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Abstract—This paper explores how we used IO500 and the
Mistral tool from Ellexus to observe detailed performance char-
acteristics to inform tuning IO performance on Astra, a ARM-
based Sandia machine with an all flash, Lustre-based storage
array. Through this case study, we demonstrate that IO500 serves
as a meaningful storage benchmark, even for all flash storage.
We also demonstrate that using fine-grained profiling tools, such
as Mistral, is essential for revealing tuning requirement details.
Overall, this paper demonstrates the value of a broad spectrum
benchmark, like IO500, together with a fine grained performance
analysis tool, such as Mistral, for understanding detailed storage
system performance for better informed tuning.

Index Terms—IO500, Mistral, Ellexus, System Monitoring, IO
Performance

I. INTRODUCTION

As HPC processing capabilities continue to rapidly improve,
there is more and more pressure for the IO system to keep
pace to prevent application bottlenecks. With the increased
prevalence of solid state storage and the increased effec-
tiveness of parallel file systems like Lustre, this pressure is
shifting from hardware concerns toward software overheads
and IO configuration. This paper concentrates on providing a
methodology and set of tools that can be used to analyze and
inform tuning IO system software and configuration.

Sandia National Laboratories’ (SNL) new ARM-based su-
percomputer, Astra, is a testbed for proving a production
capable open source HPC software stack on the ARM platform
and for proving mission critical applications can run effectively
on this architecture. Astra’s platform storage is an all flash-
based, Lustre parallel file system. Being one of the first ARM-
based machines equipped with a Lustre file system, informing
what needs to be fixed in the Lustre client and related software
is an important contribution of this project. Particularly, the
Astra team is exploring various information gathering tools,
such as monitoring and/or benchmarking software, that can
be used to optimize its configuration. This paper focuses on
two of these tools and what they revealed that is informing
the ongoing tuning work.

The IO500 benchmark [1], from Virtual Institute for IO [5],
is a wide ranging benchmark ideal for IO tuning. It consists
of a carefully designed set of twelve tests including IOR for
write and read bandwidth; mdtest for file open, create, delete,
stat; and a find operation to represent walking a file system
for a purge or archive operation. These tests are divided into
both “hard” and “easy” use cases. The hard cases represent
what the community has experienced are the most difficult

patterns a storage system may encounter. For example, for
bandwidth, unaligned, 47KiB writes from each client process
all to a single file is a significant challenge. For the easy
configuration, the user is allowed to configure the patterns
such that they achieves the best performance possible on the
system. The hard and easy tests are carefully interleaved and
timed to 5 minutes for create-style operations representing the
typical 90% forward progress requirement used in platform
purchases. To address potential cheating, all parameters and
scripts used must be disclosed as part of the submission. The
combined score is the geometric mean of all of the tests and
offers individual results as well as an aggregate score offering
a combined ranking for the “best” overall system. The 10 node
challenge version of IO500 seeks to showcase the best that a
standardized system size can achieve. Unlike the general list,
the 10 node challenge requires that 10 client nodes are used
against any size storage. This is a more comparable test of
pure software overhead and interconnect performance. When
combined with the full scale IO500 results, configuration
trends for different scales can be realized. With more than
100 submissions already in its infancy, IO500 has become a
standard performance measure for multiple storage vendors
when offering bids for new machines. While the bids are con-
fidential, this has been observed at multiple supercomputing
sites anecdotally.

The challenge with getting a top score for IO500 is to tune
the parameters to balance the hard and easy bandwidth tests
against the hard and easy metadata tests. In many cases for
Lustre, sacrificing a bit of bandwidth can offer higher metadata
performance. While a top score does not indicate that all
applications can achieve that performance, the range from the
hard to easy on bandwidth and metadata give bounds for what
applications should expect. Further, since all configurations are
shared, insights can be gleaned into how to better configure
an application’s IO. Any storage system weaknesses or biases
should be revealed in the individual benchmark results com-
pared against theoretical peak performance and the balance
between bandwidth and metadata and the easy against hard
tests.

The “flaw” of IO500 as well as any other coarse-grained
test is that the results are over a longer time period. In this
case, 300 seconds. When trying to tune IO500, or any other
IO system tuning for that matter, determining how the system
performs on an instantaneous basis rather than just over the
course of a long-running operation would yield insights critical
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to overall system performance and how an individual operation
changes over its lifetime. For example, timing a bandwidth
operation only reveals the average bandwidth over a given
time. Understanding what is happening during the operation
is not possible. If we were able to see what bandwidth is
achieved at many points during the test, the effects of caching
and interference, as they come and go, can be measured and
understood.

Using a tool like Mistral [3] from Ellexus can generate finer-
grained profiling data. Mistral collects detailed time series data
about all aspects of IO operations. It can also manage IO
with the potential to throttle excessive resource usage from
overly demanding processes or jobs. The Darshan [2] tool
created by Argonne offers some similar monitoring features,
but evaluation of the differences is part of the future work.

This paper uses the IO500 benchmark as a way to explore
what monitoring tools can offer as a way to help understand
and guide optimization for IO activities on a platform.

This paper is organized as follows: Section II contains a
brief description of the environment of Astra system. Sec-
tion III describes running the IO500 without any other moni-
toring tools. Section IV explores the use of Mistral in profiling
IO500 performance, and how this information informed the
tuning of Astra. Section V provides the measurements from
the experiments. Finally, in Section VI, this paper generalizes
the lessons learned from the Astra tuning process and makes
recommendations for proper tuning practices.

II. SETUP

The following section briefly describes the Astra envi-
ronment. Unlike most deployed large scale systems, Astra’s
purpose as a proving ground rather than a production resource
means that the computational load on the machine is relatively
light. The overall bandwidth achievement is expected to be
between 20% and 50% of theoretical peak.

A. Hardware
Astra is a new, highly power efficient, aarch64 HPC pro-

totype. It uses 2.0 GHz ARM Cavium Thunder-X2 2S:28C
nodes with 128 GB of RAM. Astra contains 2592 nodes and
is networked with a QDR InfiniBand interconnect.

The /lustre file system tested consists of 40 OSSes, 2
MDSes, 21 x 1.6TB NVMe devices per OSS, spread across
three ZFS zpools per node and using raidz. It has 240 GB/s
peak bandwidth and 990TB usable storage running Lustre
2.12.1. The /oscratch file system is 8 OSSes, each serving
10 OSTs; 2 MDS nodes, 1 MDT each. This is connected with
3 LNET routers each with 1x10GigE to Astra. The storage
is configured with ldiskfs and Lustre 2.12. The MDT devices
are 800GB 12Gb SAS SSDs. The storage hardware is all FDR
IB attached to the MDS/OSS servers. The file system is EDR
attached to the Astra IB fabric through the lnet gateways. The
OSTs are HGST HUH721010AL4200 10G 7200rpm. Each
OST is one RAID 6 8+2 LUN. Total of 80 OSTs.

The compute nodes have a 2:1 taper from rack-level
switches into the next level of the network, whereas storage
servers enjoy full bandwidth into the core (4xEDR, 100Gbps).

B. Software

Astra uses the RHEL7 OS. Testing is done on the /lustre
mount point. Job submissions are handled through Slurm, in
interactive mode. IO500 v1.1 is used for benchmarking. The
version of Mistral used is 2.13.3, while Mistral visualization
is done through Grafana 6.2.5.

III. IO500 CONFIGURATION

Recall that IO500 consists of fixed parameter hard tests and
partially user configurable easy tests. Finding the right balance
between these is what gives the best overall score.

Configuring Astra’s flash-based storage array to achieve
the best hard and easy results requires testing the
ARM/Lustre/Flash combination. A recent paper about
NERSC’s Perlmutter storage system [6], [7] describes the pro-
cess of specifying and buying a large scale flash-based storage
array along with system trends. Astra’s storage array is a
second attempt to explore this space. With Astra’s combination
of both flash and ARM, this study offers a critical view into
the viability of this combination for future platforms.

As a control, we ran the IO500 benchmark untuned. That is
Astra was first configured without any additional system pro-
filing tools. The program itself was also configured untuned,
optimizing it through theory and experimentation.

While the IO500 benchmarks themselves do support a few
configuration options, most of these options are specified with
optimum settings for Lustre as the default. For example, the
easy metadata test is already configured in the test script to
run with files only at leaves. As another example, the easy
bandwidth test writes a single file per process. While this
leaves little room to see how best to optimize an application
for the Astra architecture, it does provide any easy and
consistent measurement for judging the IO performance of
the architecture as a whole. Overall, the performance tuning
required was more process and node counts rather than more
detailed configurations.

As expected, achieving the best result on the IO500 requires
adjusting the system setting. Some experimentation developed
a solid approach. A series of shorter tests were run on /lustre to
determine the best process. For example, the short test dealing
only with node configuration yielded a score of 22.0241 for
121 nodes and 2 cores per node. Introducing specific striping
patterns to optimize IO raised the score to 42.7811. Further
adjustments brought the short score to 46.92. From these
milestones, we generalized a process for configuring the full
scale tests:

1) Obtain system information and theoretical characteris-
tics.

2) Set test directories’ stripe size based on test files’ size
and number of storage targets.

3) Determine number of nodes to use.
4) Increase the cores per node to maximize bandwidth,

until the bandwidth for ior easy reasonably approaches
a theoretical limit.

5) Adjust the cores per node to balance bandwidth and
metadata results

61



The theoretical maximum bandwidth of our system is 240
GB/sec. The stripe setting were set to maximize individual test
performance:

• lfs setstripe -c 1 ”$io500 ior easy”
• lfs setstripe -c {# of storage tar.} -S 32064k ”$io500 ior hard”
• lfs setstripe -L mdt -E 1M ”$io500 mdt easy”
• lfs setstripe -L mdt -E 1M ”$io500 mdt hard”

To maximize bandwidth, the number of nodes allocated
for each IO500 run equaled the number of storage targets in
the /lustre mount point. For /lustre, the best performance was
achieved with full load (58 cores) on 121 nodes. For the 10
node challenge, we ran full loads as well. Since the metadata
tests do not rely on file storage, using the same striping is
adequate.

IV. MISTRAL

Mistral is an IO profiling and system telemetry tool from
Ellexus. It is designed to run in production to give a live feed of
per-application IO patterns, IO performance, and host health
metrics. It is therefore provides lightweight and scalable IO
profiling capabilities ideal for characterising a benchmark such
as the IO500. By capturing reads, writes, meta data patterns
and IO performance alongside CPU and memory usage Mistral
can identify rogue applications, bad IO patterns and system
bottlenecks across high-performance computing clusters and
distributed applications.

Mistral’s preferred logging solution, Elasticsearch, was not
used. We were unable to get permission for the software
install during the time we had to perform our experiments.
The impact of this is detailed in the results.

A. Performance Effects

Mistral did not appear to affect the IO500 performance
significantly. While our platform is lightly loaded, determining
an exact impact range would require considerable testing and
is beyond the scope of this paper. Darshan has documented the
overheads to less than 0.05% [2]. We expect Mistral to have
similar overheads once detailed measurements are performed.

B. Data Gathering and Visualization

By default, Mistral gathers data at a 1 second interval on
only a per-node basis aiming to monitor the system as a whole.
It can be used to monitor a particular application run as well.
This is how Mistral was used for these experiments. Individual
per-process statistics would require a less scalable solution,
like Ellexus’ Breeze product. Breeze is aimed at detailed
reporting to identify good and poor behaviors per process.

The logging approach is either to text files or via a plugin
to a database like Elasticsearch [4]. Given contention with the
text file logs, we had approximately a 0.2%-2.0% data loss.
With the database plugin, this loss would have been avoided.

With the collected data, the recommended Grafana visual-
ization workflow quickly revealed both expected performance
graphs as well as the unexpected slow decay and performance
variability. Example graphs are in Figures 1- 6. Given the
space limitations, larger versions are placed in the appendix.

V. RESULTS

Mistral’s biggest strength is its ability to capture fine-
grained data about systems performance with both the breadth
and detail needed for good visualization. Mistral excels at not
just monitoring applications with low overhead, but also at
helping developers and system administrators identify prob-
lems and their root causes through enabling them to see inter-
actions between data feeds. While Figures 1- 8 are difficult to
read, what is most important is the shape of the curves and the
highlighted areas. Full scale images are in the appendix with
a table listing the mapping to make finding the corresponding
figure easier.

One clarifying note. Metadata operations are broken into
two parts. The MD part represents finding and modifying
metadata (access, create, and rm). The STREAM part rep-
resents metadata operations for dealing with actual data. In
particular, it is file stream operations associated with functions
like fprintf and sscanf (i.e., seek and open).

Mistral identified various noteworthy performance features
that warrant further investigation. These features take various

Fig. 1. Mistral Results for ior write easy

Fig. 2. Mistral Results for ior read easy
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forms and have varying effects on performance. However, each
feature described below was significant to the Astra team and

Fig. 3. Section of md stat easy

Fig. 4. Mistral Results for md stat hard

Fig. 5. Mistral Results for md stat easy

showcases the importance of fine-grained profiling.
For example, IOR performance loss was occurring as a

Fig. 6. Mistral Results for md read hard

Fig. 7. Mistral Results for md write easy

Fig. 8. Mistral Results for ior write hard
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result of increased CPU Load (Figures 1 and 2). The loss
is clearly different from a caching effect clearly labeled at
the start of Figure 1. As load increases, bandwidth perfor-
mance instability occurs. While the loss for ior write easy
was estimated through hand calculation to be minor (∼1%),
the effect of the increased load on performance grew by a
factor of six for ior read easy (at 6%-7%). Thus clearly, this
bug in either the lustre system or the Astra hardware can
have varying effects on performance and could exceed the
estimated performance loss. As such, this finding warrants
further investigation.

Mistral also reveals IOP latency swells in the middle of
md stat tests (Figures 3 and 4). This swell appears to cor-
respond with metadata performance loss. Unfortunately, the
actual percentage of performance loss is difficult to estimate
because there is no consistent performance in either figure to
form a basis for comparison. Nevertheless, it should be clear
that this correlation provides inconsistent and less than optimal
performance. Exploring this bug is part of our ongoing work.

There are other observed features that we have yet to
explain. Most of these phenomenon deal with metadata. We
have not determined the cause of the performance degradation
shown in red on Figure 5. Estimates for performance loss
in the red section of md stat easy are again difficult to
accurately calculate. However, since the degradation is not
present in md stat hard, it is possible that this feature might be
eliminated all together. Metadata performance degrades more
gradually in md read hard (Figure 6) but has the greatest
performance impact of all estimated losses (∼18%). There
is also a sudden, unexplained drop in metadata performance
in md write easy (Figure 7). This performance loss is esti-
mated to be roughly 10%. While the IO500 scores show we
are achieving reasonably expected performance, these details
indicate that we can further optimize the ARM/Lustre system.

Mistral also captured more expected phenomenon. For ex-
ample, ior write hard challenges performance by decreasing
the transfer size. Mistral captured how the decreased transfer
size increases file system seeks while decreasing write latency
(Figure 8). As discussed earlier, Mistral can also display when
and how often we cache (Figure 1). And all though this
information is not particularly useful in our context, it could
be useful for developers.

A. Astra Tuning

An immediately useful tuning feature of Mistral is actually
not the information it gives us, but its ability to throttle
performance. While this has tons of application in software
development and system administrations, we found it useful
to throttle the md write hard portion of the IO500. This kept
us from breaking the files per directory limit and allowed us
to obtain a potentially valid IO500 score on /oscratch without
an incredible reduction in performance. This exploration then
led to using the -I parameter to slow file creation so that
it reached near the peak possible without crashing from
exceeding this threshold. We investigated our ability to adjust
these limits and determined that, for our installation, we were

unable to adjust the maximum making our work on /oscratch
incomplete compared to /lustre.

Other tuning required include further root cause analysis of
the drivers and network to isolate the sources of the inter-
mittent performance anomalies. Some of the coarse-grained
results have been noticed, but this testing has revealed details
enabling more detailed analysis and debugging the near first
of its kind architecture.

B. IO500 Results
Table I shows the best results achieved in tuning IO500 for

Astra. The results for the /lustre mount point are high enough
to take the 14th spot on the official IO500 board and the 13th

sport on the 10 node challenge as of the June 2019 list [1].
TABLE I

OPTIMIZED IO500 RESULTS

Nodes Mount Point Bandwidth IOPS Score
121 /lustre 84.8118 GB/s 35.9847 kiops 55.2443
10 /lustre 28.4097 GB/s 45.7227 kiops 36.0412

As strong as this initial showing for Astra is, the detailed
IO500 results in the graphs more easily read in the appendix,
shows some area for improvement. Further tuning of the Lustre
client on ARM is still required to get better performance.

VI. CONCLUSION AND FUTURE WORK

Overall, the IO500 benchmark proved an effective approach
to test storage system performance. Our measured 33% of
peak performance hit the middle of our fairly broad expected
range of 20-50%. Having these hard and easy tests offers a
way to experiment without using production applications while
still generating values that can be compared against other
machines of similar architecture to see if the achieved results
are reasonable. Otherwise, a user would be left guessing if
what they achieved was reasonable performance.

The addition of a monitoring tool, in this case Mistral,
offered insights into how the IO operations actually performed.
The periodic snapshot of the various system characteristics and
instantaneous performance has offered avenues to attempt to
tune the system. The standardized benchmarks IO500 employs
offers a consistent testing approach for use with the monitoring
tool. The combination is shown to reveal system performance
details that would otherwise be hidden behind coarse numbers.

For future work, first we plan to compare what Mistral
offers against Darshan. With many new technologies becoming
viable, Sandia’s testbed system collection is expanding. We
plan to use this testing approach on these new architectures as
the machines come online. Finally, measuring impact on Astra
from this approach is being investigated.
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APPENDIX

The figure mapping to the main paper text is in Table II:

TABLE II
MAIN TEXT FIGURE MAPPING TO APPENDIX FIGURE

Content Type Main Text Appendix
IOR Write Easy Figure 1 Figure 9
IOR Read Easy Figure 2 Figure 10
MD Section Figure 3 Figure 11
MD Stat Hard Figure 4 Figure 12
MD Stat Easy Figure 5 Figure 13
MD Read Hard Figure 6 Figure 14
MD Write Easy Figure 7 Figure 15
IOR Write Hard Figure 8 Figure 16
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