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Abstract—1 Congestion control algorithms for data networks
have been the subject of intense research for the last three
decades. While most of the work has focused around the
characterization of a flow’s bottleneck link, understanding the in-
teractions amongst links and the ripple effects that perturbations
in a link can cause on the rest of the network has remained much
less understood. The Theory of Bottleneck Ordering is a recently
developed mathematical framework that reveals the bottleneck
structure of a network and provides a model to understand
such effects. In this paper we present G2, the first operational
network optimization framework that utilizes this new theoretical
framework to characterize with high-precision the performance
of bottlenecks and flows. G2 generates an interactive graph
structure that describes how perturbations in links and flows
propagate, providing operators new optimization insights and
traffic engineering recommendations to help improve network
performance. We provide a description of the G2 implementation
and a set of experiments using production TCP/IP code to
demonstrate its operational efficacy.

Index Terms—Traffic engineering, congestion control, bottle-
neck structure, max-min

I. INTRODUCTION

Modern computer networks are constructed using a variety
of components with the system-level objective to achieve
maximum overall flow-performance at the minimum opera-
tional cost. For example, the congestion control algorithm
part of the TCP protocol tries to contribute to the system-
level goal by maximizing network utilization while achieving
some form of fairness among competing flows. In this context,
it is well-known that the performance of a flow is uniquely
determined by the capacity of its bottleneck link and its
end-to-end round trip time (RTT) [1] [2] [3]. As observed
in [4], it is however challenging to identify the complex
interactions among the bottleneck links. For instance, if a
link’s effective capacity is altered—e.g., either logically by
reallocating circuits, physically by performing link upgrades,
or simply through the action of new flows passing through
the link or the termination of existing ones—how does such
perturbation propagate through the network and what effective

1Work partially funded by the Department of Energy under contract DE-
SC0019523. Some of the algorithms are patent pending.

impact it has on the rest of the links? Because such hidden link
interactions can significantly impact the overall performance of
a network, existing systems that lack a precise understanding
of their cause and effects fall short in helping operators
optimize network performance.

The Theory of Bottleneck Ordering, as recently proposed
by the authors in [5], has shown that bottlenecks in a dis-
tributed network interact with other bottlenecks by following
a specific digraph structure called the bottleneck structure. By
revealing the collective behavior of the bottlenecks, the theory
provides insights into the inherent topological properties of
a network. In particular, the bottleneck structure reveals the
bounded regions in the network that a perturbation on a link’s
effective capacity can influence. Such information enables a
new methodology to analyze bottleneck and flow performance
that takes into account the global topological structure of the
network. For instance, this mathematical framework allows to
identify flows that, while relatively low in throughput, they
have a high-negative impact on the performance of the network
as they traverse hotspot links that have a large region of
influence.

In this paper, we introduce the G2 optimization framework,
the first network operational system that uses the Theory of
Bottleneck Ordering to learn the complex bottleneck structure
of networks and enable operators to optimize their perfor-
mance. G2—which stands for Gradient Graph—generates the
collective bottleneck structure of a network and presents it in
an interactive graphical user interface. Among other features,
G2 allows network operators to:
• Analyze the subtle impacts of different congestion control

algorithms (e.g., TCP BBR [2] or TCP Cubic [6]) onto the
overall network performance.

• Recommend traffic engineering and capacity planning ac-
tions by identifying and quantifying the regions in the net-
work that are influenced by the performance of bottlenecks
and flows.

• Generate an optimal baseline (currently based on the max-
min optimality condition [7], albeit not limited to it) to help
optimize dynamic traffic policing on non-compliant flows.
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• Analyze the impact of the bottleneck structure on a net-
work’s convergence to its steady-state, providing insights
onto the stability of the underlying congestion control algo-
rithm.
In our experiments, we deploy the G2 framework to work

with two types of networks: (1) Networks emulated us-
ing Mininet [8] and (2) real-world Research and Education
Networks—ESnet Testbed [9], and SCinet [10]. Using the
integration with Mininet networks, we run experiments at a
scale up to 1000 concurrent traffic flows to show that G2 can
generate optimization decisions for a variety of network con-
figurations. Since the implementation of these network con-
figurations and extensions to Mininet are useful for scientific
research, we have made the G2-Mininet codebase available
[11] to the research community under the BSD license.

Our contributions can be summarized as follows:
1) We propose and implement the G2 network optimization

framework that uses the Theory of Bottleneck Ordering
to understand the complex interactions of bottlenecks and
enables operators to improve the efficiency of networks.

2) We provide an easy-to-use API for a variety of network
technologies to allow rapid integration of G2 with real-
world production networks.

3) Using a variety of Mininet-based network architectures,
and a scale of up to 1000 flows, we evaluate the efficacy
of G2 in providing optimization decisions, including (1)
identification of elephant flows, (2) identification of optimal
link upgrades, and (3) using the framework as a baseline
to optimize the policing of non-compliant flows.

4) We perform the integration of G2 with two real network de-
ployments, namely the ESnet Testbed [9] and SCinet [10],
and show that G2 can feasibly work with real-world, large-
scale networks.

5) We develop a user-interface that allows operators to use
the G2 framework to optimize the underlying network.

II. BRIEF SUMMARY OF THE THEORY OF BOTTLENECK
ORDERING

The Theory of Bottleneck Ordering is a new mathematical
framework recently introduced in [5] that reveals the bottle-
neck structure of data networks. This structure takes the form
of a digraph and reveals (1) the hidden relations that exist
between bottleneck links and (2) the bounded regions in the
network that bottlenecks can influence. For instance, given the
bottleneck structure of a network, one can infer whether the
performance of a bottleneck will affect another bottleneck (and
to which degree) or how a variation in the effective capacity
of a bottleneck will affect other bottlenecks.

In this section, we only provide a summary of the Theory
of Bottleneck Ordering necessary to understand the network
operational concepts presented in this paper. For a full descrip-
tion of the mathematical framework, refer to [5].

A. Simple Example of Bottleneck Structure

Consider the network configuration illustrated in Fig. 1-
a, where links are represented by circles and flows by lines

Fig. 1: A 2-level bottleneck structure with direct precedence.

traversing the links. Each link li has a capacity ci bps while
each flow fi transmits data at a rate ri bps. Since the capacity
of link l1 is lower than the capacity of link l2, c1 < c2, flows f1
and f2 must be bottlenecked at link l1. Assuming without loss
of generality a fair allocation between these two flows, their
transmission rate must be split equally: f1 = f2 = c1/2 = 1/2
bps. Now it is easy to see that the transmission rate of flow f3
is equal to the remaining capacity of link l2 after flow f2’s rate
is subtracted from it: f3 = c2 − f2 = 3/2. It is also common
[7] to define the fair share value of a link li, denoted as si, as
the transmission rate of any of the flows that is bottleneck at
link li. Thus, in this example we have s1 = 1/2 and s2 = 3/2.

While this network configuration is very simple, it helps
to introduce some subtle but relevant relationships that exist
amongst links. For instance, it is easy to see that the derivative
of s2 with respect to c1 is 0.5, ∂s2/∂c1 = 0.5, while the
derivative of s1 with respect to c2 is 0, ∂s1/∂c2 = 0. That
means the performance of link l2 depends on the performance
of link l1, but not vice-versa, thus revealing a notion of
hierarchy or ordering between these two bottleneck links.
This leads to the bottleneck structure illustrated in Fig. 1-b,
a digraph where each vertex represents a bottleneck link and
each directed edge from a link l to a link l′ implies that the
performance of link l′ depends on link l, but not vice-versa.

The Theory of Bottleneck Ordering mathematically charac-
terizes these subtle relationships amongst links, revealing for
any arbitrary network configuration its bottleneck structure.

B. The Bottleneck Precedence Graph (BPG) Algorithm

A key component of the proposed network optimization
framework is the construction of the bottleneck structure itself.
For this objective, we will be using the Bottleneck Precedence
Graph (BPG) algorithm introduced in [5]. In this section,
we provide a high-level description of this algorithm and an
example to help interpret it.

Algorithm 1 presents the BPG algorithm and Table I pro-
vides a summary of the parameters and variables that it uses.
The BPG algorithm is based on the water-filling algorithm
introduced by Ros-Giralt and Tsai in [12], which provides a
generalization of the original algorithm by Bertsekas and Gal-
lager [7] by allowing bottleneck links to converge concurrently.
In addition to revealing the order in which links and flows
converge to their steady-state regime in distributed congestion
control algorithms, this parallelization property provides the
key mechanism to construct the bottleneck structure of the
network, as demonstrated in [5].
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TABLE I: Notations used in the BPG algorithm [5].

Variable Definition
L Set of links in the input network
F Set of flows in the input network
Fl Set of flows going through link l
cl Capacity of link l
skl Fair share of link l at iteration k
uk
l Upstream fair share of link l at iteration k
Lk Set of unresolved links at iteration k
Ck Set of converged flows at iteration k
Dk

l Set of direct precedents of link l at iteration k
Ikl Set of indirect precedents of link l at iteration k
Rk

l Set of relays of link l at iteration k
B Set of bottleneck links
rf Rate of flow f
\ Set minus operator

Algorithm 1 BPG
1: L0 = L; C0 = {∅};
2: D0

l = I0l = R0
l = {∅},∀l ∈ L;

3: k = 0;
4: while Ck 6= F do
5: skl = (cl −

∑
∀f∈Ck∩Fl

rf )/|Fl \ Ck|, ∀l ∈ Lk;
6: uk

l = min{sk
l′ | Fl′ ∩ Fl 6= {∅}, ∀l′ ∈ Lk}, ∀l ∈ Lk;

7: for l ∈ Lk, skl = uk
l do

8: rf = skl ,∀f ∈ Fl;
9: Lk = Lk \ {l};

10: Ck = Ck ∪ {f, ∀f ∈ Fl};
11: for l′ ∈ Lk,Fl′ ∩ Fl 6= {∅} do
12: Dk

l′ = D
k
l′ ∪ l;

13: end for
14: for l′, lr ∈ Lk,Fl′ ∩ Flr 6= {∅}, sklr < sk

l′ do
15: Rk

l′ = R
k
l′ ∪ {lr};

16: end for
17: for l′ ∈ Dk

lr
\ Dk

l , lr ∈ R
k
l \ D

k
l do

18: Ikl = Ikl ∪ {l
′};

19: end for
20: end for
21: Lk+1 = Lk; Ck+1 = Ck;
22: Dk+1

l = Dk
l ; I

k+1
l = Ikl ;R

k+1
l = Rk

l ;
23: k = k + 1;
24: end while
25: B = L \ Lk;
26: P = {Dk

l , ∀l ∈ B} ∪ {I
k
l , ∀l ∈ B};

27: return 〈B,P〉;

The outcome of the algorithm is the BPG graph represented
with the tuple 〈B,P〉, where:

• B is the set of vertices, corresponding to the set of links
that are a bottleneck to at least one flow;

• P is the set of edges, where an edge from a vertex link l to
another vertex link l′ exists if and only if the performance of
link l′ can be affected through alterations in the performance
of link l. (These relationships are formally named direct and
indirect precedences, see [5].)

As mathematically proven in [5], the BPG algorithm returns
the bottleneck structure of the input network in polynomial
time, which makes it practical in production environments.
We illustrate how the algorithm works and how to interpret
the resulting graph using an example:

Example 1. Computing and interpreting the BPG graph.
To illustrate the process of constructing the BPG graph, we
use the network shown in Fig. 2. This topology corresponds

to the SDN WAN network called B4 that connects twelve
of Google’s large scale data centers globally using nineteen
links as described in [13]. While we could have chosen any
arbitrary topology, we focus on Google’s B4 network to base
the analysis on a real network. In this simple example we
assume the presence of five flows {f1, ..., f5} as shown in
Fig. 2. This configuration leads to the following initial state
of the BPG algorithm: L = {l1, ..., l19}, F = {f1, ..., f5};
F1 = {f1, f2}, F4 = {f1, f4, f5}, F5 = {f3}, F6 = {f3, f4},
F10 = {f5}, F12 = {f5}, F13 = {f4}, F15 = {f5} and
F17 = {f3}. We also assume that the capacity of the links
are c1 = 80, c4 = 110, c5 = 200, c6 = 130, c10 = 200,
c12 = 200, c13 = 200, c15 = 20 and c17 = 200 Gbps.

Fig. 2: Example of the B4 network with five flows used in
Example 1.

The step by step execution of the BPG algorithm is pre-
sented in Table II. Each cell in this table has two numbers:
the first number corresponds to the fair share of the link at
iteration k, skl (computed at line 5 of the BPG algorithm),
while the second number corresponds to the upstream fair
share of the link at iteration k, uk

l (computed at line 6 of the
BPG algorithm). A link l converges at an iteration k (and thus
is removed from the set of unresolved links Lk at line 9) if
its fair share is equal to its upstream fair share, skl = uk

l (line
7 of the BPG algorithm). This condition is marked in Table II
using a gray cell. Thus, the resulting set of bottlenecks for this
network is B = {l1, l4, l6, l15}. This set defines the vertices
in the BPG graph. The algorithm also returns the set of link
precedences, P = {Dk

l ,∀l ∈ B}∪{Ikl ,∀l ∈ B}, which define
the edges in the graph. These edges are progressively added
to the graph by reiterating lines 11 through 19. We refer the
reader to [5] for a detailed description of how these edges are
constructed.

The result of running the BPG algorithm on our network
example is presented in Fig. 3. The diameter of the graph is
four since that is the length of its longest path l15−l1−l4−l6. It
also corresponds to the value of k at the end of the algorithm,
as shown in Table II. Using the notation in [5], we refer to
this value as the number of levels of the bottleneck structure.

To interpret the BPG graph, we discuss the concept of
regions of influence, one of the key results from the Theory
of Bottleneck Ordering [5]:

Lemma 1. Bottleneck influence. A bottleneck l can influence
the performance of another bottleneck l′, i.e., ∂sl′/∂cl 6= 0,
if and only if there exists a set of bottlenecks {l1, l2, ..., ln}
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TABLE II: Fair share skl and upstream fair share uk
l values at

each iteration of the BPG algorithm for the network in Fig. 2.
A gray cell denotes the corresponding link has converged.

k l1 l4 l5 l6 l10 l12 l13 l15 l17

1 40
36.6

36.6
20

200
65

65
36.6

200
20

200
20

200
36.6

20
20

200
65

2 40
40

45
40

200
65

65
45

—
—

—
—

200
45

—
—

200
65

3 —
—

50
50

200
65

65
50

—
—

—
—

200
50

—
—

200
65

4 —
—

—
—

200
80

80
80

—
—

—
—

—
—

—
—

200
80

such that li is a direct precedent of li+1, for 1 ≤ i ≤ n − 1,
l1 = l and ln = l′.

Proof. See [5].

A direct corollary of this lemma is that a bottleneck l can
affect the performance of another bottleneck l′ if and only if
there exists a directed path from l to l′ in the BPG graph. This
result means the region of influence any bottleneck link l has
on a given network corresponds to the set of links that can be
reached from l in the BPG graph. Let us see how this lemma
applies to our network example:
• Link l15 is a root vertex in the BPG graph, thus, using

Lemma 1, it can influence the performance of all other links.
That is, a variation on the effective capacity of link l15 will
affect the fair share of all other links. This implies that its
region of influence is the whole network.

• Link l6 is a leaf vertex, which implies it does not influence
the performance of any other link. Thus, its region of
influence is empty.

Fig. 3: Bottleneck structure of the network in Fig. 2.

C. Bottleneck and Flow Duality

While the Theory of Bottleneck Ordering helps understand
the relations that exist amongst links, by itself the BPG graph
resulting from this mathematical framework does not reveal
any information regarding the performance of flows. However,
as shown in [5], there exists a simple way to transform the
BPG graph into a structure that reveals such information. This
structure is referred to as the flow gradient graph (FGG):

Definition 1. Flow gradient graph. The flow gradient graph
is a digraph such that:

• For every bottleneck link and for every flow, there exists a
vertex.

• For every flow f : (1) If f is bottlenecked at link l, then
there exists a directed edge from l to f ; (2) If f is not
bottlenecked at link l but it passes through it, then there
exists a directed edge from f to l.

The flow gradient graph can be naturally constructed from
the BPG algorithm as described in [5] in detail. Using the
following example, we provide an intuitive description for
interpreting this graph:

Example 2. A simple flow gradient graph. Consider the
network in Fig. 4-a consisting of 4 links and 6 flows. Its flow
gradient graph as described in Definition 1 is shown in Fig. 4-
b, including next to each vertex the fair share values of each
bottleneck link {s1, ..., s4} and the expected transmission rate
of each flow {r1, ..., r6}.

Fig. 4: A network and its flow gradient graph.

The FGG is a useful extension of the BPG since it allows
to generalize the bottleneck analysis onto flows. One can
see bottlenecks and flows as two sides of the same coin,
corresponding to the supply of network resources and demand
for them, respectively. As shown in [5], this duality principle
implies that all the general properties derived from the Theory
of Bottleneck Ordering have a dual correspondence in the
domain of flows. For instance, Lemma 1 (bottleneck influence)
can be translated to the domain of flows as follows:

Lemma 2. Flow influence. A flow f can influence the perfor-
mance of another flow f ′, i.e., ∂rf ′/∂rf 6= 0, if and only if
there exists a set of bottlenecks {l1, l2, ..., ln} such that (1) li
is a direct precedent of li+1, for 1 ≤ i ≤ n− 1, (2) flow f ′ is
bottlenecked at link ln and (3) flow f goes through l1.

Proof. See [5].

Using this Lemma, we can infer the following properties
from the flow gradient graph in Fig. 4-b: (1) Flow f5 has
no influence on any of the other flows, since its bottleneck
links (l3 and l4) have no influence on any other bottlenecks;
(2) flows f1, f3 and f6 have an influence on all other flows,
since their bottleneck l1 is a root vertex; (3) flow f4 can only
influence flows f2 and f5; and (4) flow f2 can only influence
flows f4 and f5. In Section V-B, we perform an experiment
where we leverage the insights revealed by the FGG to identify
flows that have a high impact on the performance of a network.
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III. G2 OPTIMIZATION FRAMEWORK

The G2 optimization framework is a Python-based software
designed to facilitate the integration of the BPG/FGG graphs
and other G2 traffic engineering algorithms from the Theory of
Bottleneck Ordering into various practical networking environ-
ments. Its plugin based architecture enables rapid integration
of G2 with arbitrary real-world networks. This section intro-
duces the components of the G2 framework, while Section IV
delves into details of the G2 integration with various networks.

A. G2 Architecture

As reflected in Fig. 5, the high-level architecture of G2 con-
sists of two layers: The G2 layer and the Network Integration
layer. The G2 layer pictured in the middle is the core layer that
consists of a set of network agnostic APIs and modules that
use (1) traffic flow, (2) routing, and (3) topology information
from the underlying network to calculate the BPG and FGG
graphs and other traffic engineering computations. It consists
of the following components:
• The G2 Library is the core component of the architecture.

It implements the BPG algorithm shown in Algorithm 1
and other algorithms that are part of the mathematical
framework—left outside the scope of this paper. Given a
capacity dictionary (describing the capacity of each link)
and a flow dictionary (describing the set of links traversed
by each flow), the G2 library provides a JSON representation
of the bottleneck structure of the network. Additionally,
it performs key traffic engineering computations such as
(1) obtaining the subset of high-impact flows, (2) making
link upgrade recommendations, and (3) performing baseline
analysis to identify non-compliant flows. These capabilities
are demonstrated later in Sections V-B, V-C, and V-D,
respectively.

• The G2 Controller acts as the ‘glue’ engine between the G2
library, the various configuration interfaces of the frame-
work such as the CLI/UI, and the plugin based network
integration environment. This module uses the registered
plugin instances to retrieve the flow, routing, and topology
information from the underlying network to calculate the
BPG/FGG graphs and other G2 computations. It saves the
network snapshot along with results of the computations to
the database. It further provides the APIs needed to keep
the G2 algorithms updated with any real-time changes to
flows, routes, or topology to compute the most up-to-date
bottleneck structure.

• The Database module provides an interface to store and re-
trieve the historical bottleneck and flow structure computed
by G2. This module enables the dashboards to render real-
time and retrospective bottleneck analysis of a network for
traffic engineering purposes.

• G2 Dashboards form the web-based user interface (UI) to
G2. They help operators visualize the network topology and
the effects amongst flows and bottlenecks using the BPG
and the FGG interactive graphs. We present the design of
the dashboards in more detail in Section III-B.

G2 library

G2 dashboards
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Fig. 5: G2 framework architecture.

• The CLI module provides a Python-based command line
interface to manually or programmatically configure and
monitor G2 at run-time.

• The Plugin Registry layer defines the APIs through which
the northbound G2 modules interact with the network. This
layer abstracts out the network deployment specifics from
the rest of the framework using a generic set of flow, routing,
and topology plugins. To successfully operationalize the
framework for a given network, a suitable instance of each
of these plugins must be registered with the G2 controller.

The Network Integration layer, pictured at the bottom of
Fig. 5, implements the flow, routing, and topology plugin
APIs for a specific production network. Fig. 5 shows various
examples of these plugins. For instance, the sFlow plugin is
an instantiation of the flow plugin that interacts with an sFlow
agent in the network and processes sFlow records to capture
real-time traffic flow information. Similarly, the BGP/BMP
plugin is a routing plugin instance that can communicate
with a BGP/BMP controller to learn routing information. The
combination of plugins instantiated by G2 will depend on
the protocols and monitoring tools used by the production
network. For example, as shown in Fig. 5, to deploy G2 at
the SCinet network [10], we instantiate (1) a Zeek/Splunk
plugin to poll flow information based on Zeek connection logs
from the SCinet’s Splunk indexer, (2) a BGP/BMP plugin to
poll routing information from the OpenBMP collector, and
(3) a REST API based topology plugin instance to read static
topology information from the topology datastore. We have
developed several flow, routing, and topology plugins in due
course of our integration with the various environments. This
rich collection of plugins enables quick and easy integration
of G2 into real-world networks.
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Fig. 6: G2 dashboards architecture.

B. Network Operator Dashboards

In this section, we discuss the design and implementation of
G2 dashboards. As we mentioned previously, G2 dashboards
refer to the web-based UI to the G2 framework. They provide
an intuitive way to visualize, filter, and analyze flows and
bottleneck links to understand their impact on the network.
In particular, G2 dashboards provide network operators with
powerful features such as bottleneck and flow filtering. They
enable the operators to zoom in and out relevant information
on any given dashboard and measure the regions of influence
of these bottlenecks and flows. We implement the dashboards
using the Angular framework [14].

We show the architecture of G2 dashboards in Fig. 6, which
consists of four main pages:
• The Topology dashboard displays real-time topology-related

information such as network switches, links, and flows
with configurable filters to help operators focus on relevant
regions of the network.

• The Bottleneck Precedence Graph (BPG) dashboard pro-
vides real-time visualization of the BPG graph. As described
in Section II-B, this graph reveals the bottleneck structure
of the network and helps understand the influence of links
on the rest of the network. This dashboard hence can be an
essential tool in identifying the high-impact bottleneck links
and carry out online traffic engineering as well as offline
capacity planning decisions. Fig. 7 illustrates a snapshot
of BPG dashboard of Google’s B4 network (see Example
1) filtered to study the region of influence of link l8 within
three hops.

• The Flow Gradient Graph (FGG) dashboard provides real-
time visualization of the interactions amongst flows. This
dashboard also lets the user filter the FGG based on flows
and links to study relevant sections of the network. Fig. 8
shows an FGG dashboard in which the darkly shaded
circles represent flows, the lightly shaded circles represent
links, and the arrows indicate the relationship between the
links and flows as described in Section II-C. The FGG as
shown in Fig. 8 corresponds to a snapshot of Google’s B4
network filtered to study the region in the network that can
affect the performance of flow f37 within three hops. The

Fig. 7: BPG dashboard with filters on “l8” and “3 neighbors”

Fig. 8: FGG dashboard with filters on “upstream”, “3 neigh-
bors”, and “f37”.

FGG dashboard can be particularly useful in identifying
the most influential flows and developing optimized traffic
engineering actions to improve the overall performance of
the network.

• The Replay dashboard is designed to enable a retrospective
analysis of a network. By selecting the beginning and the
end of a period, users can render any of the dashboards and
replay all the available snapshots within the selected period.
This feature can be very helpful in obtaining a historical
analysis of the network, allowing to identify bottleneck
links and flows that have consistently had a high impact.
This information can also help operators make link-upgrade
decisions and derive capacity planning recommendations.

IV. INTEGRATION OF THE G2 OPTIMIZATION
FRAMEWORK IN PRODUCTION NETWORKS

To demonstrate the ability of G2 to compute the bot-
tleneck structure of a network under a variety of network
configurations, we have integrated it with Mininet and other
practical high-speed production networks including the ESnet
testbed [9] and SCinet [10]. This section discusses the details
of these integrations.
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Fig. 9: Replay dashboard.

A. Mininet Implementation

Mininet [8] provides an ideal way to create realistic
networks using OpenFlow and software-defined networking
(SDN) capabilities [15]. It also includes the POX SDN frame-
work [16] that can be used to create an SDN controller and
communicate with switches. Networks emulated using Mininet
run real TCP/IP, kernel, switch, and application code.

In our current approach to integrate the G2 framework
with Mininet, we use sFlow [17] to obtain real-time traffic-
flow information from the Mininet switching infrastructure.
We pull routing and topology information from the POX
SDN controller. Having access to flow, routing, and topology
information, as shown in Fig. 5, the G2 library then computes
BPG and FGG to facilitate the optimization of the given
network.

With the goal of demonstrating the utility of G2 in network
optimization operations for a variety of network configura-
tions, we developed a Mininet sandbox [11], which we call
G2-Mininet. The sandbox can emulate a Mininet network
given the topology, routing, and traffic configurations. The
topology configuration includes network nodes, links, and their
capacities. Routing configuration refers to the scheme used to
route traffic between network endpoints, such as shortest path
routing or other schemes. Finally, traffic configuration specifies
a set of traffic flows between network endpoints. The sandbox
uses iPerf [18] to generate network traffic.

As part of the G2-Mininet sandbox, we also implemented
a new forwarding module for POX to allow static routing on
emulated network architectures. This routing module allows us
to compose networks with the desired number of bottleneck
levels. The sandbox also provides the ability to select a specific
TCP congestion control algorithm (e.g., BBR or Cubic) and
scale to larger network configurations on multi-core machines.

Essentially, the sandbox provides a flexible way to create

arbitrary (1) topologies, (2) routing schemes and (3) flow
configurations to analyze general network architectures with
a focus—although not limited to—on understanding the bot-
tleneck structure. We have open-sourced G2-Mininet [11] and
included all the network configurations used in this paper for
the Mininet and research communities.

B. Research and Education Networks

Research and education networks such as ESnet [9], and
SCinet [10] prove to be an ideal environment to demonstrate
G2’s ability to integrate with realistic data networks. The
following provides a summary of our current integration
efforts:
• ESnet Testbed. ESnet is the Department of Energy’s ded-

icated science network, providing researchers with access
to a state-of-the-art SDN controlled network. We integrate
G2 using a subset of the ESnet Testbed [9] consisting of
a fixed topology with eleven SDN-controlled switches and
four hosts located in Berkeley, Denver, Washington DC,
and Atlanta. The various switches are connected using well
known pre-determined routes. With this topology, we can
configure arbitrary flow configurations using iPerf3 [18] to
demonstrate a variety of multi-level BPG networks using
G2. We also developed a tcpdump [19] based flow plugin
for collecting flow information at real-time from the testbed.

• SCinet. SCinet is a network exclusively built every year
to provide communication services at the Supercomputing
Conference that aims at leveraging the highest performance
network equipment available [10]. This infrastructure pro-
vides researchers the ability to test new technologies in a
multi-terabit rate, SDN-controlled data network. The G2
integration for SCinet instantiates (1) a Zeek/Splunk based
flow plugin to retrieve flow information using Zeek connec-
tion logs on SCinet’s Splunk indexer, (2) a BGP/BMP based
routing plugin to obtain up-to-date routing information, and
(3) a REST API topology plugin to gain access to the
network topology.

V. EXPERIMENTAL RESULTS

In our experiments, we focused mainly on evaluating the
hypothesis that G2 can provide optimization decisions for
a variety of real-world network scenarios. To test this hy-
pothesis, we used the sandbox G2-Mininet [11] described in
Section IV-A. G2-Mininet provides a flexible way to create
networks with arbitrary topologies, routing schemes, and flow
configurations and deploy the G2 optimization framework with
those networks.

We designed several network configurations that allowed us
to test the efficacy of G2 in providing optimization decisions
for different types of bottleneck structures. We emulated these
configurations in G2-Mininet by varying the topology, the
congestion control algorithm, and the number, sizes, and RTTs
of traffic-flows.

Subsequently, we implemented a module that enables us to
generate network configurations whose scale is similar to real-
world networks in terms of the number of concurrent traffic
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Fig. 10: Network configurations to benchmark (a) 2-level and
(b) 3-level bottleneck structures.

flows. For a given base network, the scaling module replicates
the traffic flows by the desired factor while keeping the source,
destination, and data size fixed for each flow. This allows to
scale-up network examples while preserving their topological
and bottleneck-related properties.

Finally, to measure the network performance and analyze
the effects of optimization by G2, we implemented modules
for traffic generation and benchmark collection as part of the
G2-Mininet sandbox. The statistics that we collected during
the experimentation include instantaneous network throughput,
flow completion times, flow convergence times, and Jain’s
fairness indexes [20].

The experiments presented in this section involved the
generation of more than 100 network configurations by using
the variations mentioned above. We used Mininet version 2.2.2
(which uses real production TCP/IP stack from the Linux
kernel) running on Ubuntu Linux 16.04 LTS with kernel
version 4.15.0-54. All traffic was generated running iPerf from
each Mininet host.

A. The Bottleneck Structure of TCP Networks

In this first set of experiments, we aim at demonstrating that
TCP networks behave according to the bottleneck structure of
the network as predicted by the mathematical framework. We
provide the empirical demonstration of such behavior as an
initial validation test that the G2 framework can accurately
characterize and predict bottleneck and flow behavior.

Towards this goal, we use Google’s B4 network and com-
pose two simple configurations, as illustrated in Fig. 10. These
networks correspond to a 2-level (Fig. 10-a) and a 3-level
(Fig. 10-b) bottleneck structures. Their associated BPG graphs
are presented in the same figure to the right of the two
networks. As shown by these BPG graphs, for the 2-level
network, the fair shares of the bottleneck links are s2 = 10
and s6 = 20 Mbps. Thus, the expected transmission rates of
the flows are r1 = 10 and r2 = 20 Mbps. (As explained in
Section II, the theoretical rate of a flow corresponds to the fair
share of its bottleneck link.) For the 3-level network, the fair
shares of the bottleneck links are s2 = 10, s6 = 20, s14 = 30
Mbps, which leads to the flow rates r1 = 10, r2 = 20 and
r3 = 30 Mbps.

TABLE III: Average flow throughput (Mbps) for the 2-level
network.

BBR Cubic

# Flows 2 20 200 2 20 200

f1 8.42 0.91 0.086 9.01 0.92 0.086
f2 16.23 1.7 0.16 16.7 1.77 0.16

To test whether the theoretical model also holds at higher
scales of traffic, we increase the number of flows between any
pair of source and destination hosts by a factor of 10X and
100X. Thus, for the 2-level network, we simulate with 2, 20,
and 200 flows, whereas for the 3-level network we simulate
with 3, 30, and 300 flows. We performed all these experiments
for both BBR and Cubic, for a total of twelve experiments.

The results are presented in Fig. 11, where flows in the
legend are labeled according to their source and destination
data centers. (For instance, the label h1 − h7 corresponds to
flow f1 in Fig. 10, which goes from data center 1 to data
center 7). We also include the average throughput for each flow
in Tables III and IV. As shown from these tables, for the 2-
level network with 2 BBR flows, the average transmission rates
are r1 = 8.42 and r2 = 16.23 Mbps. While they are below
the fair share rates obtained from the BPG graph, s1 = 10
and s2 = 20 Mbps, the two flows behave according to the
bottleneck structure. Similarly, for the 3-level network with
3 BBR flows, the average transmission rates are r1 = 8.66,
r2 = 15.55 and r3 = 25.45 Mbps. These rates are also
slightly below the theoretical fair share, s1 = 10, s2 = 20
and s3 = 30 Mbps, but again the flows follow the bottleneck
structure by confining their transmission rates at the right
level. The fact that empirical rates are below their theoretical
values is attributed to imperfections in the congestion control
algorithm—it is well-known that these algorithms do not
achieve 100% network utilization [3]—but, as shown in this
experiment, this does not invalidate the fact that TCP flows
behave according to the network’s bottleneck structure.

The same behavior is exposed when increasing the number
of flows between a source-destination pair by 10X and 100X,
as shown in Tables III and IV. Note that in these two cases,
the average flow throughputs are approximately reduced by a
factor of 10 and 100, respectively. This fact indicates that as
the number of flows scales up, the flow throughput scales down
by the same factor (since link capacity is now shared among
a higher amount of flows). A key result in these experiments
is that the bottleneck structure is preserved as the number of
flows scales up. This behavior can also be observed graphically
in Fig. 11, with flow rates reflecting the levels of the bottleneck
structures. Finally, note that this same behavior is exposed by
both the congestion-based algorithm (BBR) and the loss-based
algorithm (Cubic).

B. Optimal Flow Policing

In the next experiment, we demonstrate how the proposed
network optimization framework can be used to identify high
impact flows. The detection of these flows is commonly used
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(a) 2-level / 2 BBR flows.
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(b) 3-level / 3 BBR flows.
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(c) 2-level / 200 BBR flows.
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(d) 3-level / 300 BBR flows.
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(e) 2-level / 2 Cubic flows.
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(f) 3-level / 3 Cubic flows.
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(g) 2-level / 200 Cubic flows.
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(h) 3-level / 300 Cubic flows.

Fig. 11: Demonstration of the bottleneck structure of TCP networks using a 2-level and 3-level structures for BBR and Cubic.

TABLE IV: Average flow throughput (Mbps) for the 3-level
network.

BBR Cubic

# Flows 3 30 300 3 30 300

f1 8.66 0.91 0.08 8.61 0.92 0.08
f2 15.55 1.63 0.15 15.94 1.69 0.16
f3 25.45 2.33 0.29 26.86 2.40 0.34

by network operators to perform traffic engineering—e.g.,
by re-routing or by traffic shaping such flows—in order to
optimize the overall performance of a network.

To carry out this experiment, we use the network in Fig. 4.
Similar to the previous section, we are interested in evaluating
whether the proposed theoretical model scales up with traffic
volume. Thus, we also benchmark this network by increasing
the number of flows between any source-destination pair by a
factor of 10X and 100X. We present the aggregate results in
Table V and Fig. 12, where all the values show the average per-
formance of all flows between a source-destination pair. (Later
in Section V-D we analyze individual flow performance.) Table
V shows the effect of removing flows f5 and f6 from the
network by measuring the total network throughput as the
sum of all flows’ throughput. From the baseline experiment
performed without removing any flows, we obtain r5 = 66.1
Mbps and r6 = 8.04 Mbps, slightly below the rates projected
by the flow gradient graph model, r5 = 75 Mbps and r6 = 8.3
Mbps (see Fig. 4-b).

As shown in Table V, for the case of 6 flows, removing
the heavy-hitter flow, f5, reduces total network throughput
from 115 Mbps to 53.1 Mbps. If instead we remove the low-
hitter flow, f6, total throughput increases to 123.4 Mbps. These
result demonstrates that, against established conventional wis-
dom in best practices for network optimization, heavy-hitter

TABLE V: Total throughput (Mbps) obtained when eliminat-
ing each flow.

BBR Cubic

# Flows 6 60 600 6 60 600

No flows removed 115.0 82.9 111.4 136.7 126.3 153.1
Flow f5 removed 53.1 57.8 119.9 61.3 60.8 94.3
Flow f6 removed 123.4 116.6 127.7 129.8 131.7 132.9

flows may not be responsible for the higher degradation of
network performance. On the contrary, in certain networks as
shown in this experiment, low-hitter flows may have a much
higher overall performance impact. This result is directly ex-
plained by the network’s flow gradient graph (Fig. 4-b): From
Lemma 2, the region of influence of flow f5 is empty—since
in the FGG it has no children vertices—whereas the region of
influence of flow f6 includes the whole network—since in the
FGG there exist a path from any of the links traversed by flow
f6 to any other flow. Finally, note that in Table V the action
of removing flow f6 consistently outperforms removing flow
f5 for both BBR and Cubic and for all benchmarked cases
with 6, 60 and 600 flows.

C. Optimal Link Upgrade Identification

In this experiment, we seek to measure the impact each
bottleneck has on the overall performance of a network. This
test corresponds to the dual case of the experiments performed
in Section V-B as follows: While in the previous section
we reduced the rate of a flow and measured the degree to
which overall network performance improved, in this section
we measure the gains achieved by increasing the capacity of
each bottleneck link. This analysis can be used to perform
capacity planning as network operators with a fixed budget aim
at prioritizing the upgrade of those links that lead to higher
performance improvement. The benefit of using the BPG and
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(a) BBR without removing any flow.
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(b) BBR removing flow f5 and replicas.
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(c) BBR removing flow f6 and replicas.
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(d) Cubic without removing any flow.
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(e) Cubic removing flow f5 and replicas.
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(f) Cubic removing flow f6 and replicas.

Fig. 12: As predicted by the bottleneck structure, flow f6 and its replicas incur the highest performance impact.

the FGG models to predict the gains from a link upgrade is
that in realistic operational environments it is challenging—
if not unfeasible—to run benchmarks on the same production
network. Because as validated in this section (and throughout
this paper) the bottleneck structure model can be used to
make such predictions, network operators can leverage the
capabilities of the G2 framework to perform capacity planning
too.

Similar to the previous section, in this experiment, we
also use the network in Fig. 4-a. The proper calculation of
the impact of a link upgrade requires the computation of
its bottleneck gradient using the flow gradient graph. While
illustrating how to perform this calculation is outside the
scope of this paper (see instead [21]), we provide an intuitive
description as follows. Considering the FGG in Fig. 4-b, we
can first easily observe that upgrading link l3 or link l4 by
adding more capacity to either of these two links produces no
benefit. This is because the only flow that can be influenced by
any of these links is flow f5, but such flow is simultaneously
bottlenecked at both of these links, thus in order to improve its
performance, both links would need to be upgraded. If instead
we consider upgrading link l1, then flows f1, f3 and f6 will
experience a direct increase in their rate. Note however that the
rate increase in flows f3 and f6 will have a negative effect on
link l2, thus reducing the rates of flows f4 and f2, and another
negative effect on link l3, leading also to a reduction on the rate
of flow f5. Using the proper mathematical formulation (see
[21] for details), the resulting gradient of link l1 is 1/3. This
value corresponds to the increase of the total flow throughput
(the sum of all flows’ rates) when link l1 is upgraded with one

additional unit of capacity. A similar exercise can be done to
compute link l2’s gradient, resulting in a value of 1/2. This
analysis reveals that for the given network configuration in
Fig. 4-a, an operator should prioritize upgrading first link l2
and then link l1, and refrain from upgrading links l3 and l4.

The experimental results are presented in Table VI and
Fig. 13, where an upgrade on a link l is implemented by
increasing the capacity of that link by ten units. (For instance,
upgrading link l1 is implemented by increasing its capacity
from 25 to 35 Mbps.) We observe that as predicted by the
theoretical framework, upgrading links l3 and l4 produces no
effective benefit. Upgrading links l1 and l2 do lead to better
total throughput, also as predicted. Cubic appears to better
follow the model by yielding a higher benefit from upgrading
l2 than link l1, in line with the fact that l1’s theoretical gradient
is higher than l2’s.

It is worth noticing that while this experiment has been sim-
plified by assuming a fixed set of flows, in the G2 optimization
framework such analysis is performed by using the network’s
historical flow records and taking statistical averages to obtain
the links that have had the highest performance impact. Such
historical record can be obtained, for instance, from NetFlow
[22] or sFlow records [17], as explained in Section III-A.

D. Identification and Policing of Non-Compliant Flows

In this experiment, we demonstrate how the G2 optimization
framework can be used to identify individual flows that are
either non-compliant or under-performing. Because the G2
framework is a model that predicts bottleneck and flow perfor-
mance based on a given optimal criterion, it can also be used as
a target baseline. Comparing actual flow performance against
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(a) Upgrading link 1 / BBR. (b) Upgrading link 2 / BBR. (c) Upgrading link 3 / BBR. (d) Upgrading link 4 / BBR.

(e) Upgrading link 1 / Cubic. (f) Upgrading link 2 / Cubic. (g) Upgrading link 3 / Cubic. (h) Upgrading link 4 / Cubic.

Fig. 13: As predicted by the bottleneck structure, upgrading links 3 and 4 does not provide any benefit while upgrading links
1 and 2 increases the network’s total flow.

TABLE VI: Total throughput (Mbps) obtained when upgrading
a link with 10 additional units of capacity.

BBR Cubic

No links upgrade 119.9 119.6
Upgrade link l1 128.46 137.88
Upgrade link l2 126.17 178.59
Upgrade link l3 122.88 123.54
Upgrade link l4 120.67 119.10

this baseline provides a mechanism to identify such outlier
flows. Note that while the default G2 framework assumes a
steady-state regime based on the max-min optimality condition
[5], the model does not preclude using other optimization
criteria such as weighted max-min or proportional fairness [23]
nor extending it with additional features such as minimum or
maximum flow rate constraints [12].

We carry out this experiment by leveraging the tests per-
formed in Section V-B. Fig. 14-a and 14-b present the indi-
vidual throughput of flows 1 through 6 that correspond to the
experiments run with BBR and Cubic on the network in Fig. 4
and scaling the number of flows by 10X—thus a total of 60
flows. Using the FGG model shown in Fig. 4-b, flow f1 (from
h1 to h2) is expected to take a rate of r1 = 8.3/10 = 0.83
Mbps and should operate within the lower bottleneck level
together with flows f3 (from h1 to h3) and f6 (from h1 to
h4). Instead, as shown in Fig. 14-a/b, this flow transmits data
at a higher rate. For instance, during the interval of time from
250 to 300 seconds, flow f1 performs at an average rate of
1.17 Mbps with peaks of 1.41 Mbps for BBR and an average
rate of 1.05 with peaks of 2.39 for Cubic. Since these values
are above the expected rate of 0.83 Mbps, we conclude that
this flow is acting too aggressively, stealing bandwidth from
the flows at its same level. This information can be used by

Non-conforming flow h1-h2

Level 3

Level 2

Level 1

Non-conforming flow h1-h2
Level 3

Level 2
Level 1

(b)

(a)

Fig. 14: For both BBR (a) and Cubic (b), flow f1 (h1 − h2)
is able to steal bandwidth from its upper layer.

a network operator to deploy a dynamic traffic shaping policy
to reduce the rate of this flow.

The aggressive performance of flow f1 can be explained
using the well-understood argument that its round trip time (2
ms, as shown in the legend of Fig. 14) is the lowest among the
flows that it shares its bottleneck link l1 with (flows f3 and
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f6, which have RTT values of 4 ms and 6 ms, respectively).
Having a lower RTT implies that this flow can converge faster
and thus steal bandwidth from the rest of the flows it competes
with at a given bottleneck level.

Yet the flow gradient graph also provides an alternative
(complementary) explanation for flow f1’s behavior. Looking
at the network’s FGG in Fig. 4-b, we observe that this flow
does not have any child vertices, whereas its competing flows
f3 and f6 do have child vertices. This implies that f3 and f6
suffer from additional competition from flows bottlenecked at
higher bottleneck levels (flows f2, f4 and f5) which result in
additional deterioration of their transmission rate, in benefit of
flow f1.

VI. RELATED WORK

Flow performance optimization has been one of the most
widely researched subjects in the field of communication net-
works. Since Jacobson introduced the first TCP-based conges-
tion control algorithm for the Internet in 1988 [1], more than
twenty algorithms have been developed and made available
as part of the TCP/IP stack (e.g., [24] [6] [2]). Through this
effort, it has been well-understood that the performance of a
TCP flow depends exclusively on the available capacity at its
bottleneck link and the round trip time of its communication
path [1] [2]. In part constrained by the end-to-end paradigm
upon which the Internet has been built [25], research has
focused on the problem of bottleneck characterization from
and end-system standpoint [24] [6] [2], taking a black-box
model of the network. As a result, the traditional approach
has left a gap in the understanding of the dynamic interactions
that determine the available capacity of a flow’s bottleneck
link. As also recently recognized by Lavanya and McKeown
[4], bottleneck links influence each other in complex ways,
potentially weaving through all links in the network. In [5], the
authors introduce the Theory of Bottleneck Ordering, the first
mathematical framework that aims at tackling this problem.
This proposed framework leads to the concept of bottleneck
structure, one of the core building blocks of the G2 network
optimization framework that we propose in this paper.

While not bound to it, the Theory of Bottleneck Ordering
assumes an underlying optimization model based on the max-
min criterion. Bertsekas and Gallager [7] were among the first
to propose and study max-min as a framework to perform
network congestion control and presented the original water-
filling algorithm to compute its solution. Ros-Giralt and Tsai
generalized Bertsekas algorithm by providing a parallelizable
version of the water-filling algorithm in which links converge
to their fair share concurrently according to the bottleneck
structure of the network [12]. This algorithm is the basic
building block used in [5] to develop the Theory of Bottleneck
Ordering.

VII. CONCLUSIONS

This paper introduces G2, a new network optimization
framework that leverages the recently introduced Theory
of Bottleneck Ordering to help network operators optimize

bottleneck and flow performance. A core building block of
the proposed framework is the bottleneck precedence graph
(BPG), a digraph that reveals the bottleneck structure of a
network and provides a model to (1) characterize and predict
the bottlenecks’ fair share and the flows’ transmission rate
and (2) understand (qualitatively and quantitatively) the ripple
effects that perturbations on the performance of a bottleneck
link can cause to other regions of the network. We have
implemented the G2 optimization framework as a modular
architecture consisting of: (1) A core library implementing
the algorithms, (2) a user and a graphical interface (UI/GUI)
that allows network operators to visualize bottlenecks, flows
and compute the optimized traffic engineering policies, and
(3) an API consisting of a set of plugins that facilitates the
integration of G2 into modern real networks.

We present initial experiments that illustrate how the theo-
retical framework—and thus, operationally the G2 platform—
can be used to gain critical insights on the performance of
bottlenecks and flows. For instance, we empirically show how
the framework can be used to identify flows that, despite
being low-hitters, have a high negative impact on the overall
performance of the network. Similarly, we show how the same
framework can be used to identify critical bottlenecks as a tool
for network capacity planning.

While in this paper we focus primarily on describing the
analytical capabilities of G2 based on the bottleneck precedent
graph (BPG), forthcoming work includes the development
of a parallel set of the optimization features based on the
flow gradient graph (FGG). Both of these frameworks are
dual to each other, and together they enable a complete
framework to optimize the performance of bottlenecks and
flows. Current work also includes continuing to augment the
capabilities of G2 to make it a production-ready real-time
network optimization and capacity planning framework.
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