
Performance portability of a Wilson Dslash Stencil
Operator Mini-App using Kokkos and SYCL

Bálint Joó∗, Thorsten Kurth†, M. A. Clark‡, Jeongnim Kim§,
Christian R. Trott¶, Dan Ibanez¶, Dan Sunderland¶, Jack Deslippe†

∗Jefferson Lab
Newport News, VA, U.S.A

Email: bjoo@jlab.org

†NERSC
Berkeley, CA, U.S.A

Email: tkurth@lbl.gov, jrdeslippe@lbl.gov

‡NVIDIA
San Jose, CA, U.S.A

Email: mclark@nvidia.com

§Intel Corporation
Hillsboro, OR, U.S.A

Email: jeongnim.kim@intel.com

¶Sandia National Laboratories
Albuquerque, NM, U.S.A

Email: crtrott@sandia.gov, dsunder@sandia.gov, daibane@sandia.gov

Abstract—We describe our experiences in creating mini-apps
for the Wilson-Dslash stencil operator for Lattice Quantum
Chromodynamics using the Kokkos and SYCL programming
models. In particular we comment on the performance achieved
on a variety of hardware architectures, limitations we have
reached in both programming models and how these have been
resolved by us, or may be resolved by the developers of these
models.

Index Terms—Portability, Performance, Kokkos, SYCL ,
Lattice QCD, Wilson Dslash

I. INTRODUCTION

While performance portability has always been desirable,
applications could often get away with maintaining multi-
ple codebases to target multiple architectures. A common
approach to targeting multiple systems in numerical lattice
quantum chromodynamics (Lattice QCD or LQCD) (e.g. [1])
has been to utilize a layered software design and access crucial
algorithms (primarily linear solvers) implemented in libraries
optimized directly to the underlying hardware. An example is
the Chroma code [2] which uses a data-parallel layer called

This research is funded by the Exascale Computing Project and the
Scientific Discover through Advanced Computing program of the U. S.
Department of Energy, by the Offices of Advanced Scientific Computing
Research (ASCR) and Nuclear Physics (NP). Authored by Jefferson Science
Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The
U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce this manuscript for U.S. Government purposes.

QDP++ which has a canonical CPU reference implementation
as well as versions of it [3] which provide better vectorization
on CPUs and run on NVIDIA GPUs utilizing JIT compilation
from the LLVM compiler suite [4]. In turn high-performance
solvers are accessed from architecture-specific libraries such
as QUDA [5]–[7] for NVIDIA GPUs and the QPhiX and MG-
Proto libraries for Intel CPUs [8]–[10].

With the recent announcement of the next round of pre-
exascale and exascale systems in the United States, the strategy
of maintaining an Intel AVX multicore CPU and NVIDIA
GPU code stacks and libraries to cover most bases will
no longer be successful, since the three announced systems
will feature different accelerators. The Aurora system to be
installed in Argonne Leadership Computing Facility (ALCF)
will feature Intel Xe technology, the Frontier System at Oak
Ridge Leadership Computing Facility (OLCF) will be powered
by GPUs from AMD Corporation, while the Perlmutter System
at NERSC will utilize NVIDIA GPUs. Maintaining separate
code stacks to cover all the architectures would rapidly outpace
available manpower efforts. As such, performance portable
approaches are crucial in order to successfully target all of
these systems.

In this paper we present Mini-Apps for LQCD [11], [12]
implementing the Wilson Dslash Operator, developed in the
Kokkos [13] programming model and ported to the SYCL
programming model [14] which, in turn, will form the basis

14

2019 IEEE/ACM International Workshop on Performance, Portability and Productivity in HPC (P3HPC)

978-1-7281-6003-0/19/$31.00 ©2019 IEEE
DOI 10.1109/P3HPC49587.2019.00007

of Data Parallel C++ in the OneAPI effort from Intel. The
Wilson-Dslash kernel is a particular nearest-neighbor stencil
operator which is used at the heart of iterative solvers in LQCD
calculations. In order for a programming model to be viable for
encoding lattice QCD applications, being able to develop an
efficient single process Wilson-Dslash kernel using the model
is a minimum requirement in our view.

Our primary contributions are as follows: we provide open
source, publicly available mini-apps for Wilson-Dslash in both
Kokkos and SYCL for the future use of the community.
In addition by gathering performance data on a variety of
hardware platforms we give some idea of performance porta-
bility attained using these models as regards these mini-apps
specifically.

This paper is structured as follows: in Sec. II we will detail
some relevant background such as the structure of the Wilson-
Dslash operator and recap a basic performance model for the
algorithm. We will also outline briefly the features of the
Kokkos and SYCL programming models relevant to this paper.
Finally we will also touch on some related work of which we
are aware. In Sec. III we will discuss the salient features of
our Kokkos implementation including numerical results, and
we will consider the SYCL implementation in Sec. IV. We
will discuss our experiences further in Sec. V and conclude in
Sec. VI.

II. BACKGROUND

A. Wilson Dslash Operator

The Wilson-Dslash operator is a finite-difference operator
used in Lattice QCD to describe the interactions of quarks
with gluons. Let us consider space-time as being discretized
onto a 4-dimensional hypercubic lattice, the sites of which will
be labeled by index x. The quarks are denoted by a complex-
valued spinor field ψαa(x) where α ∈ [0, 3] are the the so
called spin-indices, and a ∈ [0, 2] are the color-indices. The
gluons are represented by the gauge matrices Uabµ (x) which
are ascribed to the links of the lattice emanating from site
x in space-time direction µ ∈ [0, 3]. The U are members of
the gauge group SU(3) and are represented as unitary 3 × 3
complex matrices with respect to color indices and have unit-
determinant. With these basic definitions the Wilson-Dslash
operator is defined as (suppressing spin and color indices):

/Dψ(x) =

3∑
µ=0

P−µ Uµ(x)ψ(x+µ̂)+P
+
µ U

†
µ(x−µ̂)ψ(x−µ̂) (1)

where /D is the so called “D-slash” operator acting on the
spinor at site x. In the definition above, P±µ = 1

2 (1± γµ)
are spin-projection matrices (matrices in spin-space) with γµ
being members of a Dirac algebra, and ψ(x± µ̂) refers to the
value of ψ from the neighboring sites in the forward/backward
µ direction.

A common trick in evaluating /Dψ is to note that the result
of applying P± to ψ(x) has only two independent spin compo-
nents. As a result the matrix multiplication in the color degrees
of freedom needs to be carried out only twice, rather than

1 void dslash(Spinor out[Nsites], const Gauge u_in[Nsites][4][2],
2 const Spinor s_in[Nsites])
3 {
4 forall(int site=0; site < Nsites; ++site) {
5 HalfSpinor tmp1,tmp2;
6
7 out[site] = 0; // Initialize
8
9 for(int mu=0; mu < 4; ++mu) { // XYZT directions

10
11 // Pˆ{-}_{mu} U_mu(x) psi(x + hat(mu));
12 tmp1 = projectMinus(mu, neighborPlus(site, mu, s_in));
13 for(spin=0; spin < 2; ++spin) {
14 // matrix multiply in color space
15 tmp2[spin] = u_in[site][mu][FORWARD] * tmp1;
16 }
17 out[site] += reconstructMinus(mu,tmp2);

// accumulate
18
19 // Pˆ{+}_{mu} Uˆ\dagger psi(x - hat(mu))
20 tmp1 = projectPlus(mu, neighborMinus(site, mu, s_in));
21 for(spin=0; spin < 2; ++spin) {
22
23 // matrix multiply in color space
24 tmp2[spin] = adj(u_in[site][mu][BACKWARD]) * tmp1;
25 }
26 out[site] += reconstructPlus(mu,tmp2);

// accumulate
27 } // mu
28 }// site
29 }

Fig. 1. Pseudocode for Wilson-Dslash Operator

four times. A basic algorithm for the Wilson-Dslash operator
is given in Fig. 1, where the spin-projection trick is indicated
by the calls to projectPlus(), and projectMinus()
to project onto a half spinor (a spinor with index α ∈ [0, 1]).
Once the matrix-vector multiplications are carried out (lines
14 & 23 of Fig. 1), the four components in the original
spin basis are restored with reconstructPlus() and
reconstructMinus() respectively. For more details we
refer the reader to e.g. [1], [5], [15]. It is fairly standard to
pack the gauge fields when setting up the Dslash operator, so
that they can be accessed efficiently (e.g. in a uniform access
fashion on CPUs or with coalesced access on GPUs).

B. Basic Performance Model

Not counting sign flips or multiplications by ±i, the arith-
metic carried out per output site is 8×(2×66+12)+7×24 =
1320 floating point operations (FLOP). The 12 FLOP term is
the arithmetic cost of the spin-projection operation (6 complex
adds), the factor of 66 FLOPs is the cost of a single complex
3× 3 matrix by 3-vector multiplication of which we must do
two for each spinor. The factor of 8 comes from having to do
the above for all 4 forward and backward directions in space-
time and the 7 × 24 FLOPs term is the cost of summing 8
complex 12-component vectors. In terms of data movement
we must read in the 8 neighboring spinors (24F Bytes (B)
each where F is the floating point size), the 8 gauge links
(18F B each) and write out the result (24F B). If we do not
have non-temporal writes, we must bring the output into cache
first which may cost an additional 24FB of reading. However,
some of the spinors read may be reused from cache (there is
no reuse of the gauge fields in our scheme). If we denote by R

15

the number of reusable neighbors a simple model of arithmetic
intensity is [16]:

A =
1320

(8× 18 + 24(8−R) + 24r + 24)F
FLOP/Byte (2)

where the (8−R) term reflects reuse and r = 0 (r = 1) if the
output is written without (with) reading first. The naive value
of A with no reuse, for 32-bit floating point numbers with
r = 0 is A = 0.92F/B. If due to some clever lattice traversal
scheme such as 3-1/2 dimensional blocking with scanlines
[16], or tiling [8] or the use of space filling curves [17]–
[20], one can achieve that 7 out of 8 neighbors are reused
the arithmetic intensity can be as high as A = 1.72F/B.
While we did not employ it here, one can also employ
gauge compression as in [5], [9], for example by storing
only 2 rows of the gauge field and reconstructing the 3rd
on the fly using properties of SU(3). If we do not count
the decompression FLOP-s, such 12 compression can push
the intensity as high as A = 2.29F/B in single precision.
On architectures such as NVIDIA GPU and Intel Xeon Phi
Knights Landing (KNL) as well as most currently available
CPUs, A = 1.72F/B indicates that our kernels will still be
memory bandwidth bound, leaving plenty of “free” FLOPs to
carry out the compression/reconstruction.

C. SIMD Parallelism

Each output site can be computed independently of the
others, and the main source of parallelism is over the lattice
sites. However to fully utilize the available hardware we may
need to utilize SIMD vector registers such as AVX2 and
AVX512 on Intel Xeon and Xeon Phi CPUs. Further, on
accelerators such as the ones from NVIDIA, thread warps may
also be treated in a SIMD manner. In this work we consider
exploiting SIMD in two ways: first we consider (in our Kokkos
implementation) a Dirac operator acting on multiple vectors
simultaneously. This is referred to as a ‘multi right hand side’
(MRHS) approach. We evaluate

χi = /D(U)ψi (3)

reusing the same gauge field U for all the ψi. This is a trivial
kind of SIMD parallelism and is straightforward to implement.

The second approach we consider is described in [20], [21]
called Virtual Node SIMD. The idea of this approach is that the
SIMD lanes can be considered as virtual computer processors,
arranged in a hypercubic topology. A SIMD register which
can accommodate 2d complex numbers can be considered as
a four dimensional virtual node grid (VNG) with extent 2 in
d of its dimensions and extent 1 in the others. We can lay
out the original lattice on the VNG, by dividing the extent
of each of its dimensions by the corresponding dimension of
the VNG, yielding a SIMD-ized lattice with a SIMD vector
of 2d fields on each site and link. Fields on the SIMD-ized
(outer) lattice can be indexed by their corresponding site xo
and the lane index xl within the (outer) site, which can be
computed from the original x by using division by 2 and
modulo operations. We illustrate the scheme in Fig. 2. In

Fig. 2. The Virtual Node Scheme for SIMD-ization

this approach most lattice-wide arithmetic operations can be
carried out by replacing the previous scalar arithmetic with
identical arithmetic using SIMD vectors. An exception to this
is dealing with neighboring sites when wrapping around the
edge of the SIMD-ized lattice. As can be seen in Fig. 2 ac-
cessing a neighbor in such a case moves it from a neighboring
virtual node to ours and such a movement between virtual
nodes corresponds to a shuffle between the vector lanes. In
our Dslash implementation, when we compute the index of
our neighbor spinor, we can simultaneously set a flag as to
whether such a permutation is needed. When the field vector
from the neighboring (outer) site is loaded for spin projection,
the necessary lane permutation swizzle can be carried out. It
is also possible to define load-swizzle operations as suggested
to us by P. Boyle from his implementation in the Grid [20]
LQCD code, where threads corresponding to vector lanes can
load data from suitably swizzled addresses within a warp
while maintaining coalescing. As a final note, we mention that
the method can be adapted to SIMD lengths longer than 16
complex numbers while maintaining a 4-dimensional lattice.
In this case we extend the dimensions of the virtual node grid
appropriately. For example, a SIMD length of 32 complex
numbers could be accommodated with a 23 × 4 virtual node
grid, and a SIMD length of 64 could be accommodated using,
say a 22 × 42 virtual node grid and so forth.

D. Kokkos

Kokkos [13], [22] is a programming model developed at
Sandia National Laboratories to enable performance portabil-
ity for C++ programs. It is developed in Modern C++ and
offers a conceptual model of a compute node as a collection
of Memory and Execution spaces. Parallel kernels are encoded
as C++ functors or lambda expressions and can be dispatched
using constructs controlled by policies. Kokkos offers par-
allel for, parallel reduction and parallel scan dispatches as
well as a tasking interface based on asynchronous task handles
known as futures. The constructs can be bound to execution
spaces and otherwise customized using policies, for example
parallel for can be run on a CPU with OpenMP or a GPU

16

with CUDA by selecting the appropriate execution space
policy. The iteration space is also controlled by policies, for
example a forall can be executed over a simple range, using
nested parallelism, or it can cover a potentially blocked multi-
dimensional index space range using MDRangePolicy.

To facilitate efficient memory access, Kokkos defines a
multi-dimensional array type called a View. A View is a handle
to underlying memory and allows us to manage that using
semantics identical to std::shared ptr in C++. The handle is
copyable, allowing it to be captured in lambda expressions.
Views provide for arbitrary data-layouts (index ordering op-
erations) by defining Layout policies. Two common layouts
are LayoutLeft where indices run left-fastest and LayoutRight
where indices run rightmost fastest. Kokkos supports the
concept of vectorized inner loops in the nested parallel-for
dispatch. On CPUs this is implemented by decorating the inner
loop with #pragma ivdep, while in the CUDA backend,
thread blocks are created with the blockDim.x being equal
to the requested vector length, whereas the y-index of the
threadId is used for threading otherwise. Since generally
thread ID-s are bound to the leftmost index, LayoutLeft
usually gives coalesced access on NVIDIA GPUs whereas
LayoutRight will usually give cache line friendly access
on CPUs such as KNL. When a vector range is present, the
fastest index is the vector lane (threadIdx.x on NVIDIA
GPUs) and so LayoutRight is preferable for both CPU and
GPU.

Kokkos provides for portability by implementing a variety
of backends. The current most most mature ones are the
OpenMP back end to target CPUs and the CUDA one to target
NVIDIA GPUs. Other backends for forthcoming systems are
in development including a ROCm backend (using HIP) [23]
to target AMD and a SYCL back end which is not yet
mature enough to have been included in this study. In addition
an OpenMP-target offload backend is also in development.
Kokkos is mostly a header library for C++ and is quite
small. A standard C++ compiler which is capable of driving
the underlying hardware is needed. In particular the GPU
backend can be utilized either using NVIDIA nvcc or the clang
compilers.

E. SYCL

SYCL [14] is a standard for heterogeneous computing from
the Khronos group, originally designed to allow a single source
C++ approach to programming OpenCL [24]. It has a model
of a node as a collection of devices on which one can create
work queues. Parallel kernels can be submitted to the queues,
using functors and lambdas in a similar way to Kokkos.
Parallel dispatches can occur over up to 3-dimensional index
ranges. Memory handling on the other hand is quite different
from Kokkos. Users must create buffer objects which manage
underlying memory. To access these buffers users first get
accessor objects either on the host, or within a queue, and
must declare their intent as to whether they intend to read or
write to the buffer. This leads to safe memory accesses, and in

addition the runtime can create a dependency graph of buffer
accesses and automate underlying data movement.

SYCL implementations can offer performance portability in
a variety of ways, for example, by leveraging Khronos group
standards related to OpenCL [24]. A typical approach is that
a dedicated SYCL compiler extracts the source code for the
kernels from the single source C++ program, after which the
kernels are compiled into an intermediate representation (IR)
such as Khronos SPIR (Standardized Portable Intermediate
Representation), LLVM IR, or PTX byte-code and compiled
into the application. The IR can then be Just-In-Time compiled
for the hardware device by the device driver to execute on
the device. There are several efforts at producing SYCL
compilers. Codeplay Ltd. offers a community edition of its
ComputeCPP compiler [25] which is what we used for most of
the SYCL work in this paper, and which has proved to be very
flexible. It can compile kernels into a variety of intermediate
byte-code formats (SPIR, SPIRV, PTX and LLVM-IR) which it
stores in integration-headers. These are then compiled into the
final executable. In this way ComputeCPP can target a diverse
range of hardware from NVIDIA GPUs and KNL (using the
POCL OpenCL driver [26], [27]), as well as Intel CPUs and
Intel HD Graphics GPUs through their OpenCL Runtime for
Intel CPUs [28] and the Intel(R) Graphics Compute Runtime
for OpenCL(TM) (also known as the NEO driver) [29]. How-
ever, not every combination of byte-code and driver work well.
For example to use NVIDIA GPUs, we found the PTX64 byte-
code and the the NVIDIA OpenCL driver to be an unstable
combination, whereas the POCL driver would work only with
SPIRV and not SPIR in our tests.

There are several other SYCL compilers in the community
including one being developed in Clang/LLVM by Intel [30]
on which they will base their Data Parallel C++ in the OneAPI
initiative. The HIPSYCL [31] effort aims to generate HIP
[32] code which can then be compiled directly into ROCm
[23] and CUDA in order to target AMD and NVIDIA GPUs
respectively. The TriSYCL [33] effort provides yet another
open source compiler.

F. Related Work

Many LQCD codes are pursuing performance portability.
We have already mentioned Chroma [2] and performance
portability through QDP-JIT [3]. We have also mentioned the
Grid code [20], a C++ expression template based framework
similar in spirit to QDP++ which focuses on vectorization
and performance portability between CPU and GPU systems
currently. The QUDA library [5] after its most recent restruc-
turing can also launch its kernels on CPUs although the focus
as regards performance is still primarily on NVIDIA GPUs.
The hipify tool in AMD ROCm aims to allow quick initial
conversion of CUDA based codes to the HIP programming
model. OpenCL was investigated for performance portability
for LQCD in the CL2QCD application [34] where it was
noted that while OpenCL proved portable it was not immedi-
ately performance portable. It should be noted here that per-
formance portability is likewise not immediately guaranteed

17

by any of the portability frameworks, rather their merit lies
in the degree to which they reduce the difficulty of writing
performance portable software for the programmer. OpenMP
[35] is another language standard for performance portability.
It is being actively investigated for performance portability of
C++ expression templates (specifically in reference the Grid
code) e.g. in [36]. RAJA [37] is an alternative peformance
portability layer, however it does not offer a View abstraction
like Kokkos. Rather memory access and management respon-
sibilities are relegated to other packages such as the Copy
Hiding Application Interface (CHAI) [38] and UMPIRE [39].
We are not aware of performance portability investigations of
LQCD in Raja at the time of writing this paper.

III. KOKKOS WILSON-DSLASH IMPLEMENTATION

We implemented the Wilson Dslash in the KokkosDslash
[11] mini-app in two ways: The first approach was a naive
implementation without any vectorization for the Single-Right-
Hand-Side (SRHS) case, and later the second approach im-
plemented the Virtual Node SIMD technique. We localized
our policy decisions as regards layout and kernel launch
policies in single header file, which could be customized to
suit our architecture by build system configuration options.
For complex numbers we used the Kokkos::complex type
which mirrors the standard library std::complex, although
to allow us to switch to other custom complex types later we
aliased this to MGComplex (where MG comes from the Multi-
grid heritage of the mini-apps).

A. Naive Single and Multi-Right Hand Sides Implementation

Our basic implementation fields targeted NVIDIA GPUs
and Intel Xeon and KNL using the CUDA and OpenMP
backends of Kokkos respectively. We used Kokkos View-s to
hold data for our lattice-wide Spinor and Gauge field types. We
templated these containers on a contained type. For spinors the
contained type could be either a scalar complex number type
(for SRHS), or a SIMD-type in order to encode the multiple
right hand spinor fields for the MRHS case. We bound one
thread in Kokkos to a single lattice site. To evaluate Dslash, in
each such thread we needed to hold a full spinor to accumulate
the results for the site, and two temporary half spinors. We held
this data in automatic thread-local fixed-sized arrays, referred
to as SiteView-s, which we intended for the compiler to
registerize on GPUs. We streamed through the gauge field and
so it did not require a SiteView.

We created a SIMDComplex type as the contained type
for the View-s used in lattice-wide MRHS spinors. However,
the corresponding SiteView had to be a little elaborate,
due to the KNL and GPU dealing with vectorization differ-
ently. For CPUs, the SiteView could also be templated on
SIMDComplex with each OpenMP thread now processing a
full SIMD vector. Kokkos, however performed vectorization
in the CUDA backend by assigning lanes to the x-dimension
of the thread block, but each thread still being scalar. To
overcome this we defined a GPUThreadSIMDComplex type
which internally held just a scalar value. The full interface for

Fig. 3. Utilizing Templating encoding portable SIMD

accessing the lanes of the SIMDComplex was implemented,
but lane-accesses only touched the scalar value. The idea was
that in a Kokkos ThreadVectorRange each GPU thread
would need to access data only using its own threadIdx.x.
We illustrate the idea in Fig. 3. Further, through appropriate
templating, we overloaded the complex arithmetic functions to
be able to deal transparently with both the scalar and the vector
types. As a result the Single and Multi-Right Hand sides im-
plementations differ only in terms of the template parameters
to the Dslash functor. In order to allow vectorization, we had
to dispatch the Dslash kernel using a ThreadExecPolicy
having set the chosen SIMD Length.

1) Benchmarking Setup: We measured the performance of
our naive SRHS operator on both Intel Xeon Server (SKX)
CPU, Intel Xeon Phi Knights Landing (KNL) and NVIDIA
GPU systems.

The Skylake Xeon Server platform (referred to as SKX from
here on) used was a single node of the Cori-GPU development
Cluster at NERSC. The node features 2 sockets of Xeon(R)
Gold 6148 CPUs with 20 cores each running at 2.4 GHz.
Hyper-threading was enabled on the nodes allowing for 40
OpenMP threads per socket. A single socket has 6 channels
to DDR4 memory running at 2666MHz, giving a theoretical
maximum DDR memory bandwidth of 127.96 GB/sec. In
practice on would expect an efficient code to be able to exhaust
around 80% of this theoretical maximum giving practical
memory bandwidth limits of around 100 GB/s.

The nodes also feature 8 NVIDIA Tesla V100 SXM2
(Volta) GPUs which were used to generate our GPU results
for the Tesla V100 architecture. The V100 compute units
feature up to 15 TFLOPS of single precision floating point
performance, with High Bandwidth HBM that can run at
a theoretical maximum of 900 GB/sec. We also measured
performance on V100 SXM2 GPUs on a node of the Summit
Supercomputer housed at Oak Ridge Leadership Computing
Facility (OLCF) which features six V100 units per node with
POWER9 CPUs as hosts. Since we were also able to measure
SYCL results on Cori-GPU but not on Summit, we will
generally show the Cori-GPU Kokkos results going forward

18

unless otherwise stated, to allow for consistent comparison.
Summit and Cori-GPU results were similar in magnitude,
with Summit results typically being a little slower than the
Cori-GPU ones. The discrepancies for SRHS were at most 17
GFLOPS (for Kokkos) and 10 GFLOPS (for QUDA) which is
less than 2% (Kokkos) and sub-percent (QUDA) respectively
of the absolute performances measured on Summit.

For our SKX testing we used the Intel C++ compiler,
from Intel Parallel Studio 19.0.3. For the CUDA back-end
we compiled with the GNU C++ compiler version 8.3 and
CUDA toolkit version 10.1. Our V100 tests, used a single one
of the 8 available GPUs on the node. Our CPU tests restricted
running to a single socket using the numactl tool which was
also used to select a local memory allocation policy. This was
done to avoid distortion due to NUMA effects.

The KNL system used in our study was a node of the
Jefferson Lab 18p cluster featuring Xeon Phi 7250 CPUs with
68 cores running at 1.4GHz. The system runs CentOS 7.4 and
we used the version 19.0.0.117 of the Intel C++ compilers.
The KNL system features 16 GB on-package high speed
MCDRAM which can theoretically deliver over 450 GB/sec
memory bandwidth. However, in the quad-cache configuration
which we used, the maximum attainable memory bandwidth
for the streams triad from MCDRAM is 345GB/sec [40].

Finally, we also ran tests on an NVIDIA Tesla K80 system
at Jefferson Lab using the GNU C++ compiler g++ version
6.3.0 which we built from source and CUDA-toolkit version
10.0. We used a single CUDA-device to run on (so only 1
of the 2 accelerators in a K80). This somewhat older system
features GDDR GPU memory capable of a maximum GPU
memory bandwidth of 240 GB/sec per accelerator in the unit.

In all cases, single right hand side (SRHS) tests used a
lattice of size 324 sites. On the SKX and KNL platforms we
compared performance to the legacy cpp_wilson_dslash
code [41] with Git revision ID 838efd95 compiled with and
without SSE2 optimizations, and against the highly optimized
QPhiX library [9] (Git revision acce97c8), On the GPU
platforms we used the dslash test program from the QUDA
library [7] with Git ID 553c60c.

2) Baseline Performance SRHS: We show our baseline
performance in Fig. 4 and can see from the figure that perfor-
mance even in the naive implementation was reasonable on the
GPU systems: we could achieve ≈ 77% of the performance of
the QUDA library on the K80 system, and about 87−88% on
the V100 device. In terms of absolute performance memory
analysis from the NVIDIA visual profiler on Summit showed
that the QUDA Dslash kernel is drawing a high amount of
memory bandwidth (772 GB/s out of a theoretical maximum
of 900 GB/s) justifying our use of QUDA as the comparison
point. In turn, a similar analysis for the Kokkos Dslash on
Summit showed it drawing 753 GB/sec of HBM memory
bandwidth.

Unfortunately on the SKX and KNL systems the naive
performance is very low compared to both the legacy
cpp wilson dslash and the QPhiX codes. The primary reason
for this turned out to be lack of vectorization which prompted

Fig. 4. Baseline Performances compared to standard codes.

us to try the Virtual Node SIMD vectorization. Before we
describe that, however, we will first consider the MRHS case:

3) Multi-Right Hand Side Vectorization: As discussed
earlier, by allowing the right use of templates the Naive
Dslash operator could be used also to encode the MRHS
operator. We summarize these performances in Fig. 5.
One can see that the Naive Kokkos implementation, using
ThreadVectorRange gave poor performance on KNL,
and indeed (although we do not show it here) it also per-
formed substantially slower than QUDA on the GPUs. On
the KNL vectorization did not occur and on the GPUs the
range checking of the vector loop caused issues. The situa-
tion could be resolved on both CPU and GPU by defining
a SIMD vector type (VecType in the figures). On KNL
we specialized the arithmetic operations for the vector type
SIMDComplex<float,8>; which contained 16 floating
point values; with AVX512 intrinsics and the performance
immediately improved. On GPUs we made two optimiztions.
First, we dealt directly with the CUDA threadIdx.x index
in our vector type and eliminatd the loop as our the entire
SIMD range was expressed by the x-dimension of the thread
block. Second, we wrote our own complex-number class,
deriving from the CUDA float2 type to assist with aligned
and coalesced memory access.

We show the resulting performances in Fig. 5. Since on
KNL and SKX we were using a SIMD complex vector of
length 8 per site, we opted for a lattice size that was 1/8th of
our SRHS case to keep the memory footprint similar between
the tests. Thus on KNL we used a lattice size of 163 × 32
sites. While we do not have a proper multi-right hand side
operator to compare with directly we see that we get similar
performances now to the QPhiX (SRHS) performance on
KNL, whereas we get an improvement compared to QPhiX
on SKX, which we attribute to the large Level 3 cache on
SKX.

On GPUs we used a vector length of 16 complex numbers,
to fill out the warps and correspondingly we divided our
original lattice size by 16 to keep the memory footprint similar
giving us a lattice of size 164 sites. On the GPUs the QUDA
library provides a Domain Wall fermion operator (DWF-4D)
the diagonal part of which is a multi-right hand side Wilson-
Dslash operator and that is what we used here for performance
comparison. It is implemented slightly differently in that the
right hand sides are not vectorized over, but it still benefits

19

Fig. 5. Multi-Right Hand Side performances

from the gauge field reuse in the same way as our MRHS
operator. We note that the Kokkos performances on the K80
are very respectable, and are excellent on the Summit V100
where we reach ≈ 99% of the performance of the QUDA
comparison.

4) Virtual Node Mode Single Right Hand Sides: Encour-
aged by the good performance we saw in the MRHS case
with a vector type, we implemented the virtual node SIMD
vectorized version of our SRHS operator using our vector
types in an attempt to bridge the performance gap remaining
specifically on KNL. We implemented the necessary lane
permutations to SIMDComplex<float,8> using AVX512
shuffle intrinsics. Further we moved to the Kokkos MDRange
dispatch which allowed us to get a cache blocked lattice
traversal for free. However, this optimization had a knock on
effect for the GPU side of the code, which was that it forced
the use of a SIMD length of 1, as when we switched from
the Team dispatch to MDRange we could no longer set a
SIMD length (a feature supported currently only by the Team
dispatch). Setting a vector length with MDRange is a feature
that will need to be implemented in Kokkos in the future.
In addition we would need to implement either the necessary
swizzles with the CUDA shuffle intrinsics or load-permute
functions as mentioned previously, in our own vector type or
in a forthcoming Kokkos SIMD type which again, we will
leave for future work. Nonetheless, despite working with a
SIMD length of 1, the GPU code benefited from the MDRange
traversal whose block sizes could now become tunable.

Fig. 6. Virtual-Node SIMD SRHS Operator performances for Kokkos and
SYCL

We show the resulting performance data in Fig. 6, again

for a lattice of size 324 sites. We see that without the
vector type performance is still poor on KNL and SKX,
however, with the vector type, performances are excellent,
and are comparable with QPhiX both for KNL and SKX.
Thus using this vectorization scheme and the optimized vector
types we could successfully bridge the performance gap be-
tween the QPhiX reference implementation and the Kokkos
implementation after the block sizes were (auto) tuned. A
VTune measurement found that the Kokkos Dslash sustained
an MCDRAM bandwidth of 327 GB/sec on KNL. The CUDA
performances have also improved primarily from the coalesced
access of the vector type and possibly the MDRange dispatch
may have captured more locality.

B. Discussion of the Kokkos Dslash

Our experience with Kokkos has been very positive overall.
However, for performance we did need to add some opti-
mizations, most specifically the SIMD vector type. Kokkos
developers are working on adding standardized SIMD types
to Kokkos with a similar envisaged behavior to the one we
described for the GPU, namely that a ‘thread-local’ type must
accompany the Vector type, allowing a generalized implemen-
tation that should work well on accelerators. Already progress
has been made on the Kokkos::complex type which
when decorated with an alignas keyword gets appropriately
aligned, obviating the need for our custom type derived from
float2. A very rough estimate based on previous sloccount
measurements is that the KokkosDslash mini-app consists of
about 4500-5000 lines of code, excluding unit tests. Of this
about 274 lines of code are AVX512 specific, a similar amount
are AVX2 specific. On the GPU side the GPUThreadSIMD
specializations using threadIdx.x take up about 210 lines
whereas the length 1 SIMD specializations take up about
275 lines. So currently this is close to about 1100 lines of
architecture specific code. Switching to a standard Kokkos
SIMD type could essentially eliminate these lines of code
from our mini-app. On the other hand, the fact that Kokkos is
embedded into standard C++ and that such specializations are
available to the developer if necessary, is an attractive feature
of Kokkos.

IV. SYCL WILSON-DSLASH IMPLEMENTATION

Our SYCL implementation was a fairly straightforward port
of the Kokkos one, however, we implemented only the Virtual
Node SIMD SRHS operator, motivated by the apparent vector
type support in the SYCL standard via the vec template. In
terms of compilers we focused on the Clang-SYCL compiler
from Intel [30] and the ComputeCPP compiler from Codeplay
Software [25]. In our CMake [42] based build system we could
treat the Clang SYCL compiler as a regular C++ compiler with
an additional need to link against OpenCL. With ComputeCPP
there are some special compiler invocations needed to deal
with SYCL, and to enable these we used the CMake scripts
available in the ComputeCPP SDK [43] which provided the
necessary CMake integration.

20

A. SYCL Vector Type and SYCL View

1) SYCL Vector Type: SYCL provides the template
vec<T,N> where the type T is the type of the vector elements
and N is the length of the vector, with N ∈ [0, 15]. In
addition a rich set of swizzle operations is supported. We used
this to develop two kinds of Complex SIMD: a) a Fortran-
like version: vec<std::complex<T>, N> which holds 8
complex numbers with alternating real and imaginary parts and
b) a more vector-like version: std::complex< vec<T,N>
> where the real parts and imaginary parts are held in separate
vectors. Here we support a vector length up to 16, so that on
a KNL, say, in principle the SIMD vector could be stored 16
complex numbers in 2 AVX512 registers.

However, as it turns out these vector types do not necessarily
match to the underlying hardware SIMD. In particular, on
both Intel HD Graphics and NVIDIA GPUs SIMD is best
implemented at the ‘sub-group’ (Intel OpenCL Subgroup
Extension) [44], [45] or Warp (CUDA) level which these types
do not implement. As such on all the platforms we have tried,
with the exception of SKX and KNL, the best performance was
obtained with N = 1, although surprisingly, as we shall show,
there were still differences in terms of performance between
a) and b) which in this limit should result in the same data
layout .

2) Views in SYCL : SYCL differs from Kokkos, in that
data is stored in buffers which cannot be accessed directly,
rather one needs to use accessors which are returned by a
buffer following calls to their get access methods. In ker-
nel scope this method requires the command group handler
(CGH) from the command queue. Further, while accessors
can support multi-dimensional indexing, currently only up to
3-dimensions are supported, which is sufficient for spinors
(site,spin,color indices), however, for the gauge field 4 are
needed (site, direction, and 2 color indices).

Our implementation of the View followed the pattern
of accessors in SYCL . We defined a ViewAccessor
template, which contained within it a SYCL accessor. Two
get_access methods in View, one with a CGH param-
eter and one without (for host access) allow the creation
of the ViewAccessor-s. The ViewAccessor classes are
templated on a Layout class, the number of dimensions
(indices) and the contained type in the View. The Layout
provides indexing functions which can linearize the indices
into an offset index to pass to the underlying SYCL ac-
cessor, or can also transform such offset indices back into
coordinates. Following Kokkos, we implemented LayoutLeft
and LayoutRight indexing with the leftmost and rightmost
indices running fastest, respectively. Finally, due to the RAII
(Resource Acquisition is Initialization) nature of initializing
SYCL buffers, currently our View classes do not allow
deferred allocation, and the buffers are defined and allocated
at View object construction. These requirements from SYCL
make it less than straightforward to implement Kokkos Views
without changing their interface in a manner similar to the
one presented here. However, the proposed Unified Shared

Memory (USM) extensions [46], if adopted into the SYCL
standard would solve this difficulty.

B. SYCL Experimental Setup

Our first target for the SYCL implementation was to
see if it can target something other than a regular CPU or
NVIDIA GPU, so we chose an Intel Embedded GPU. Our
Intel GPU system was an Intel Next Unit of Computing (NUC)
containing a Skylake CPU (i7-6770HQ running at 2.6 GHz)
with an embedded Intel HD Graphics P580 GPU (running at
950 MHz). The system is running Ubuntu 18.04 TLS for which
the Intel Graphics Compute Driver (NEO) is available as a set
of precompiled Debian packages. The driver we used here had
version 19.36.14103. We used the ComputeCPP Community
Edition v1.0.4 (which was packaged specifically for Ubuntu
v16.04 on the Codeplay web-site, but ran fine on Ubuntu 18.04
as well). The Intel Clang/SYCL compiler was evolving rapidly
during the time of writing this paper. The results we show were
obtained using the compiler with GitID: 51a6204c0.

Next we aimed to check performance portability to NVIDIA
GPUs on our K80 system. First we tried this with the NVIDIA
OpenCL driver available in CUDA-10.0, however this driver
does not support consuming SPIR or SPIRV and so we used
the ptx64 target of ComputeCPP. Here we used ComputeCPP
Community Edition v1.1.4 for CentOS as our K80 and system
was running CentOS 7.4. The combination ran, but was fairly
unstable and resulted in failures in our unit tests and a
segmentation fault in the timing benchmark. We then tried
using the POCL portable OpenCL driver version 1.3. In order
to build POCL, we needed the source of Clang/8.0.1 as well
as a built version of it with the NVPTX back end enabled
(which contained information about the build configuration).
Finally we also had to build the spirv-llvm translator package
from the Khronos Group [47] which needed to be built with
the same version of Clang and LLVM sources as POCL.
Once all the software had been assembled we could run our
SYCL Dslash code on the K80 system using the spirv64
SYCL target of ComputeCPP. Further, using the POCL driver,
it was possible to profile the resulting code using the standard
NVIDIA profiling tools nvprof and nvvp (which no longer
support NVIDIA’s own OpenCL implementation).

Since the K80 architecture is rather old, we also ran on
the V100 nodes of Cori-GPU. Cori GPU is a node supplied
by Cray and we did not have super-user access on it. How-
ever, we could still use the same approach as for our K80,
but needed to also build our own version of an OpenCL-
ICD-Loader. The ICD mechanism allows OpenCL to choose
amongst multiple OpenCL platforms on a system. It provides
an OpenCL interface library and forwards OpenCL calls to
the actual OpenCL drivers. The drivers themselves are shared
libraries, whose locations are maintained in so called .icd files,
usually located in the directory /etc/OpenCL/vendors.
The OpenCL-ICD-Loader we used was from the Khronos-
Group [48] and allowed us to use the environment variable
OCL_ICD_VENDORS to point to a different, user accessible
location for the .icd file for POCL which we could use to

21

Fig. 7. Performance of SYCL Dslash on Intel-HD Graphics, using the
Intel/Clang and Codeplay ComputeCPP compilers

point to our own user installed version of the POCL driver.
Fortunately for us, the binary distribution of ComputeCPP for
Ubuntu, worked fine on the Cori-GPU node and we were able
to run V100 benchmarks with the above setup.

The Cori-GPU nodes allowed us to also run SYCL bench-
marks on its SKX sockets. To do this we built the Intel/Clang
compiler and downloaded the experimental Intel CPU OpenCL
driver [49]. These were fortunately distributed in a .tar.gz
file as a collection of shared libraries, and we could install
them to a user accessible location and add the requisite .icd
file to our own OCL_ICD_VENDORS location.

Finally following our success with CoriGPU, we tried also
to run the benchmark on our KNL node. Intel Compute SDK
for OpenCL applications currently does not support KNL, and
so once again we turned to POCL (as well as ComputeCPP
CEv1.1.4 CentOS). To this end we rebuilt POCL for KNL
in the same way as for the GPU systems, although this time
we did not enable the NVPTX back end, and likewise we
rebuilt spirv-llvm. The resulting code compiled and ran, but for
reasons we have not yet understood this time we had to use the
spir64 target rather than the spirv64 target of ComputeCPP.

C. Performance Results

1) Intel HD Graphics: The performance results for our
SYCL Dslash, on a lattice of 324 sites, are shown in
Fig. 7. We show all four variations of layout index order
and complex number vector implementation. We can see that
on our NUC we achieved a maximum performance of 44-45
GFLOPS. Since we do not have a comparison code on the
GPU we profiled the application with VTune. We chose the
ComputeCPP build which ran at 44 GFLOPS. The profiling
overhead caused a slight drop in performance down to 41.4
GFLOPS and VTune indicated that we sustained a read band-
width of around 30 GB/sec and the average write bandwidth
is 3.9 GB/sec. The profile showed that the L3 cache to GTI
(Graphics Technology Interface) bandwidth is 32.8 GB/sec,
very close to our total GPU memory bandwidth suggesting that
nearly all our memory bandwidth comes from either the uncore
or the DRAM. The DRAM speed is 2.4 GT/s per channel with
2 channels and a transfer size of 8 bytes giving us a maximum
DRAM bandwidth of 2.4×8×2 = 38.4 GB/s. Additionally, we
ran the BabelStream [50] SYCL streams benchmarks which
gave the bandwidths shown in Tab. I, where we also show the
achieved VTune cross checks of the BabelStream results. We

Function Bandwidth VTune Read VTune Write VTune Total
(MB/sec) (GB/sec) (GB/sec) (GB/sec)

Copy 32883.792 16.0 15.2 31.2
Mul 29302.054 14.5 13.9 28.4
Add 27440.823 17.6 8.5 26.1
Triad 28968.301 18.4 8.9 27.3
Dot 25823.097 28.0 0 28.0

TABLE I
RESULTS OBTAINED FROM THE BABELSTREAM BENCHMARK

can see that BabelStream sustains between 26 GB/sec and 31.2
GB/sec depending on the benchmark in question. Compared
with these results, our attained 30GB/sec read + 3.9 GB/sec
write bandwidth indicates an excellent level of performance.
By applying our earlier performance model from Eq. 2 for
41.4 GFLOPS, we estimate that we are seeing a reuse factor
R = 4 or R = 5 depending on whether nontemporal stores
(RFO or Read for Output) are used. The R = 4 case predicts
a bandwidth of 30 GB/s read bandwidth (without RFO) while
the R=5 case predicts the same read bandwidth with RFO.
Both cases predict a write bandwidth of 3.0 GB/s.

Our results show a surprising feature, which we cannot yet
explain. ComputeCPP seems to achieve higher performance
for the Fortran-like implementation of SIMD complex, while
in the case of the Intel Clang public compiler, it appears to be
the vector-like SIMD complex implementation which is more
performant.

2) NVIDIA GPUs: The performances for K80, and V100
GPUs are shown in Fig. 6. We can see that the SYCL code
running on top of POCL is slightly slower than the Virtual
node Kokkos implementation, but by comparing with Fig. 4
we can see that the SYCL performance is comparable to the
baseline naive Kokkos implementation. Specifically the SYCL
performances are 1114 GF (179GF) while the naive Kokkos
performances are 1070GF (171GF) for the V100 (K80) GPUs
respectively.

In the case of the K80 we examined nvprof profiles and
found that the SYCL code achieves 166.4 GB/sec device
memory bandwidth which is actually a little higher than the
150 GB/sec. attained by the (Virtual node SIMD-ized) Kokkos
Dslash. The Kokkos Dslash uses 146 registers whereas the
SYCL one uses 142, which are both much higher than the 80
registers used by the WilsonGPU kernel in QUDA. Interest-
ingly we note that the SYCL code working via ComputeCPP
and POCL uses only add and multiply instructions on K80 as
opposed to fused multiply adds (FMAs), whereas the Kokkos
Variant uses only Adds and FMAs. QUDA in turn uses all
three.

As mentioned before on NVIDIA GPU systems, we needed
to run the SYCL Dslash code over the POCL OpenCL
driver. We show the results for various indexing orders
and our two SIMD complex-number implementations in
Tab. II for K80. Similarly to Intel HD Graphics we see
that performance varies depending on the particular config-
uration of index order and SIMD Complex implementation.
It is unambiguous that LayoutLeft is the preferred order

22

Layout Left Layout Right
(GFLOPS) (GFLOPS)

Fortran-like Complex 179 41
Vector-like Complex 149 22

TABLE II
SYCL DSLASH PERFORMANCE ON K80 GPU AND POCL, USING

COMPUTECPP IN VARIOUS CONFIGURATIONS.

LayoutLeft Layout Right
(GFLOPS) (GFLOPS)

Fortran-like complex (V=1) 16 36
Fortran-like complex (V=8) 44 55
Vector-like complex (V=1) 11 28

Vector-like complex (V=16) 39 56

TABLE III
SYCL DSLASH PERFORMANCE ON INTEL KNL USING POCL

for NVIDIA GPUs, which would be the expectation from
the point of view of coalesced access if the GPU thread
ID’s are bound to the leftmost index. For K80 we get the
best performance when we use Fortran-like complex num-
bers (vec<std::complex<float>,N>) as opposed to
the vector-like (std::complex<vec<float,N>>) case,
even tho once again the vector length is 1.

3) Intel KNL: On the Intel KNL system, we once again
had to rely on POCL. We have run the usual benchmark
with 324 sites on our KNL system having varied once again
both the Layout and the complex-number type. In addition we
attempted to switch the vector length to see if we could get
any benefit from the vec template in SYCL. We chose the
vector length to match the hardware length of 512-bit vectors.
In the Fortran-like order this corresponded to 8 complex
numbers (in 1 register) whereas for the vector-like layout it
corresponded to 16 complex numbers in 2 registers, storing
the vectors of the real and imaginary parts respectively. Our
results are shown in Tab. III. Looking at the table we see
that LayoutRight is clearly preferred and that utilizing the
vector types helps a little, but we are still in the ballpark of
the naive Kokkos implementation and roughly a factor of 8
away from our comparison of QPhiX and the Kokkos virtual
node operator using AVX512 intrinsics (which both sustained
over 400 GFLOPS). It may be possible to tune these numbers
further using POCL environment variables which we leave for
potential future work.

D. Intel Xeon Server (SKX)

The performance results for the SKX system are also shown
in Fig. 6. We show the maximum performance obtained after
varying the parameters for both layout and vector length. One
interesting difference here, compared to the other systems
is that changing the vector length does appear to help. We
suspect this is a feature of using the Intel Clang Compiler
in combination with the Intel Experimental OpenCL runtime
for SYCL rather than any other feature of the node. Using
V=16 and Vector-like complex numbers we achieve up to
136 GF / socket, which is about 80% of the corresponding

QPhiX performance and 85% of the corresponding virtual
node Kokkos performance.

V. DISCUSSION

We achieved excellent performance on our target architec-
tures with Kokkos (KNL and NVIDIA GPU) and likewise with
SYCL on the Intel HD Graphics GPU with the NEO driver.

We achieved reasonably good performance with SYCL on
the NVIDIA GPU systems using POCL and on SKX using the
Intel Clang toolchain and experimental OpenCL CPU driver. In
these cases the best SYCL performances were a little below the
best Kokkos SRHS performances but in the case of the GPUs
were comparable with the naive Kokkos performances. The
main difference between the naive and virtual-node SIMD-ized
Kokkos implementations is the use of the MDRange dispatch
for the virtual node implementation, as opposed to the flat team
based dispatch of the naive one. This suggests that by adding a
similar blocked dispatch, the SYCL version may actually catch
up to the best Kokkos implementation by capturing locality in
the caches. This may be especially beneficial for the SKX
implementation which has a large L3 cache.

On the down side, the results from KNL were not nearly as
good as the others and in the GPU cases using Compute CPP
with the NVIDIA OpenCL driver proved somewhat unstable,
either due to to the NVIDIA driver itself or due to the PTX64
bitcode produced by ComputeCPP. This raises an important
point, that in order for SYCL to be successful it requires both
good compiler and driver support. The CUDA system, where
NVIDIA maintains and develops both the nvcc and the device
drivers, is a good example of how this can work well. Intel’s
commitment to the OpenCL drivers for its HD Graphics and
OpenCL Runtime for their Xeon processors also results in a
combination that works well. However, when hardware is no
longer well supported one needs to resort to other publicly
available solutions such as POCL which work well in some
cases and perhaps less well in others. At the same time we
are cognizant of the fact that support for products will always
be a market driven decision by the vendors.

It has become clear that clarity and guidance is required
to best be able to adequately exploit SIMD vectorization
possibilities on accelerators via SYCL. It was frustrating to
find a general vector type, and to invest effort in coding up
the necessary swizzles only to discover that on the accelerators
the ideal SIMD length from the application is actually 1. While
on SKX using a larger SIMD length seemed to help, the gain
was not very big. On the KNL system explicit SIMD-coding
with the vec template had an effect, but it certainly was not as
effective as the AVX512 vector type was in the case of Kokkos.
The proposed sub-group extensions to OpenCL and to SYCL
by Intel [44], [45] may be a good step towards remedying this
situation

The SYCL way of managing memory through buffers and
accessors may be safe, but feels somewhat cumbersome to us
and may create difficulties interfacing with non-SYCL external
libraries in an efficient way. Further, often it is desirable
to have explicit control over where the data is rather than

23

delegating the management of memory to the SYCL runtime.
The Unified Shared Memory extensions proposed for SYCL
[46] which allow the allocation of memory explicitly on the
host or the device address these concerns, but need to be
accepted into the SYCL standard and implemented by the
various compiler vendors in order to be successful.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we presented two Wilson Dslash mini-apps
encoded in the Kokkos and SYCL programming models.
We described the structure and optimizations involved in the
mini apps and explored their performance on a wide variety
of hardware (Intel HD Graphics, NVIDIA GPUs, SKX and
KNL). In order to do this we utilized the Intel Clang public
SYCL compiler and the Codeplay ComputeCPP compiler
in combination with the Intel NEO Compute Graphics run-
time, the Intel Experimental OpenCL runtime for CPUs and
the Portable Open Compute Language (POCL) runtime. We
achieved good performance on our accelerator targets with
both Kokkos and SYCL but were only successful on the
KNL platform using Kokkos combined with a manually added
SIMD type. Our future work can range in many directions:
it would be worthwhile to extend our work to AMD GPUs
over ROCm using either POCL or the HIPSYCL compiler.
Likewise we aim to port the KokkosDslash mini-app using the
currently developing Kokkos HIP backend as it matures. This
would be helpful in planning for performance portability to the
forthcoming Frontier System at OLCF. We plan to integrate
the SIMD type(s) now in development in Kokkos into the
Kokkos Dslash to see if we can eliminate our own architecture
specific SIMD types while still maintaining our current level
of performance portability. The approach may also allow us
to rapidly port to new targets, such as the POWER9 or ARM
CPUs.

An issue we have not investigated in this paper but which
is important for the future would be communications between
devices and how best they can be carried out in the context of
these programming models (for example, whether communi-
cations can be initiated from within a kernel and whether the
programming models need any extensions to facilitate this)
and we aim to extend these benchmarks to support multiple
devices in the future.

VII. ACKNOWLEDGEMENT

This work was funded by the U.S. Department of En-
ergy under the Exascale Computing Project by the Office
of Advanced Scientific Computing Research and through the
Scientific Computing Through Advanced Discovery (SciDAC)
program of the U.S. Deparment of Energy Offices of Nu-
clear Physics and Office of Advanced Scientific Comput-
ing Research (ASCR). B. Joó gratefully acknowledges the
NERSC Exsascale Scientific Applications Program (NESAP)
of NERSC for supporing a Summer Associateship at NERSC
to work on the material presented in this paper. We gratefully
acknowledge use of computer systems at NERSC, Jeffer-
son Lab, Argonne Leadership Computing Facility and Oak

Ridge Leadership Computing Facility for development and
benchmarking during this work. This material is based upon
work supported by the U.S. Department of Energy, Office of
Science, Office of Nuclear Physics under contract DE-AC05-
06OR23177. This research used resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725. This research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-AC02-
06CH11357. This research used resources of the National
Energy Research Scientific Computing Center (NERSC), a
U.S. Department of Energy Office of Science User Facility
operated under Contract No. DE-AC02-05CH11231. Sandia
National Laboratories is a multimission laboratory managed
and operated by National Technology and Engineering Solu-
tions of Sandia, LLC., a wholly owned subsidiary of Honey-
well International, Inc., for the U.S. Department of Energy?s
National Nuclear Security Administration under contract DE-
NA-0003525.

REFERENCES

[1] T. Straatsma, K. Antypas, and T. Williams, Exascale Scientific
Applications: Scalability and Performance Portability, ser. Chapman
& Hall/CRC Computational Science. CRC Press, 2017, ch. Chapter
16 Lattice Quantum Chromodynamics and Chroma (B. Joo, R. G.
Edwards, F. T. Winter). [Online]. Available: https://books.google.com/
books?id=rGQ-DwAAQBAJ

[2] R. G. Edwards and B. Joo, “The Chroma software system for lattice
QCD,” Nucl. Phys. Proc. Suppl., vol. 140, p. 832, 2005, [,832(2004)].

[3] F. T. Winter, M. A. Clark, R. G. Edwards, and B. Joó, “A
framework for lattice QCD calculations on GPUs,” in Proceedings
of the 2014 IEEE 28th International Parallel and Distributed
Processing Symposium, ser. IPDPS ’14. Washington, DC, USA:
IEEE Computer Society, 2014, pp. 1073–1082. [Online]. Available:
http://dx.doi.org/10.1109/IPDPS.2014.112

[4] C. Lattner and V. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proceedings of the
International Symposium on Code Generation and Optimization:
Feedback-directed and Runtime Optimization, ser. CGO ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 75–.
[Online]. Available: http://dl.acm.org/citation.cfm?id=977395.977673

[5] M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi, “Solving
Lattice QCD systems of equations using mixed precision solvers on
GPUs,” Comput. Phys. Commun., vol. 181, pp. 1517–1528, 2010.

[6] R. Babich, M. A. Clark, and B. Joó, “Parallelizing the QUDA li-
brary for multi-GPU calculations in lattice quantum chromodynamics,”
ACM/IEEE Int. Conf. High Performance Computing, Networking, Stor-
age and Analysis, New Orleans, 2010.

[7] M. Clark and R. Babich, “QUDA: A library for QCD on GPUs,” http:
//lattice.github.io/quda/.

[8] B. Joó, D. Kalamkar, K. Vaidyanathan, M. Smelyanskiy, K. Pam-
nany, V. Lee, P. Dubey, and W. Watson, “Lattice QCD on Intel(R)
XeonPhi(TM) Coprocessors,” in Supercomputing, ser. Lecture Notes in
Computer Science, J. Kunkel, T. Ludwig, and H. Meuer, Eds. Springer
Berlin Heidelberg, 2013, vol. 7905, pp. 40–54.

[9] Joó, B., “qphix package web page,” http://jeffersonlab.github.io/qphix.
[10] B. Joó, “mg_proto: a prototype multi-grid library for QCD,” https:

//github.com/jeffersonlab/mg proto.
[11] B. Joo, “A Wilson-Dslash MiniApp written in Kokkos,” https://github.

com/bjoo/KokkosDslash.git, 08 2019.
[12] ——, “A Wilson-Dslash MiniApp written in SYCL,” https://github.com/

bjoo/SyCLDslash.git, 08 2019.

24

https://books.google.com/books?id=rGQ-DwAAQBAJ
https://books.google.com/books?id=rGQ-DwAAQBAJ
http://dx.doi.org/10.1109/IPDPS.2014.112
http://dl.acm.org/citation.cfm?id=977395.977673
http://lattice.github.io/quda/
http://lattice.github.io/quda/
http://jeffersonlab.github.io/qphix
https://github.com/jeffersonlab/mg_proto
https://github.com/jeffersonlab/mg_proto
https://github.com/bjoo/KokkosDslash.git
https://github.com/bjoo/KokkosDslash.git
https://github.com/bjoo/SyCLDslash.git
https://github.com/bjoo/SyCLDslash.git

[13] H. C. Edwards and D. Sunderland, “Kokkos Array Performance-
portable Manycore Programming Model,” in Proceedings of the 2012
International Workshop on Programming Models and Applications
for Multicores and Manycores, ser. PMAM ’12. New York,
NY, USA: ACM, 2012, pp. 1–10. [Online]. Available: http:
//doi.acm.org/10.1145/2141702.2141703

[14] T. K. O. W. G. S. Subgroup, “The sycl(tm) specification ver-
sion 1.2.1,” https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.
pdfa, April 2019.

[15] B. Joó, M. Smelyanskiy, D. D. Kalamkar, and K. Vaidyanathan,
“Chapter 9 - Wilson Dslash Kernel From Lattice QCD Optimization,”
in High Performance Parallelism Pearls Volume Two: Multicore and
Many-core Programming Approaches, J. Reinders and J. Jeffers, Eds.
Boston, MA, USA: Morgan Kaufmann, 2015, vol. 2, pp. 139 –
170. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/B9780128038192000239

[16] M. Smelyanskiy, K. Vaidyanathan, J. Choi, B. Joó, J. Chhugani, M. A.
Clark, and P. Dubey, “High-performance lattice QCD for multi-core
based parallel systems using a cache-friendly hybrid threaded-MPI
approach,” in Proceedings of 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis, ser. SC ’11,
2011, pp. 69:1–69:11.

[17] A. Pochinsky, “Writing efficient QCD code made simpler: QA(0),” PoS,
vol. LATTICE2008, p. 040, 2008.

[18] O. Kaczmarek, C. Schmidt, P. Steinbrecher, and M. Wagner, “Conjugate
gradient solvers on Intel Xeon Phi and NVIDIA GPUs,” in Proceedings,
GPU Computing in High-Energy Physics (GPUHEP2014): Pisa, Italy,
September 10-12, 2014, 2015, pp. 157–162.

[19] O. Kaczmarek, C. Schmidt, P. Steinbrecher, S. Mukherjee, and
M. Wagner, “HISQ inverter on Intel Xeon Phi and NVIDIA
GPUs,” CoRR, vol. abs/1409.1510, 2014. [Online]. Available: http:
//arxiv.org/abs/1409.1510

[20] P. Boyle, A. Yamaguchi, G. Cossu, and A. Portelli, “Grid: A next
generation data parallel C++ QCD library,” 2015.

[21] P. Boyle, “The BlueGene/Q supercomputer,” PoS, vol. LATTICE2012,
p. 020, 2012. [Online]. Available: http://pos.sissa.it/archive/conferences/
164/020/Lattice%202012 020.pdf

[22] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” J. Parallel Distrib. Comput., vol. 74, pp. 3202–3216, Dec.
2014. [Online]. Available: https://doi.org/10.1016/j.jpdc.2014.07.003

[23] “ROCm, a New Era in Open GPU,” https://rocm.github.io/.
[24] K. Group, “Khronos OpenCL registry, which contains specifications for

the core API; Khronos- and vendor-approved extensions to the core
API; the OpenCL C and C++ languages; and the OpenCL SPIR-V
Environment,” https://www.khronos.org/registry/OpenCL.

[25] “Codeplay ComputeCPP website,” https://www.codeplay.com/products/
computesuite/computecpp.

[26] V. Korhonen, “Portable OpenCL Out-of-Order Execution Frame-
work for Heterogeneous Platforms,” https://dspace.cc.tut.fi/dpub/handle/
123456789/22636?show=full, 12 2014.

[27] “Portable Computing Lanugage Web Site,” http://portablecl.org/.
[28] Intel, “OpenCL(TM) Runtimes for Intel Processors,” https://software.

intel.com/en-us/articles/opencl-drivers.
[29] ——, “Intel(R) Graphics Compute Runtime for OpenCL(TM),” https:

//github.com/intel/compute-runtime.
[30] “Intel Public SYCL Compiler,” https://github.com/intel/llvm.
[31] “HIP SYCL GitHub Project,” https://github.com/illuhad/hipSYCL.
[32] AMD, “It’s HIP to be Open whitepaper,” https://gpuopen.com/

wp-content/uploads/2016/01/7637 HIP Datasheet V1 7 PrintReady
US WE.pdf.

[33] “TriSYCL GitHub web page,” https://github.com/triSYCL/triSYCL.
[34] O. Philipsen, C. Pinke, A. Sciarra, and M. Bach, “CL2QCD - Lattice

QCD based on OpenCL,” PoS, vol. LATTICE2014, p. 038, 2014.
[35] OpenMP Architecture Review Board, “OpenMP Application

Program Interface,” 2011. [Online]. Available: http://www.openmp.
org/mp-documents/OpenMP3.1.pdf

[36] P. A. Boyle, M. A. Clark, C. DeTar, M. Lin, V. Rana, and A. V. Aviles-
Casco, “Performance Portability Strategies for Grid C++ Expression
Templates,” EPJ Web Conf., vol. 175, p. 09006, 2018.

[37] R. D. Hornung and J. A. Keasler, “The raja portability layer: Overview
and status,” 9 2014.

[38] L. L. N. Laboratory, “Copy-hiding array abstraction to automatically
migrate data between memory spaces,” https://github.com/LLNL/CHAI.

[39] ——, “An application-focused API for memory management on NUMA
& GPU architectures,” https://github.com/LLNL/Umpire.

[40] D. Doerfler et al., “Applying the Roofline Performance Model to the Intel
Xeon Phi Knights Landing Processor,” in High Performance Computing.
ISC High Performance 2016, ser. Lecture Notes in Computer Science,
M. Taufer, B. Mohr, and J. Kunkel, Eds. Springer, Cham, 2016, vol.
9945, no. ”DOI: https://doi.org/10.1007/978-3-319-46079-6 24”.

[41] “A C++ Wilson Dslash Operator,” https://github.com/jeffersonlab/cpp
wilson dslash.git.

[42] Kitware, “CMake Build System Website,” https://cmake.org/.
[43] “Collection of samples and utilities for using ComputeCpp, Code-

play’s SYCL implementation,” https://github.com/codeplaysoftware/
computecpp-sdk.

[44] A. Bader and Intel, “SYCL(TM) Proposals: Sub-groups for NDRange
Parallelism,” https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/
SubGroupNDRange/SubGroupNDRange.md.

[45] B. Ashbaugh and B. George, “Modeling Explicit SIMD Programming
With Subgroup Functions,” in Proceedings of the 5th International
Workshop on OpenCL, ser. IWOCL 2017. New York, NY, USA:
ACM, 2017, pp. 16:1–16:4. [Online]. Available: http://doi.acm.org/10.
1145/3078155.3078178

[46] J. Brodman and Intel, “SYCL(TM) Proposals: Unified Shared Memory,”
http://https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/
USM.adoc.

[47] K. Group, “LLVM framework with SPIR-V support,” https://github.com/
KhronosGroup/SPIRV-LLVM.

[48] ——, “The OpenCL ICD Loader project,” https://github.com/
KhronosGroup/OpenCL-ICD-Loader.

[49] “Experimental Intel(R) CPU Runtime for OpenCL(TM) Applications
with SYCL support version (Linux),” https://github.com/intel/llvm/
releases/download/2019-09/oclcpuexp-2019.8.8.0.0822 rel.tar.gz.

[50] T. Deakin, J. Price, M. Martineau, and S. McIntosh-Smith, “Evaluating
attainable memory bandwidth of parallel programming models via Babel
Stream,” Internatiional Journal of Computer Science and Engineering,
vol. 17, no. 3, pp. 247–262, 2018.

25

http://doi.acm.org/10.1145/2141702.2141703
http://doi.acm.org/10.1145/2141702.2141703
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
https://www.khronos.org/registry/SYCL/specs/sycl-1.2.1.pdf
http://www.sciencedirect.com/science/article/pii/B9780128038192000239
http://www.sciencedirect.com/science/article/pii/B9780128038192000239
http://arxiv.org/abs/1409.1510
http://arxiv.org/abs/1409.1510
http://pos.sissa.it/archive/conferences/164/020/Lattice%202012_020.pdf
http://pos.sissa.it/archive/conferences/164/020/Lattice%202012_020.pdf
https://doi.org/10.1016/j.jpdc.2014.07.003
https://rocm.github.io/
https://www.khronos.org/registry/OpenCL
https://www.codeplay.com/products/computesuite/computecpp
https://www.codeplay.com/products/computesuite/computecpp
https://dspace.cc.tut.fi/dpub/handle/123456789/22636?show=full
https://dspace.cc.tut.fi/dpub/handle/123456789/22636?show=full
http://portablecl.org/
https://software.intel.com/en-us/articles/opencl-drivers
https://software.intel.com/en-us/articles/opencl-drivers
https://github.com/intel/compute-runtime
https://github.com/intel/compute-runtime
https://github.com/intel/llvm
https://github.com/illuhad/hipSYCL
https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
https://gpuopen.com/wp-content/uploads/2016/01/7637_HIP_Datasheet_V1_7_PrintReady_US_WE.pdf
https://github.com/triSYCL/triSYCL
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
http://www.openmp.org/mp-documents/OpenMP3.1.pdf
https://github.com/LLNL/CHAI
https://github.com/LLNL/Umpire
https://doi.org/10.1007/978-3-319-46079-6_24
https://github.com/jeffersonlab/cpp_wilson_dslash.git
https://github.com/jeffersonlab/cpp_wilson_dslash.git
https://cmake.org/
https://github.com/codeplaysoftware/computecpp-sdk
https://github.com/codeplaysoftware/computecpp-sdk
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupNDRange/SubGroupNDRange.md
https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/SubGroupNDRange/SubGroupNDRange.md
http://doi.acm.org/10.1145/3078155.3078178
http://doi.acm.org/10.1145/3078155.3078178
http://https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc
http://https://github.com/intel/llvm/blob/sycl/sycl/doc/extensions/USM/USM.adoc
https://github.com/KhronosGroup/SPIRV-LLVM
https://github.com/KhronosGroup/SPIRV-LLVM
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://github.com/KhronosGroup/OpenCL-ICD-Loader
https://github.com/intel/llvm/releases/download/2019-09/oclcpuexp-2019.8.8.0.0822_rel.tar.gz
https://github.com/intel/llvm/releases/download/2019-09/oclcpuexp-2019.8.8.0.0822_rel.tar.gz

