REST
for data source through Monitor Manager module. Metrics,
including processor, network, and NVMe utilization can be
extracted from the data source and visualized using Visual-
izer. Extracted data is grouped using their NUMA binding
and NVMe configuration schemes and used in the visualizer
module for analyzing the statistics of the transfers. These data
can also be evaluated using the external analysis modules.

F. Testing procedures

A testing procedure specifies machines to use, storage setup,
transfer size, transfer protocol, and monitoring type. Table I
shows the test specification and its variables.

Machine details are specified using the Machineconf object,
which contains machine name, NUMA node number, IP
address, interface name, and RSA key. The procedure module
implements a function that translates testing specifications into
scripts that configure storage, creates synthetic files, orches-
trate servers, and export data using the modules described in
the previous subsections. Evaluation module extracts OS and
hardware metrics during the transfer and visualizes the data.

In the following section, we evaluate the framework design
using a prototype we developed. We performed experiments to
show how to optimize the system, choose the transfer protocol,
and evaluate the outcome of the transfer using our prototype
implementation of the framework.
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TABLE 11
SYSTEM SETUP FOR 400 GBPS LAN TRANSFER

Sender 1,2 Reie;ver Receiver 3 Receiver 4
AMD Intel(R) Intel(R) Intel(R)
EPYC 7371 Core(TM) Xeon(R) Xeon(R)
CPU 16-Core 17-7800X Silver 4114 Gold 5115
Processor CPU @ CPU @ CPU @
3.50GHz 2.20GHz 2.40GHz
DDR4-2666 | DDR4-2666
Memory 126 GB 64 GB DDR4-2666 96 GB
NIC Mellanox Technologies ConnectX-5
oS GNU/Linux 5.2.0

VI. EVALUATION
A. Optimization

To support 400 Gbps SCinet projects, we evaluated the
optimization provided from the framework and measured the
performance of memory-to-memory transfers in a 400 Gbps
LAN with multiple machines. We prepared six DTNs (two
senders and four receivers) to transfer 400 Gbps from senders
to receivers. Two senders have two 100 Gbps NICs where
receivers have one 100 Gbps NIC. Table II shows the detail
of each DTN used in this experiment.

We used a Dell Z9332F-ON to connect DTNs and set up two
VLANSs with a 400 Gb/s loopback connecting them. Figure 4
shows the network used in the evaluation. Senders sent TCP
segments to for receivers using 32 iperf3 streams using our
framework through four 100 Gbps connections.

We used the SCinet DaaS framework to optimize the
DTNs to maximize their throughput as described in section
Optimization modules. Through this optimization, we show
our framework can optimize systems with different hardware
for 100 Gbps transfers before using them for transferring over
WANS to eliminate local bottlenecks.

Figure 5 shows the throughput of each 100 Gbps connection
and 400 Gbps loopback connection. We were able to reach an
average of 92 % utilization of 400 Gbps using four 100 Gbps
connections for 300 seconds.

Each connection utilized between 90 to 94 % of 100 Gbps
link, however, we saw between 0 to 500 packets lost each
second. Through the monitoring system, we noticed that the
receiver 1 and receiver 2 had less number of CPU cores and
some of these cores are overloaded, leading to drop packets
due to lack of resource to handle them.
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B. WAN transfer

To evaluate the prototype implementation of the framework,
we decided to emulate a WAN connection between SCinet and
an international remote site. We set up two DTNs in Ottawa,
Canada, and Chicago, USA. Figure 6 shows the experiment
network used and Table III shows the setup of DTNs used in
the experiment. Two DTNs are connected through StarLight
SDX and Ciena’s Network Research Platform providing 100
Gbps end-to-end network capacity. The two DTNs are sepa-
rated by 2 Waveserver transponders which provide only Long
Haul transport OTN protocol. Each DTN is tuned for 100
Gbps network data transfers using the optimization module,
as stated in V-B.

The objective of this evaluation is to test the functionality
of the framework in a WAN environment which resembles
a SCinet DTN WAN service connection. This experiment
allows us to test features, usability, and performance of our

TABLE III
SYSTEM SETUP FOR 100 GBPS WAN TRANSFER

Sender Receiver
CPU 2 * Intel(R) Xeon(R) Gold 6136 CPU @ 3.00GHz
Memory DDR4-2666 192 GB
NIC Mellanox Technologies MT27800 Family [ConnectX-5]
NVME 2 * Kingston DCP1000 8 * Samsung SSD 960
(4 * 800 GB each) PRO 2TB

oS GNU/Linux 5.1.0.rc4
File System XFS [

XFS
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framework, which we will deploy in the SCinet DTN.

In a preliminary test, we ensured there were no bottlenecks
in the network capacity. We used iperf3 to test available
network capacity and achieved 98 Gbps memory-to-memory
transfer using the optimizer module in our framework.

From the previous findings, we revealed that using XFS in
individual storage devices provides faster performance than
MD RAID and ZFS in 100 Gbps network data transfer [1].
We also found the primary bottleneck for 100 Gbps NVMe-
to-NVMe transfers is NVMe 1/O speed. To remedy this, we
installed faster NVMe devices in the receiver to increase
NVMe write speed and we manually trimmed the mounted
volumes before each transfer.

Along with nuttcp, we used NVMeoF to demonstrate the
evaluation function and post-analysis the framework provides.

In each setup, we transferred four terabytes of data in total
to avoid the effects of NVMe cache in the storage controller.

Figures 7 and 8 shows the average completion time of
nuttcp transfer and NVMeoF with TCP during the experiment,
generated from the framework.

NVMeoF with TCP shows significantly faster completion
time. It is more than two times faster than nuttcp with low
utilization transfer. In high utilization transfers, the completion
time gain was smaller but still more efficient. The main reason
for this result is the NVMeoF has less overhead and better
CPU load management compared to the nuttcp server. As
shown in figures 9 and 10, NVMeoF has less average CPU
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Fig. 9. Average CPU core load of nuttcp in low utilization transfer in System
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Fig. 10. Average CPU core load of NVMeoF in low utilization transfer in

System Balanced Scheme

usage than nuttcp, leading to higher overall throughput. In
contrast, nuttcp utilizes 100% of CPU cores and throttles the
overall transfer most of the time.

Throughout the figures, one can easily compare the load
distribution of different transfer tools during the experiment
and notice possible bottleneck of some CPU cores.

We noticed a CPU bottleneck during low utilization transfer
with nuttcp. The two CPU cores were maximized most of the
time during the experiment with nuttcp with low utilization
transfer, which is the primary bottleneck. In high-utilization
transfers, we did not see a much difference because the
bottleneck was moved to the NVMe devices.

Interestingly, we observed only a small variation in com-
pletion times during the experiment, showing each transfer
was consistent in terms of their throughput. The consistent
result shows the framework’s ability to set up a consistent
experiment environment. However, we noticed longer comple-
tion times in the Pinned To NUMA scheme using NVMeoF
in low utilization transfers. The throughput of the Pinned
To NUMA technique was lower than other schemes slightly
but significantly, causing the overall transfer to take longer.
This behavior suggests optimization challenges exist on the
NVMeoF over the TCP module in the Linux Kernel.

In high utilization transfers with NVMeoF with TCP, the
Bind to NUMA and Bind to Core schemes show longer
completion time slightly, due to the CPU bottleneck. These
schemes limit the number of available CPU cores compared
to the System Balanced scheme. This leads to slower perfor-



mance of the two schemes compared to the System Balanced
scheme, yet it is faster than the nutfcp because the overall
overhead is smaller.

VII. CONCLUSION

In this section, we conclude our study by revisiting the its
experimental results. We found the DaaS framework can set up
and orchestrate high-speed network data transfers and analyze
transfer data from the experiments.

We proposed and tested the DaaS framework for orches-
trating high-speed data transfers between DTNs. We showed
the framework can set up and optimize DTNs for a spe-
cific transfer and allow experimenting with different transfer
environments. Different transfer modules provide APIs to
use transfer applications within the framework with different
NUMA schemes. The DaaS framework also allows configuring
NVMeoF and transferring data from remote NVMe devices.

We implemented a prototype of the framework and evalu-
ated high-performance network data transfers using NVMeoF
over TCP in WAN. The evaluation shows the DaaS framework
can establish a stable high-speed network data transfer exper-
iment and that it is capable of identifying transfer bottlenecks
from the monitoring modules. We will implement a version
of the DaaS framework for SCinet 2019 to provide DaaS for
national and international collaborations.

The framework does not provide the optimal solution for
every possible DTNs and its transfers. It is a framework to
help to optimize, test, and evaluate different configurations to
find out bottlenecks of high-speed network data transfer.

VIII. FUTURE WORKS

The SCinet DTN-as-a-Service framework established a
baseline performance for DTNs. Through its open and modular
design, we plan to keep integrating new technologies such as
400 Gbps LAN, a planned 400 Gbps WAN, and NVMeoF
with TCP in WAN into the framework.

This work can be extended in many directions to explore
the capabilities of the framework further. We are working on
integrating Globus into the framework to allow federation of
users to access their existing resource. We plan to integrate
more transfer protocols in the framework by implementing
transfer modules for GridFTP and mdtmFTP.

To further evaluate the performance of DTNs, we plan to
add support for different TCP congestion control algorithms,
including TCP BBR [17]. As NVMe over Fabrics with TCP
provides direct access to the remote NVMe directly, we plan
to include the evaluation of different storage systems into the
future development of the framework including ZFS and Intel
Virtual RAID on CPU°.

We also plan to include more OS-level virtualization and
network orchestrators to find suitable configuration required
for the optimum performance autonomously. Comparing the
performance of different overlay networks provide insight into
cloud-based networking services.

Shttps://www.intel.com/content/www/us/en/software/virtual-raid-on-cpu-
vroc.html
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