
Hop Recording and Forwarding State Logging: Two
Implementations for Path Tracking in P4
1st Silke Knossen

Security and Network Engineering master
University of Amsterdam

Amsterdam, The Netherlands
silkeknossen@gmail.com

2nd Joseph Hill
Systems and Networking Lab (SNE)

University of Amsterdam
Amsterdam, The Netherlands

j.hill@uva.nl

3rd Paola Grosso
Systems and Networking lab (SNE)

University of Amsterdam
Amsterdam, The Netherlands

p.grosso@uva.nl

Abstract—Full information on the path travelled by packets is
extremely important for network management and network se-
curity. We implemented two path tracking methods in hardware
with P4. The first approach tracks a packet’s path by recording
each node along the path of a packet (hop recording). The
complete path a packet took can be extracted from the packet in
the last node of the path. The second approach tracks a packet’s
path by logging the forwarding state of a network (forwarding
state logging). The complete path can be reconstructed based on
the node where the packet entered a network. We conducted
experiments with the two implemented approaches and showed
that the paths of the packets are reconstructed correctly. The
advantage of using P4 is that the control plane only gets involved
when the path of a packet is reconstructed. We finally show how
our work provides a working tool in P4 networks that can be
used to gain deep insights in traffic patterns.

Index Terms—Programmable networks, path tracking, IPv6,
P4.

I. INTRODUCTION

Knowledge of the paths that data took through the network
can be useful to provide more context to solve security inci-
dents. Additionally this information can support more targeted
monitoring as well as network and traffic engineering.

The information required to reconstruct the path of data
can be gathered by path tracking. Traditional methods of
tracking network traffic such as NetFlow [1] are done in
the control plane (software) of forwarding devices such as
routers and switches. Since the control plane executes on the
router’s processor, these methods can be resource intensive.
To limit the resource utilization, NetFlow often is configured
to only track the path of every nth packet, which can lead to
incomplete information [2]. This prevents to fully unleashing
the potentials of full path knowledge.

With the development of the programming language Pro-
gramming Protocol-independent Packet Processors (P4), it is
now possible to program the data plane (hardware) of forward-
ing devices [3]. This makes it possible to gather network traffic
data in-band, without requiring work by the control plane. This
has the potential to track the path of all packets and to provide
the information more efficiently.

Tracking packet paths in P4 can be done in several ways,
as it was envisioned in [4]. In this article we will present our
implementation of two such methods: the first method is to add
the ID numbers of the forwarding devices which have routed

the packet to the IP header of the packet (hop recording); the
second method relies on recording forward state logging.

We will first familiarise the readers with the P4 language
(Sec.II) and provide them with an overview of the related work
(Sec.III). In Sec.IV we will explain path tracking and introduce
our two approaches. In the subsequent sections (Sec.V, Sec.VI
and Sec.VII)) we explain the use of the IPv6 extension header
and cover extensively the details of the two implementations.
Sec.VIII describes our experiments, while Sec.IX and Sec.X
present the results we obtained for the two methods. We
continue with a discussion of the pros and cons of the two
approaches (Sec.XI), show how to use the collected data for
visualisation (Sec.XII) and conclude the paper (Sec.XIII) with
pointers to future work.

II. P4 LANGUAGE

Our implementation is done in P4, a high-level language
for programming protocol-independent packet processors. P4
is designed to program the data plane of packet forwarding
devices. P4 wants to offer more flexibility than currently
available on forwarding devices. A first advantage is that a
device can be reconfigured in real-time. A second advantage
is that P4 has no predetermined definition of the format of a
packet, which makes it protocol independent. This eliminates
constrains on how individual packets can be examined. A
third advantage is that P4 allows flexible allocation of device
memory. This means that memory that is typically intended
for routing tables can instead be used to store path tracking
data. Some operations still have to be performed by the control
plane of a forwarding device, but P4 has the potential to allow
efficient path tracking of data that moves through a network.

P4 is a domain-specific language, designed specifically to
describe the behavior of packet forwarding hardware. As a
result, it does not have as much functionality as a programming
language such as Python or C. For example, P4 generally
does not support loops. The use of conditional statements is
also very limited. This makes it a challenging language for
implementing complex programs.

A. P4 Language Structure

A P4 program describes a forwarding model consisting
of three stages: the parser, ingress match+action, and egress

36

2019 IEEE/ACM Innovating the Network for Data-Intensive Science (INDIS)

978-1-7281-6666-7/19/$31.00 ©2019 IEEE
DOI 10.1109/INDIS49552.2019.00010

match+action. The parser is the first stage in the model. In this
stage the packet is being parsed based on user defined headers.
Since P4 is protocol independent, the organisation of these
headers can be a format of a protocol that is well known or
something that is entirely new. After packets are parsed, a P4
program enters the ingress match+action stage where actions
are taken based on the results of table lookups. This stage
controls the ingress of packets into the forwarding device.
Finally, the third stage - the egress match+action controls the
egress of the packets. In the ingress match+action stage, the
actions may define the egress port where the packet will exit
the device. In the egress match+action stage this is no longer
possible, and actions are performed while the P4 program
assumes the packet will exit through a specific egress port.

Matches can be performed in P4 based on field values
in the headers of a packet. Matches can also be performed
based on other meta-data such as ingress ports. This meta-
data is data that is generated during execution of the P4
program. There are different types of meta-data fields used
in P4. One of them is the user meta-data, which are fields
that a user can define in the program. Another type of meta-
data is the standard meta-data, which fields are automatically
included in the P4 design. The last type, the intrinsic meta-
data, is not part of the standard P4 design, but can be used
by defining a header intrinsic metadata. The fields in this
meta-data contain timestamps which can be used by defining
them as header fields. When the intrinsic meta-data is defined,
the fields automatically behave as they are defined in the
P4 specification. There exists several match options including
exact, ternary, and longest-prefix match. Using an exact match,
the bits of a value must match exactly in order to be a match.
Using a ternary match, a bit-mask is used to match. Using the
longest-prefix match, the most specific match according to a
bit-mask is selected. When a table entry matches a particular
header field value, an action is taken based on a value in the
table entry. Whenever a table miss occurs, a default action may
be performed. A user can define actions based on a limited set
of action primitives which are defined in the P4 specification.
These primitive actions allow for the modification of fields in
headers, adding headers, removing headers, sending digests,
and cloning packets. When a digest is sent, multiple fields
that are parsed by the P4 program can be sent in a user’s
defined structure. The stateful memories P4 has are limited.
An example of a stateful memory in P4 is a register, which
is an external object where data can be stored. The state that
P4 keeps from packet to packet is also very limited due to
the limited stateful memory of P4. As a result, when a more
significant state change is required, this must be performed by
the control plane and P4 has to send it the data required. For
example, modifications to the tables in the forwarding device
must be done by the control plane. There is no definition of
the interface between the data plane and the control plane in
the P4 specification.

There are currently two versions of P4: P414 and P416.
P416 is the newest version of the language, which has some
significant differences compared with P414 and is not back-

wards compatible. An important goal of the newest version
of P416 was the revision of the language to provide a
stable language definition. This means that the intention of
creating P416 is that all programs written in P416 will remain
syntactically correct and behave identically when treated as
programs for future versions of the language. This is the reason
why P416 is used in this research. Each future reference to
P4 will refer to the P416 version of P4.

III. RELATED WORK

The interest in programmable device and in particular the
focus on P4 devices is growing in the last years. The potential
of these devices is being recognized, and an increasing body
of literature testifies to the many areas where they are being
(envisioned to be) applied to: in metro networks for latency-
awareness [5]; in IP-over-optical network to visualise network
performance in real time [6]; in redefining the way in which
Intent-Driven networking can be implemented [7].

Many National Research and Education Networks (NRENs)
are also exploring the adoption of P4 devices. The general
consensus in the community is that this type of hardware can
support in a more flexible way scientific applications, as well
as provide enhanced telemetry, security and access to virtual
network functions. For example, the GEANT community has
started to hold regular meetings on this topic; ESnet is looking
at P4 for its upcoming High-Touch Services. We are part
of a new program launched recently in the Netherlands that
focus on the development and evaluation of mechanisms for
increasing the security, stability and transparency of internet
communications: 2StiC (https://www.2stic.nl/). Also here P4
telemetry plays a crucial role to support the program’s goals.

In this ecosystem there is a strong need for working im-
plementations that can be shared and tested in a testbed first,
and more production settings. To the best of our knowledge
our work is the first working implementation of path tracking
in P4 and as such we expect that it will be of interest to the
communities exploring P4 adoption for telemetry.

IV. TRACKING FLOWS

A commonly used protocol to get information about the
traffic in a network is NetFlow. This is a protocol developed
by Cisco that can collect and analyse IP network traffic as it
enters or exits an interface [1] of a network device. Netflow
tries to collect path data of a flow, which is considered a
sequence of packets having some identical header field. For
example, when packets have the same source and destination
address, they could belong to the same flow. This method
corresponds to flow tracking; in contrast with the focus of
our research where path information from individual packets
will be recorded, hence path tracking.

Using Netflow, flow tracking is implemented in the control
plane. This can result in a large system resource utilization,
which can only be handled by some network devices. This is
the reason why a sampling method is often used in order to
minimize the resource utilization. This method examines not
every packet that a forwarding device forwards, but only every

37

nth packet. However, previous work found that this approach
did not yield enough information to reconstruct the path that
data took through the network [2]. It is not guaranteed that
every device along the path of a packet will record it when
sampling is being used. It is also possible that a packet could
be missed by every device along the packet’s path. An example
of this is provided in figure 1. Here we assume that due to
sampling only the blue nodes have recorded the packet. From
this data it is not clear what the exact path is the packet took
through the network. Between node B and F the packet could
have, for example, only gone through node E, or through node
C and then E. Even other paths are possible to reconstruct
using this information.

Fig. 1: Incomplete packet capture example

Tracking the path of packets with P4 could solve the
difficulties NetFlow has by implementing it in the data plane
of a forwarding device. With NetFlow, each device keeps some
state where information about the path is stored. In order to
reconstruct the path of data, each device has to be queried
for information about the path of a flow. Implementing path
tracking with P4 allows for a more efficient way of collecting
the data required for reconstructing paths, while the impact on
system resources could be minimized. In all methods described
here, the actual reconstruction of the paths is done in the last
node in the path. In order to do so, the information needed
must be available in every node in the network. Every solution
for path tracking described in this article will therefore add
data to the packet which is used for the reconstruction of
the path. We focused on two approaches: hop recording and
logging forwarding state.

A. Hop Recording

To track the complete path of packets through a network
one can record every traversed hop in the packet itself. Each
node would have its own node identifier (NID) and adds it
to the packet as it moves through the network. In the last
node of the packet’s path, the path information included in
the packet can be extracted to reconstruct the complete path.
The complete path would thus only exist in this node. This
approach is illustrated in figure 2. The first device adds its
NID (A) to the packet, in the second device, the NID (B) is
appended to the data, after the last device appends its NID to
the packet, the complete path would be A, B, C.

B. Logging Forwarding State

The second method of tracking the path of a packet is
based on the global forwarding state of a network, which

Fig. 2: Illustration of the Hop Recording method

includes all forwarding rules that are used in a network. In
this method it is assumed that the current and all previous
versions of the global forwarding state of a network are known.
The routing of packets may change over time, for instance
because of the addition of a node in the network. Knowing
the global forwarding state, the complete path of a packet can
be determined in the final node. To do so, information about
where the packet enters the network and an identification of
the version of the global forwarding state that was used to
forward the packet is required. Hence, those two factors must
be added to the packet at the first node along a packet’s route.
All the next nodes have to check whether or not they run
the same version of the global forwarding state. When the
state changes to a new version during the packet’s route, some
devices may forward the packet based on different versions of
the forwarding state. In this case, the complete path the packet
took can not be reconstructed, and we have to add another field
to the packet (called the Trackable field) to indicate that the
path cannot be reconstructed. Each forwarding device must
examine the packet to check if the version identification in
the packet is equal to the version that it uses itself. When the
versions are different, the Trackable must be set to indicate
this. In figure 3 the method is illustrated. Device A and B run
the same version, but device C runs another version. In device
A, the version used by the device, V1, is added to the packet
first. Secondly, the Trackable field is added with default value
0. Finally, the NID of device A is added to indicate the node
where the packet has entered the network. Device B checks
the version field and, since it runs the same version, changes
nothing. When the packet enters device C, the Trackable field
is set to 1 indicating the path can not be reconstructed, since
device C runs another version of the global forwarding state.

Fig. 3: Illustration of the Logging Forwarding State method

38

V. IPV6 EXTENSION HEADER

In order to add additional data containing information about
the path to a packet, an extra header must be added to the
packet. This header could be implemented using an entirely
new protocol. However, we decided to use the IPv6 extension
header [8], since network devices which do not recognize
an IPv6 extension header will ignore it. This means the
implementations will also work in a network where not all
nodes are enabled with P4. When using a completely unknown
header, nodes that are not enabled with P4 may discard the
packet, since they are not able to parse the header correctly.
An IPv6 packet may include zero, one, or multiple extension
headers, which are located between the IPv6 header and the
upper-layer headers in a packet.

There are different extension header types, identified by a
value in the Next Header field of the IPv6 header. Only the
Hop-by-Hop Options header is examined by every node along
a packet’s path through the network and for this reason it is
perfectly suited for our usecase. This header is identified by a
Next Header field value of 0 in the IPv6 header and has the
format shown in figure 4.

Fig. 4: The Hop-by-Hop Options header format [8]

The Next Header field is an 8-bit identifier of the type of
header that is immediately following the Hop-by-Hop Options
header. The Header Extension Length field is an 8-bit unsigned
integer, which indicates the length of the Hop-by-Hop Options
header in 8-bytes, not including the first 8 bytes. The Options
field is a variable-length field, of a length such that the
total Hop-by-Hop Options header is an integer multiple of 8
bytes long. A variable padding length is used to fulfil this
requirement. This field also contains a variable number of
options of the format shown in figure 5. Options added to
this Options field offer us a way to add data in order to track
the path the packet took through the network.

Fig. 5: The Hop-by-Hop Options header options format [8]

The Option Type field is an 8-bit identifier of the type of
option. The Option Data Length field is an 8-bit unsigned
integer that is the length of the Option Data Field of this
option in bytes. The last field is called Option Data and it is
a variable-length field that includes option-type-specific data.
This is the field that can be used to add path information to the
packet. Since this data is not yet covered by an existing option
type, the implementation requires a non-existing option type.
The Option Type field is encoded such that the three high-order

bits have a special meaning. The highest-order 2 bits specify
the action that must be taken in case a node using IPv6 does
not recognize the Option Type. Since this research focuses
on extracting information from the packet about its path at
the last node, discarding the packet would lead to information
loss. This is the reason why the Option will be skipped over
when it is not recognized. This action is indicated by the value
00. The third-highest-order bit of the Option Type specifies
whether or not the Option Data of that specific option can
change during the route of a packet to its destination. Since
the options are examined by the nodes along the route and
may change depending on the action that has to be applied,
the value of this bit is set to 1 indicating the option data may
change en route. The remaining low-order 5 bits are chosen
such that the full 8-bit value is a non-existing option type.
For instance, all bits with value 1 makes the Option Type
field value a non-existing option. This results in a option type
value of 0x3F.

In the following section we will describe in detail our two
implementations.

VI. HOP RECORDING

A. The use of the Hop-by-Hop Options header
Since the Option Data field in the Hop-by-Hop Options

extension header allows data to be added to the packet, this
field is used to add the NIDs to the packet. As a packet moves
through the network, the first node would add the Hop-by-
Hop Options extension header with one option containing the
first NID. Each next node along the packet’s path to its final
destination would add one option to the extension header. The
length of the Option Data field is chosen such that the padding
will be a constant value. Since the total Hop-by-Hop Options
extension header must have a size which is a multiple of 8
bytes, the smallest option size to add - while containing a
constant padding size - is 8 bytes. It results in a Data Option
field length of 6 bytes. Every time a node adds its NID the
extension header will thus grow with a size of 8 bytes. If the
Option Data field length would be smaller, the padding must
be recalculated each time a node adds an option. The extension
header format with field values used for hop recording is
shown in figure 6. In this figure the extension header contains
two options, each with its own NID. This figure illustrates how
the extension header would be organised when the packet has
traveled across two P4 nodes in the network.

Fig. 6: Hop-by-Hop Options extension header format used for
implementation of Hop Recording

B. The implementation in P4
The implementation of hop recording in P4 can be split

into four different stages: ‘packet header parsing’, ‘initiating

39

the Hop-by-Hop Options extension header’, ‘adding an option
to the Hop-by-Hop Options extension header’, and ‘sending
the path information to control plane’.

1) Packet header parsing: The first step P4 will take is
trying to parse a packet based on different headers in order to
allow examining the data. The headers are parsed in similar
order as their appearance in the packet. To enable this, P4
requires a structure describing the organisation of a packet
header. This includes defining each field and its size in bits.
Since a packet sent into the network will be an Ethernet packet,
the first header to be parsed is an Ethernet header. For this
implementation this header will not be examined, but it has to
be parsed in order to parse the next headers. The IPv6 header
will be parsed next, containing eight fields which are shown
in listing 1.

Listing 1: IPv6 header definition
h e a d e r ipv6 {

b i t <4> v e r s i o n ;
b i t <8> t y p ;
b i t <20> f l ;
b i t <16> p l e n ;
b i t <8> nh ;
b i t <8> hl im ;
b i t <128> s r c ;
b i t <128> d s t ;

}

The Hop-by-Hop Options extension header is the next
header to parse. To enable adding multiple options to the Hop-
by-Hop Options extension header a header stack structure can
be used in P4. This is a way to enable stacking multiple
headers with the same format, represented as an array of
headers [9]. With this data structure it is possible to parse
multiple options in the extension header. The organisation of
the extension header is shown in listing 2.

Listing 2: Hop-by-Hop Options extension header definition
h e a d e r e x t e n s i o n {

b i t <8> nh ;
b i t <8> h l e n ;
b i t <48> pad ;

}

h e a d e r e x t e n s i o n o p t i o n s s t a c k {
b i t <8> t y p ;
b i t <8> l e n ;
b i t <48> n i d ;

}

The listing shows that the extension header is split into
two parts, the first two fields of the extension header and the
padding, and the option fields of the extension header. This
is done to enable the header stack data structure to stack a
variable number of options. The initiation of the header stack
can be found in listing 3.

Listing 3: Hop-by-Hop Options extension header Options
header stack definition
e x t e n s i o n o p t i o n s s t a c k [MAX SIZE] o p t i o n s ;

Since loops don’t exist in P4, parsing a variable amount of
options in the extension header is done with recursion. The
algorithm that makes this possible is shown in listing 4. In
this listing two parse states are shown. The first one parses the
first three fields of the extension header. In this parse state a
counter is set to the number of options in the extension header.
The number of options is the Extension Header Length field in
the Hop-by-Hop Options extension header. This operation can
be found in line 3 of listing 4. The second parse state parses
the options in the extension header. This counter is decreased
each time one of the options in the extension header is parsed.
When the counter reaches the value 0, parsing all options is
completed.

Listing 4: Parsing extension header with a variable number of
options
s t a t e p a r s e e x t {

p k t . e x t r a c t (hdr . e x t) ;
umd . c n t = hdr . e x t . h l e n ;
t r a n s i t i o n s e l e c t (umd . c n t) {

0 : a c c e p t ;
d e f a u l t : p a r s e i d s ;

}
}

s t a t e p a r s e o p t i o n s {
p k t . e x t r a c t (hdr . o p t i o n s . n e x t) ;
umd . c o u n t = umd . c o u n t − 1 ;
t r a n s i t i o n s e l e c t (umd . c n t) {

0 : a c c e p t ;
d e f a u l t : p a r s e o p t i o n s ;

}
}

Due to this limitation of the Netronome SmartNICs we used
for our implementation, our header stack size has a maximum
of 16. Hence, the MAX SIZE value in listing 3 can be set to a
maximum value of 16 in order to compile the P4 program.
This means a maximum of 16 NIDs could be added to a
packet. In some scenarios this may not be sufficient. For this
reason a different method of parsing the packet is created. The
organisation of the extension header remains the same for this
method and thus can be seen in listing 2, but this method does
not make any use of a header stack structure. It does not parse
the full extension header, but only the three fields shown in
the first header structure of listing 2. These fields are the last
fields that the parser will parse. This way the P4 program can
add an option using the second header structure of listing 2
to the extension header. Note that since the P4 program does
not parse the option fields, it does not know the values in the
options of the Hop-by-Hop Options extension header.

The first time a P4 enabled node examines a packet, the
packet will not contain an extension header yet. To avoid the
P4 program from trying to parse the extension header when
it is not there, the Next Header field of the IPv6 header is

40

checked on its value. If this value indicates another header
then the Hop-by-Hop Options extension header, parsing the
headers will be completed after parsing the IPv6 header.

2) Initiating the Hop-by-Hop Options extension header:
When the headers are parsed, the P4 program will add a Hop-
by-Hop Options extension header when it does not exist in
the packet yet. This action is shown in listing 5. To be able to
add a header to a packet, it must be set as a valid header. This
operation can be found in line 2 of the listing. The next step
in the action is to set all the field values of the Hop-by-Hop
Options extension header. Since it is added immediately after
the IPv6 header, the Next Header field of the extension header
becomes the Next Header field of the IPv6 header. This one
changes to the value ‘00’ indicating the Hop-by-Hop Options
extension header. These operations can respectively be found
in line 3 and 5 of listing 5. To ensure the packet can be parsed
correctly at its final node in the network, the length fields in
the headers must contain the correct values according to the
description in section VI-A.

This action is only applied when the node that will forward
the packet is the first P4 node along the route of the packet.
To determine whether or not this action must be applied, a
check for the presence of the extension header is made.

Listing 5: Action to initiate an extension header for the Hop
Recording implementation
a c t i o n i n i t e x t h d r () {

hdr . e x t . s e t V a l i d () ;
hdr . e x t . nh = hdr . i pv6 . nh ;
hdr . e x t . h l e n = 0 ;
hdr . i pv6 . nh = 0x00 ;
hdr . i pv6 . p l e n = hdr . i pv6 . p l e n + 8 ;

}

3) Adding an option to the Hop-by-Hop Options extension
header: Each time a packet is forwarded by a P4 enabled
device, the P4 implementation must always add an option to
the extension header. Since no option is parsed in the parser of
the implementation, each option added to the packet, is added
as first option in the extension header. This results in creating
a packet with options in the reversed order of addition by the
nodes along the packet’s path. The action for adding an option
is shown in listing 7. The option header from listing 2 is set
as a valid header. All the fields of the option are set with their
corresponding values. The Option Data field is set to the NID
of the operating P4 node. The NID is read from a register
where it has been stored. A register in P4 is an object that is
used to store values and has a state that can be read and written
by both the control plane and data plane. To use registers they
have to be defined in the P4 program with a size (indicating
the number of register fields), field size and name. Listing 6
shows this register definition with one field with a size of 48
bits, because the Option Data field contains a value of 48 bits.
This register is called ‘nid’ and can be read by the function
nid.read() when it is defined. This operation can be found in
line 6 of listing 7. The first argument in this function call

specifies the field to read into. The second argument specifies
the index of the register field.

Since this action adds an option to the extension header,
the fields with information about the lengths of headers in the
IPv6 header and extension header are updated according to
the description in section VI-A.

Listing 6: Register definition for NID
r e g i s t e r <b i t <48>>(1) n i d ;

Listing 7: Action to add an option to extension header
a c t i o n a d d o p t i o n () {

hdr . o p t i o n . s e t V a l i d () ;
hdr . e x t . h l e n = hdr . e x t . h l e n + 1 ;
hdr . o p t i o n . t y p = 0x3F ;
hdr . o p t i o n . l e n = 0x06 ;
n i d . r e a d (hdr . o p t i o n . nid , 0) ;
hdr . i pv6 . p l e n = hdr . i pv6 . p l e n + 8 ;

}

4) Sending the path information to the control plane:
The specific data fields required to reconstruct the path could
have been sent to the control plane using a digest. However,
this implementation only parses the first three fields of the
extension header to allow for adding an unlimited number
of options. This method thus can not send all individual
options to the control plane through a digest, because then
all options must be parsed. Another way of sending data
to the control plane is to clone the packet and sending the
clone to the control plane. Whenever a packet is cloned, this
means the entire packet is duplicated. P4 can still make a
difference between the original packet and the clone based on
the the instance type value in the standard metadata struct.
The instance type indicates a clone with value 0x8. Sending
the clone to the control plane can be done by sending every
packet that has instance type value 0x8 to the control plane.

To be able to calculate throughput, a timestamp is added
to the clone. In the intrinsic metadata in P4, a timestamp is
automatically assigned to the ingress global time-stamp field
when starting the parsing of the packet in the P4 program. To
be able to use this field, the intrinsic metadata header must
be defined in the implementation with the field that will be
used as shown in listing 8. This header is added to the cloned
packet at its very beginning in order to extract it from the
packet in the control plane.

Listing 8: Intrinsic metadata header with timestamp field
h e a d e r i n t r i n s i c m e t a d a t a t {

b i t <64> i n g r e s s g l o b a l t i m e s t a m p ;
}

C. Extracting path data from packets in the control plane

To extract the data that indicates the complete path a packet
took through the network, the Option Data fields - each with

41

an NID - in the packet must be examined. This is done with the
Scapy library of Python which includes functions to unpack a
packet based on layers and fields [10], [11]. With the function
getlayer(HopbyHopOptExtHdr) the extension header layer is
extracted from the packet. From this object the value in each
of the Option Data fields is obtained and appended to a list,
which forms the path of the packet. The paths must be reversed
to get the chronological order of the NIDs along the packet’s
path. The length of the payload in the packet is also obtained
by extracting the value from the Payload Length field of the
IPv6 header in the packet. This Payload Length field is used,
because it shows the size of the packet with extension header
in bytes that is being sent through the network. This way, a
larger extension header is indicated by a packet of more bytes.
Also the timestamp is extracted from the packet. This is done
by extracting the first 8 bytes of the packet and converting it
to an integer. The first 4 bytes indicates the time in seconds,
and the last 4 bytes the time in nanoseconds. This data is used
to calculate throughput of the path in bits per second.

VII. LOGGING FORWARDING STATE

A. The use of the Hop-by-Hop Options header

As in the first method, the Option Data field in the Hop-by-
Hop Options extension header can be used to add the version
of the current global forwarding state, and the NID of the
node where the packet enters the network. As a packet moves
through the network, the first node would add the Hop-by-Hop
Options extension header with options containing the three
factors as illustrated in figure 3. Since each next node only has
to examine the data in this Option Data field, the extension
header will have a fixed size. To minimize the size, the three
factors can be combined in one option in the extension header.

This option would thus be encoded in a way that the highest-
order x bits would specify the global forwarding state version
used by the first node of a packet’s path at the time of sending
the packet into the network. The next y bits specify wheter or
not the path of the packet can be reconstructed. The remaining
low-order 48−(x+ y) bits would specify the NID of the node
where the packet enters the network. The values chosen for
x and y can differ according to the size needed in a certain
network. In this implementation the following sizes are chosen.
For x the value of 8 bits is chosen, because this will suffice
for the purpose of the experiments. For the value of y 4 bits
is chosen, although this field can only indicate two different
states for the trackability of a path. However, for debugging
reasons it is easy to work with values of a size which is a
multiple of 4 bits, because the hexadecimal notation is used
to show a packet’s data. This results in a size of 36 bits for the
NID of the first node. The format of the Hop-by-Hop Options
extension header with field values used for this method are
shown in figure 7.

B. The implementation in P4

The implementation of hop recording in P4 can be split
into four different sections according to the design of this
approach: ‘packet header parsing’, ‘creating the Hop-by-Hop

Fig. 7: Hop-by-Hop Options extension header format used for
the logging forwarding state implementation

Options extension header’, ‘version comparison’, and ‘sending
the path information to the control plane’.

1) Packet header parsing: As in the Hop Recording
method, the headers must be parsed by the P4 program in
order to examine data and add data to the packet. This method
can only be used in IP networks, because it depends on
the routing protocol used by the Network layer. The packets
thus will use an Ethernet header and an IPv6 header that
will be parsed respectively in P4 in corresponding to the
Hop Recording approach. The organisation of the Hop-by-
Hop Options extension header as described in section VII-A
is shown as a header definition in listing 9.

Listing 9: Definition of the Hop-by-Hop Options extension
header used in the implementation of Logging Forwarding
State
h e a d e r i p v 6 e x t e n s i o n {

b i t <8> nh ;
b i t <8> h l e n ;
b i t <48> pad ;
b i t <8> o typ ;
b i t <8> o l e n ;
b i t <8> v e r s i o n ;
b i t <4> t r a c k ;
b i t <36> e n t r y ;

}

This header will only be parsed when it is already present in
a packet. This can be checked by examining the Next Header
field in the IPv6 header. If this value is ‘00’ it indicates that
the Hop-by-Hop Options extension header is present in the
packet.

2) Creating the Hop-by-Hop Options extension header:
When the headers are parsed, the P4 implementation will add
the Hop-by-Hop Options extension header when it does not
exist in the packet yet. This action is shown in listing 11. As
with the Hop Recording method, the extension header is set
as a valid header to add it to the packet first. Subsequently,
the field values of the extension header must be set to the
correct values. To get the NID and the version of the current
forwarding state used by the first node of a packet’s path,
registers are used. The register definitions are shown in listing
10. The values stored in these registers are read into the version
and entry fields of the extension header in the implementation.
These operations can be found in line 7 and 8 of listing 11.
The Trackable field is initially set to value 0, because the first
node is defining the global forwarding state that must be used
in order to reconstruct the path of the packet. The value 0

42

indicates the packet’s path can be tracked. When the value
changes to 1, this indicates the path can not be reconstructed.
Finally, the fields in the IPv6 header must be updated to the
correct values. The field that will change are the Next Header
and Payload Length field due to the addition of the extension
header.

Listing 10: Register definitions for the Logging Forwarding
State implementation
r e g i s t e r <b i t <8>>(1) v e r s i o n ;
r e g i s t e r <b i t <36>>(1) n i d ;

Listing 11: Action to initiate an extension header in the
Logging Forwarding State implementation
a c t i o n i n i t e x t e n s i o n () {

hdr . e x t . s e t V a l i d () ;
hdr . e x t . nh = hdr . i pv6 . nh ;
hdr . e x t . h l e n = 1 ;
hdr . e x t . o typ = 0x3F ;
hdr . e x t . o l e n = 0x06 ;
hdr . e x t . t r a c k = 0x0 ;
i d . r e a d (hdr . e x t . e n t r y , 0) ;
v e r s i o n . r e a d (hdr . e x t . v e r s i o n , 0) ;
hdr . i pv6 . nh = 0x00 ;
hdr . i pv6 . p l e n = hdr . i pv6 . p l e n + 1 6 ;

}

3) Version comparison: The forwarding state version com-
parison is done in the egress match+action stage in the P4
model. This stage is used because of load balancing consid-
erations, since the ingress match+action stage already applies
the forwarding rules to the packets. All the actions taken in
this stage are shown in listing 12. If there already exists a Hop-
by-Hop Options extension header in the packet, the packet is
being examined by a node along the route of a packet other
than the first node. This node will compare the version of the
global forwarding state that it is running itself to the version
that is in the packet. Since each node has the version value
stored in a register, the node will compare this register field
and the version value in the extension header. This comparison
is shown in line 5 of listing 12. Since a value in a register
field can only be used for an operation when it is read into
a variable, a variable in the user metadata struct is used for
storing this value. This is shown in line 2 of 12. When the
versions are not equal and therefore the path of the packet
through the network can not be reconstructed, the Trackable
field is set to value 1. This is shown in line 5 and 6 of listing
12.

Listing 12: Comparison of version values in the Logging
Forwarding State implementation
a p p l y {

v e r s i o n . r e a d (umd . v e r s i o n v a l u e , 0) ;
i f (! hdr . e x t . i s V a l i d ()) {

i n i t e x t e n s i o n () ;
} e l s e i f (hdr . e x t . v e r s i o n != umd . v e r s i o n v a l u e) {

hdr . e x t . t r a c k = 0x1 ;
}

i f (smd . e g r e s s s p e c == 0 x0301 &&
hdr . e x t . t r a c k == 0x0) {

d iges t umd . e n t r y = hdr . e x t . e n t r y ;
d iges t umd . d s t = hdr . i pv6 . d s t ;
d iges t umd . p l e n = hdr . i pv6 . p l e n ;
d iges t umd . t imes t amp =

hdr . i n t r i n s i c m e t a d a t a . i n g r e s s g l o b a l t i m e s t a m p ;
d i g e s t<d iges t umd s >(1 , d iges t umd) ;

}
}

4) Sending the path information to control plane: Since the
size of the Hop-by-Hop Options extension header is fixed, a
digest can be sent by the P4 program. This allows specific
fields required to recreate the path of the packet being sent
directly to the control plane. Additional data that can be used
to collect and analyse metrics of the network can also be sent.
The same information extracted by the control plane in the
Hop Recording approach, is sent in this approach. To send a
digest with multiple values, a struct must be defined containing
those values. This struct is shown in listing 13. The destination
address from the IPv6 header is also sent in the digest, because
the rule that matches this address is used to forward the packet
and therefore it is required to reconstruct the path. From an
efficiency perspective, this address is used to recreate the path.
It can also be done by using the NID of the node that sends
the digest. But in that case, an externally stored value must be
examined in stead of a value that already exists in the program.

Listing 13: Digest definition in the Logging Forwarding State
implementation
s t r u c t d i g e s t u m d s {

b i t <36> e n t r y ;
b i t <128> d s t ;
b i t <16> p l e n ;
b i t <64> t imes t amp ;

}

The digest object is created by assigning the values from the
fields in the packet, to the members of a digest umd s struct,
shown in line 9-12 of listing 12. This is done in the egress
match+action stage, since the digest must be sent after the
last forwarding state comparison is made. Whenever the last
node is using an earlier version of the global forwarding state,
it can not reconstruct a packet’s path. To check if a digest
must be sent to the control plane, the egress port and the
Trackable field in the packet are examined. When the egress
port indicates a process of an upper layer in the network,
the node is leaving the network and the digest must be sent.
Such a port is simulated in the research by virtual port v0.1,
corresponding with hexadecimal value 0x0301 in the devices.
Furthermore, when the Trackable field is set to 1, no digest
is being sent to avoid the collection of incorrect data. In
listing 12 the check for sending the digest and is shown in
the lines 8 through 13. This approach also sends a timestamp
to the control plane - created in a similar way as by the Hop
Recording approach - to calculate throughput.

C. Reconstruction of the path in the control plane
The reconstruction of the path by the control plane uses

a version of the forwarding state that is archived in the last

43

node of a packet’s path. In this forwarding state all rules for
forwarding a packet are listed. With use of the information
from the digest each forwarding rule can be determined in
chronological order. To determine the applied forwarding rule,
all the rules for the current node are filtered by matching the
NID. In case of the first node, this would be the NID that is
in the entry field of the extension header of the packet. Since
the packets are being forwarded based on an IPv6 destination
address, the applied rules can then be determined by matching
the destination address from the digest with the filtered rules.
The NID of the next node is appended to the path. This
algorithm is recursively called until the final node is reached
in the reconstructed path.

VIII. EXPERIMENT

For our research we used a small network with two servers.
Each server has two Netronome SmartNICs (Agilio® CX
2x25GbE SmartNIC) [12] identified by the numbers 20206 and
20207. Each SmartNIC has two physical interfaces identified
by the values 0 and 1. Figure 8 shows our experiments’
topology.

Fig. 8: Network Topology used in our experiments

Using the four Netronome SmartNICs, we created a network
with four nodes and connected them as a full mesh. The
connection between nodes in different servers is made with
physical Ethernet links each of 25 Gbps. To connect nodes
within one server, we established a virtual connection. The full
mesh enables the highest number of paths between four nodes
and allowed us to as many paths as possible. Our goal was
to verify that our implementations allows us to track correctly
all possible paths. The NID used in the experiments for each
the node are the server number value prepended to the NIC
number, e.g. the top node in server one has an NID of 120206.

A. Configuration of the forwarding rules

After compiling the P4 program, we loaded it onto each
SmartNIC in the network. To be able to forward the packets
to any next node, rules for the forwarding table must be
created and loaded on each node together with the values of
the registers that are used for each P4 implementation. The
rules and registers are generated based on entries in a comma
separated values (CSV) file. For each experiment we created
a CSV file including entries for each node in the network.
The forwarding rules are all the same for each CSV file. The
rules consists of arbitrary paths, with various path lengths and
network links used. This way, all path lengths and links are

tested. As illustration, Table I shows two example entries in
one of the CSV fileswe generated, each one corresponding to a
two different node as it can be seen from two different values
in the NID column.

index NID version dst IPv6 egress port next NID
1 120206 2 2000:: p0 220206
2 120207 1 2001:: p1 220206

TABLE I: Entries in a CSV file for the generation of rules for
Logging Forwarding State

From this table it can, for instance, be derived that a packet
with destination address 2000:: received on the node with NID
120206 will be outputted on egress port p0 which links to the
node with NID 220206. Using a Python script, these values
are stored in the forwarding table which the P4 program will
examine. This script also sets the registers required by the
relevant method. The Logging Forwarding State method re-
quires the NID and the version field; when the Hop Recording
method is used, the version field will not be included in the
CSV file. Table II shows which NID corresponds with the
destination IPv6 addresses used for forwarding the data.

dst IPv6 address NID
2001:: 120206
2000:: 120207
2002:: 220206
2003:: 220207

TABLE II: The destination IPv6 addresses with corresponding
NIDs

B. Creating packets to obtain path data

To create the packets used to experiment with the imple-
mentations, we used the Scapy library of Python. This allows
for the creation of packets with headers of the user’s choice.
The format of the packets created to obtain data must contain
an Ethernet header and an IPv6 header in order to be parsed
correctly by our implementations. The transport-layer header
is not restricted to be an UDP header or a TCP header, since
this header will not be parsed by the implementations. We
chose to use the UDP header for speed of testing since no
connection is required. Hence, all the sent packets will have
the same format with three headers and some payload. We
chose a payload of the same length for each packet. This
is necessary because the packets will get extension headers
added of different lengths according to the path they take
and the method used. When the payload length is the same
for each packet, different path lengths and methods can be
distinguished according to a packet’s total length. If we would
have used a different payload length for each packet, it would
not be clear from its length if a packet is taking a path of four
or three hops. This would make our validation unnecessarily
more complex.

To test the correctness of all recorded path we sent a
flow of packets into the network for each possible path. We
randomised the amount of packets in one flow as a randomized

44

integer between 5 and 100. We chose a minimum of 5 to avoid
uncertainties about a path that is reconstructed only once. We
chose a maximum of 100 to avoid the experiments taking a
lot of time. We used this approach to create random numbers
of packets for the three following experiments:
• Experiment 1: Hop Recording;
• Experiment 2: Logging Forwarding State when all nodes

run the same forwarding state version; and
• Experiment 3: Logging Forwarding State when one node

is running a different forwarding state version than the
others.

IX. HOP RECORDING RESULTS

We verified the correctness of our implementation by ex-
amining the packets that arrives at the last hop, inspecting
them with Wireshark. After that we compared the number of
times we recorded certain paths to the number of times we
had generate packets travelling it.

Figure 9 shows a Wireshark capture of a packet as it appears
in the last node of its path. With the Hop Recording approach,
Wireshark will not parse all fields of cloned packets correctly,
because in this method we append the timestamp to the packets
at the very beginning. This required us to perform manual
inspection of the values seen to verify their correctness.

Fig. 9: Packet captured by Wireshark from experiment 1

The information Wireshark parses out of the packet is shown
in the first three lines of figure 9: the first 8 bytes of the
byte data is the timestamp added to the cloned packet; while
the Hop-by-Hop Options extension header can be found in
the outlined bytes in the figure and can be checked for its
correctness. The first byte (0x11) has value 17 which indicates
the UDP header type as next header. The next byte with value
4 indicates that there are four options in the extension header.
The options in the extension header start after the next 6
bytes which are all zeros indicating padding. The first two
bytes of the options (0x3f and 0x06) specify the Option Type
and Extension Header Length as described in section V. As
the figure shows all options start with the same values for
these fields. The low-order 6 bytes of each option in the
extension header indicate the NID of the node that forwarded
the packet. The destination of this packet can be found in
the 16 bytes in front of the contoured bytes in figure 9. This
shows the destination address 2000:: which is node 120207
according to table II. This NID is also seen in the first option
of the extension header in the packet. When all options in
the extension header are examined, it can be derived that the
NIDs are in reverse order of passing by the packet. However,

this is the result of adding the options to the extension header
without having the options parsed in the implementation.

We confirmed that the number of packets that are sent
during the experiment is exactly the same as number of times
the path is seen. We could confirm that all packets sent are
properly captured and their path is reconstructed. W

X. LOGGING FORWARDING STATE RESULTS

We followed the same verification procedure for Experiment
2 and 3, as we had done in Experiment 1.

Figure 10 shows an example packet as it appears in the last
node of its path.

Fig. 10: Packet captured by Wireshark from experiment 2

In this case Wireshark can correctly parse these packet, and
we can see that Wireshark parses the Hop-by-Hop Options
extension header correctly. This can also be checked manually
by examining the contoured bytes in the figure. This part of
the packet is the Hop-by-Hop Options extension header. The
first byte (0x11) has value 17 which indicates the UDP header
type as next header. The next byte with value 1 indicates
that there is one option in the extension header. The option
in the extension header starts after the next 6 bytes which
are all zeros indicating padding. The first two bytes of the
option (0x3f and 0x06) specify the Option Type and Extension
Header Length as described in section V. The selected bytes
of the contoured bytes indicate the Option Data field of the
Hop-by-Hop Options extension header. The first byte has value
0, which indicates that the packet’s path can be tracked. This
packet thus only traversed nodes using the same version of the
forwarding state. The second byte has value 1, which specifies
the version of the forwarding state that is used in the node with
NID 220206, which is the value of the lowest-order 4 bytes
in the selected bytes of the data.

Comparison of the number of reconstructed paths and the
number of generates paths showed also in these two experi-
ments that we can reconstruct all paths correctly, hence once
more validating the solidity of our implementation.

XI. DISCUSSION

A. Hop recording
As said before our Hop Recording implementation allows

us to track all packets and correctly reconstruct their paths.

45

An advantage of this method is that the control plane is
only required to perform tasks in the last node, since all the
information of the path is stored in the packet. Reconstructing
the paths based on a clone of the packet, however, is less
efficient than reconstructing them based on a digest that
already includes all NIDs of the path separately. This way
the fields would only have to be put in the right order to
reconstruct the path.

This implementation has also downsides. First of all, a
variable amount of data is added to the packet. This results in
an increase in the size of the packet at each hop. In general,
this makes it difficult for a sending device to know what
maximum transmission unit (MTU) should be used. When
the MTU is chosen too small or too big, this could result
in the packet being dropped. With our use of the header stack
structure a maximum of 16 NIDs can be added to the packet,
and consequently the maximum size of a packet is known.
However, depending on the network in which this approach is
used, this could not satisfy the needs of the user. Additionally,
the documentation of the Netronome SmartNICs is not clear
about when 16 headers is the maximum for a header stack
and in what cases it is less. The other approach implemented,
parses only the part of the Hop-by-Hop Options extension
header without the Options. The fact that the option values
are not known when they are not parsed, and the fact that
it is difficult to use variable size fields in P4, results in the
complexity to send digests with the information required to
reconstruct the path. To workaround this difficulty, the packet
has to be cloned and this clone is sent to the control plane in
the last node of a packet’s path. However, sending a clone to
the control plane is less efficient than sending a digest, since
a digest contains less data to be processed.

A second downside of our approach is that it requires
additional information about the hops taken when there exist
multiple links between two nodes. This would require more
data added to the packet. This would also result in more
work for the control plane, since this information needs to
be extracted from where it is stored in a device. Additionally,
more data to be extracted from the cloned packets leads to
more work for the control plane to reconstruct the paths.

The implementation can be optimized by determining the
size of the NID based on the number of devices in the network.
For instance, when this implementation is used in a network
with 8 nodes, the values 0 trough 7 can be used to represent
each NID. This would require onhly 4 bits. However, using
the smaller size of the NID would require calculations in each
hop to determine the size of the padding in the Hop-by-Hop
Options extension header.

B. Logging Forwarding State

Also this implementation to track the path of data through
a network has certain consequences. A first downside is that
this method can only be used when a global forwarding state
is available and when this is the only aspect regulating the
routing of packets. However, even when a global forwarding
state is available, some packets may not be tracked, e.g. when

there are different versions of forwarding states in the nodes
along the path of the packets for example at times of routing
reconvergence.

However, in contrast to Hop Recording, a constant size of
data is added to a packet. This eliminates some difficulties with
determining the MTU and implementation design choices as
discussed in section XI-A. Additionally this method allows to
send only a digest with specific header fields to the control
plane. The control plane does not need to extract the fields
from the entire packet to reconstruct the path of packets. The
only information added to the packets is the entry node, the
forwarding state version, and a field indicating the trackability
of the paths. Though in contrast to Hop Recording, this method
requires more resources along the path of a packet, where the
forwarding state database must be searched in order to find the
applied forwarding rule. Additionally, the corresponding NID
to the output link must be found in order to append it to the
complete reconstructed path. Note that we could extend this
method to support the case of a change in the forwarding state.
Though this would result in packets of variable size, which as
in the case of Hop Recording bring in MTU mismatches.

Finally, we must point that we chose IPv6 for our implemen-
tation as this supports both bound and unbound extentions to
the header. While it is possible to use Options in IPv4 headers
they have limited and fixed size, and could not be used in any
case in methods such as the Hop Recording that do not limit
the growth of the additional information in the packets.

XII. VISUALISATION

Knowledge of network paths allows for insightful visuali-
sation at different level of granularity. We expect that network
using P4 devices and adopting our implementation will ini-
tially focus on this. We therefore used the path information
we had collected to explore this usage of the data.

Global view of the paths can show all the paths takes by
the traffic in a certain topology, and provide handles to make
routing in the network more efficient. Hot spots would be
visible in such maps and finding alternative routes for certain
paths would re-balance utilisation. Figure 11 is a global view
of the paths we created in Experiment 2.

Fig. 11: Global view visualisation of data from experiment 2

Each path data takes through the network has a different
color and its throughput is roughly indicated by the thickness
of the lines as shown in the legend of the figure.

46

A second topological level of visualisation focus on how
traffic reaches a specific end-node. This end-node view can be
done in two ways: one could select two nodes (x and y) to
see the path between them (see 12a); or one could selecting
one node to see all the paths that have it as final destination
(figure 12b).

(a) (b)

Fig. 12: End-node view visualisation in experiment 2: path
from 120206 to 120207 (a) and all paths to 220206 (b)

In both figures each path has its own color and its through-
put is roughly indicated by line thickness. These types of
visualisations could be useful to network users who wants to
know how traffic is reaching them, particular when interested
in the sources of malicious traffic.

Finally, a link view could use our implementation to provide
information on the paths that traverse a specific link, informa-
tion that is useful for traffic load investigation. Figure 13 shows
this for the data collected in Experiment 2.

Fig. 13: Link-view visualisation of all paths that share the link
between 120207 and 220206 in experiment 2

XIII. CONCLUSIONS AND FUTURE WORK

In this article we presented the implementation of path
recording methods in P4; our effort will benefit networks as it
provided handles for increased security and for novel insights
toward delivering newer services.

The first approach is Hop Recording, which each node along
the path of a packet adds its own NID to the packet. The data
is extracted from a clone of the entire packet in the last node
in the path of a packet by the control plane. This is the only
time the control plane gets involved. The second approach,
Logging Forwarding State, adds the version of the forwarding
state that is used by the first node along a packet’s path. In
each next node, this version is compared to the version used
by the current device in order to check if the path can be
reconstructed. In the last node of the path, the complete path
is reconstructed based on the information in the packet itself

and the version of the forwarding state that is used when the
packet was sent. The results of the experiments with these
implementations showed that all paths of all packets sent into
the network that are trackable, were reconstructed correctly by
the last node of the path.

Both implementations can be used to track the paths of
packets through a network in hardware with P4. We in
fact show that easy to implement visualisations, at different
granularity level, provide the network operators and engineers
with extensive insights.

There are some possible optimisation we plan to explore.
Of particular interest would be to limit the amount of packets
that have to be sent to the control plane in order to reconstruct
their paths. This could done by storing some identifier of the
data indicating a certain path when the device sees this path
for the first time. Whenever a packet with the same path data
is examined by this device, it can determine the path based on
this identifier instead of reconstructing it in the control plane.
This would make the implementations more efficient, since it
decreases the amount of tasks the control plane must perform.

ACKNOWLEDGMENT

Part of this work was funded by the RoN - Research on
Networks- from SURFnet. We are particularly thankful to
Ronald van der Pol and Marijke Kaat. This research is also part
of the 2StiC program - Security, Stability and Transparency in
inter-network Communication - (https://www.2stic.nl/).

REFERENCES

[1] Cisco Systems Inc, “Netflow performance analysis,” 2005.
[2] R. Koning, N. Buraglio, C. de Laat, and P. Grosso,

“Coreflow: Enriching bro security events using network
traffic monitoring data,” Future Generation Computer Sys-
tems, vol. 79, pp. 235–242, 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0167739X17305952

[3] P. Bosshart, , D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[4] J. Hill, M. Aloserij, and P. Grosso, “Tracking network flows with p4,”
in 2018 IEEE/ACM Innovating the Network for Data-Intensive Science
(INDIS). IEEE, 2018, pp. 23–32.

[5] F. Cugini, P. Gunning, F. Paolucci, P. Castoldi, and A. Lord, “P4 in-
band telemetry (int) for latency-aware vnf in metro networks,” in Optical
Fiber Communication Conference. Optical Society of America, 2019,
pp. M3Z–6.

[6] B. Niu, J. Kong, S. Tang, Y. Li, and Z. Zhu, “Visualize your ip-
over-optical network in realtime: a p4-based flexible multilayer in-band
network telemetry (ml-int) system,” J. Lightw. Technol., submitted, pp.
1–9, 2019.

[7] M. Riftadi and F. Kuipers, “P4i/o: Intent-based networking with p4,” in
2019 IEEE Conference on Network Softwarization (NetSoft). IEEE,
2019, pp. 438–443.

[8] S. Deering and R. Hinden, “Rfc 8200: Internet protocol,
version 6 (ipv6) specification,” 2017. [Online]. Available:
https://tools.ietf.org/html/rfc8200

[9] The P4 Language Consortium, “P4-16 language specification,” 2018.
[Online]. Available: https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.pdf

[10] P. Biondi, “Scapy documentation,” 2019.
[11] O. Eggert, “Ipv6 packet creation with scapy documentation,” 2012.
[12] Netronome Systems Inc., “Agilio® cx

2x25gbe smartnic,” 2017. [Online]. Available:
https://www.netronome.com/m/documents/PBAgilioCX2x25GbE.pdf

47

