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Abstract—With scientific applications moving toward exascale
levels, an increasing amount of data is being produced and ana-
lyzed. Providing efficient data access is crucial to the productivity
of the scientific discovery process. Compared to improvements in
CPU and network speeds, I/0 performance lags far behind, such
that moving data across the storage hierarchy can take longer
than data generation or analysis. To alleviate this I/O bottleneck,
asynchronous read and write operations have been provided
by the POSIX and MPI-I/O interfaces and can overlap I/O
operations with computation, and thus hide 1/0 latency. However,
these standards lack support for non-data operations such as file
open, stat, and close, and their read and write operations require
users to both manually manage data dependencies and use low-
level byte offsets. This requires significant effort and expertise
for applications to utilize.

To overcome these issues, we present an asynchronous 1I/O
framework that provides support for all I/O operations and
manages data dependencies transparently and automatically.
QOur prototype asynchronous I/O implementation as an HDF5
VOL connector demonstrates the effectiveness of hiding the I/O
cost from the application with low overhead and easy-to-use
programming interface.

I. INTRODUCTION

Exascale high performance computing (HPC) systems are
arriving soon, and will produce an unprecedented amount
of data that presents new I/O management and performance
challenges. However, the I/O sub-system of supercomputers
has not kept up with the trend of CPU and network speed im-
provements, and applications are likely to suffer from poor I/O
performance, significantly impacting scientific productivity.

To help mitigate this problem, some I/O systems offer an
asynchronous interface that allows applications to schedule an
I/0 operation and then proceed with computation, testing/wait-
ing on the I/O request when desired, instead of blocking until
its completion. Many applications can take advantage of an
asynchronous interface by scheduling I/O as early as possible
and coming back to check on the status of the I/O operations
when needed. This allows an overlap of communication and
computation with I/O operations, hiding some or all of the
cost associated with I/O.

The POSIX I/O [1] standard provides “aio_*” routines for
reading and writing data asynchronously to the file system.
MPI-I/O [2] provides a non-blocking interface to read and
write data from files with MPI parallel applications. However,
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these two solutions only support basic read and write oper-
ations, leaving others such as file open and close to remain
synchronous. The asynchronous operations provided are also
at a lower level, operating on byte offsets and counts, which
requires more effort from an application developer. High-level
I/O libraries and data management systems, such as ADIOS
[3] and PDC [4], offer asynchronous data movement to and
from their server nodes through network data transfer. While
they are effective in moving the data to different locations,
managing separate servers require extra resources and effort.

In addition to these issues, additional challenges must be
overcome for the effective implementation of asynchronous
I/O, particularly in an HPC environment. Managing data de-
pendencies and retaining the correct execution order is crucial
to data consistency. For example, an asynchronous file read
can only be executed after a successful asynchronous file open,
and an asynchronous read issued after an asynchronous write
of the same data must be performed in its original issue order.
Asynchronous collective I/O operations must also be correctly
supported, so that they execute without causing a deadlock.
To reduce application impact, asynchronous tasks should only
start execution when the application’s main thread is no longer
issuing I/O operations and has moved into a compute phase.
Additionally, the user should not be burdened with manual
management of all these operations and should have a low-
effort mechanism to take advantage of the asynchronous I/O
operations and monitor their completion.

To tackle these challenges, we propose an asynchronous
I/O framework that supports all types of I/O operations,
including both collective and independent ones, requires no
additional servers, manage data dependencies transparently
and automatically from users, and requires minimal code
modifications.

Implementation of asynchronous I/O operations can be
achieved in different ways. Since the native asynchronous
interface offered by most existing operating systems and low-
level I/O frameworks (POSIX AIO and MPI-IO) does not
include all file operations, we chose to perform I/O operations
in a background thread. With recent increases in the number
of available CPU threads per processor, it is now possible
to utilize a thread to execute asynchronous operations from
the core that the application is running on without significant
impact to the application’s performance. To manage data



dependencies and support collective operations, we maintain
a queue of different types of tasks and tracks their dependen-
cies, such that only when an asynchronous task’s dependent
parents are completed will it be scheduled for execution in
the background thread. We also manage both the collective
and independent operations such that the collective operations
are executed in the same order and avoid any mismatched
deadlock situation. To remain low overhead and avoid the
contention of shared resources between the application’s main
thread and the background thread, we used a status detection
mechanism to check when the main thread is performing non-
I/O tasks.

In summary, our proposed method makes the following
contributions:

o We adopt a background thread approach that accumulates
I/0 tasks and starts their execution when we detect that
the application’s main thread is idle or performing non-
I/O operations.

We propose a task dependency management protocol to
guarantee the data consistency and support both collective
and independent operations.

We provide asynchronous I/O support to applications
transparently, in a way that requires no more than a few
lines of code changes.

We show the evaluation of our implementation that adds
support to the HDF5 library [5] with several benchmarks
and I/O kernels that demonstrate the effectiveness of the
asynchronous I/O with low overhead.

We have evaluated the proposed asynchronous I/O frame-
work on the Cori supercomputer at the National Energy
Research Scientific Computing Center (NERSC) with several
benchmarks and I/O kernels. Experimental results show that
our method can effectively mask the I/O cost when the
application is idle or performing non-I/O operations. The
remainder of the paper is organized as follows: We introduce
our asynchronous I/O framework’s design in Section II, and
the implementation as an HDF5 VOL connector in Section III.
In Section IV, we describe our experimental setup and present
the results in Section V. We discuss the relevant literature in
Section VI and conclude the paper in Section VII.

II. ASYNCHRONOUS I/O

To enable asynchronous I/O for applications, the least
intrusive implementation is to make all the I/O operations
implicitly asynchronous, such that those operations return
immediately once issued. In this way, the user can still
use their existing code, without managing the asynchronous
requests or explicitly waiting for operations to complete. To
enable such mode of asynchronous operations, one can invoke
the asynchronous framework’s initialization routine before file
create or open within the application or set an environment
variable before running the application. The I/O operations
will then be executed in a separate background thread that
is fully managed by the asynchronous framework without
the need of user intervention, and avoids the requirement of

creating extra server nodes that move data to their memory or
node-local storage.

Executing asynchronously in the correct order is possible by
creating a graph representation of the dependencies between
operations, internal to the asynchronous I/O framework. As a
result, operations that have a dependency will be paused until
their dependencies are fulfilled and then will be scheduled
to run when resources are available. This approach allows
an existing application to execute all of its I/O operations
asynchronously in the background without blocking the ap-
plication’s main process/thread’s progress, while still being
confident that they will be issued in the correct order. Such an
approach is particularly useful for checkpoint operations, as
the I/O time can be effectively masked by the compute time
between checkpoints.

Figure 1 illustrates the workflow of our proposed asyn-
chronous I/O framework. We will describe details on our
design in the following sub-sections.

Application Background
thread thread
( Start )
Async Init > Start
Y
Fopen .
\\Create, copy, insert App status
| e "
\/ \\ ¢
Dcreat N

Async Task
Queue

Yes

o
- 2 |-
FD'

3

\

\

\

N

/" Async Task
. Execution
Fclose }
Async Finalize \
/ End

End

Fig. 1. A workflow overview of the asynchronous I/O framework. When
an application enables asynchronous I/0, a background thread is started. Each
I/0O operation is intercepted and an asynchronous task is created, storing all
the relevant information before inserting it into the asynchronous task queue.
The background thread monitors the running state of the application, and only
starts executing the accumulated tasks when it detects the application is idle
or performing non-I/O operations. When all I/O operations have completed
and the application issues the file close call, the asynchronous I/O related
resources, as well as the background thread itself, would be freed.

A. Asynchronous Task

When the asynchronous I/O framework is enabled, an asyn-
chronous task object is created for each I/O operation, storing
all the information needed for that operation. It includes a
copy of all parameters, a function pointer to the operation
to execute, data pointers, and internal states such as its
dependency and execution status. After the creation, the task
is appended to a queue (more details explained in the next
sub-section) that the background thread’s execution engine can
access. These asynchronous tasks are internal data that are



managed only by the asynchronous I/O framework, and are not
exposed to users. Once the task is created, the corresponding
function returns to the application without blocking it for the
I/O operation to complete.

When the asynchronous execution engine determines that a
task can be executed, the task’s information is passed to the
background thread, which is then executed atomically and run
to completion before the next task starts running. A task can
be canceled while it is queued, but it is rarely needed.

To allow applications to reuse a buffer immediately after
a data write call (i.e., HSDwrite in HDFS) and prevent data
consistency issues while the task is awaiting execution, we
make a copy of the data in the user’s buffer at task creation
time by default. However, we also provide the option to not
duplicate the data if the application is memory-sensitive (see
Section III).

The asynchronous I/O framework requires less than 1KB
of extra memory to store each asynchronous task, plus a copy
of the application buffer, for data write calls. The tasks are
freed once the corresponding objects are no longer used, e.g.
an object is explicitly closed by the application. As a result,
the framework typically requires no more than a few MBs of
extra memory at run time.

B. Task Dependency Management

Data dependencies are common for scientific application I/O
operations. For example, all data read and write operations
depend on the successful completion of the corresponding
file create or open operation. Reads and writes on the same
object should be executed in an order that guarantees the data
access consistency. Additionally, collective operations must
be handled properly to avoid mismatched operations being
executed that lead to a deadlock. With these considerations
in mind, we use the following set of rules:

1) All I/O operations can only be executed after a successful
file create/open.

The file close operation can only be executed after all
previous operations in the file have been completed.
Any read/write operation must be executed after a prior
write operation to the same object.

Any write operation must be executed after a prior read
operation to the same object.

Any collective operation must be executed in the same
order with regard to other collective operations.

There can only be 1 collective operation in execution at
any time (among all the threads on a process).

2)
3)
4)
5)
6)

To manage the tasks with the above rules in mind, we main-
tain a queue of task lists that are categorized into three types:
Regular Task List (RTL) - tasks that have no dependencies
between them and can be executed independently; Collective
Task List (CTL) - tasks that are collective operations; De-
pendent Task List (DTL) - tasks that depend on one or more
tasks. We implemented the queue as a linked list, as shown
in Figure 2. Note that a collective task may or may not have
dependent parents, and is treated as a special dependent parent
when it does.
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Fig. 2. Example of dependency management, where RTL: regular task list,
CTL: collective task list, DTL: dependent task list, RO: read object 0, WO:
write object 0, W1: write object 1, CW3: collective write object 3. RO depends
on Fopen, WO depends on both Fopen and RO, W1 depends on Fopen, Fclose
depends on all previous operations.

There can be multiple task lists of each type in the task
queue. Any time a non-regular task is created, a new task
list will be created. To create an asynchronous task, we first
check if it is a collective operation. If it is, either a new CTL
is created, or the task is appended to an existing CTL that is
the tail in the queue. We then check for object dependency,
for example, a group open depends on the corresponding file
open/create operation, according to the following rules:

1) Any read/write operation depends on a prior write oper-

ation of the same object.

2) Any write operation depends on a prior read operation of

the same object.

3) Any object close operation depends on all previous op-

erations of the same object.

If satisfies either of the above rules, create a new DTL and
insert to it. Otherwise, create or insert it into the current tail
RTL. If the current RTL is also the head of the queue, mark
it as ready for execution and send the first operation to the
scheduler. Any time an asynchronous task has completed, we
dequeue the head of the task list and schedule it for execution
next. In this way, the asynchronous tasks are chained and can
be executed safely and reliably.

Note that with the above rules, it is possible that some
asynchronous tasks are not executed in the same order as in the
application’s code. Specifically, there are two cases that out-
of-order execution could happen: 1) non-collective reads on
the same or different objects, and 2) Non-collective writes on
different objects. These two exceptions would not cause data
consistency issues and thus are allowed in our framework.

C. Background Thread Execution

In the past, it was not always possible to “steal” a thread to
do asynchronous I/O from the application resources of avail-
able threads. However, with recent increases in the number
of available CPU threads per processor, this is no longer the
case. Additionally, recent HPC system architectures and early
designs for some future exascale systems employ forms of I/O
forwarding, where compute nodes do not have local disks that
store data, but use a fast network interconnect to forward I/O
requests to dedicated servers that handle them.



I/0 forwarding could be done asynchronously from the
applications running on compute nodes by using a background
thread. On these architectures, the file system needs not even
expose an asynchronous interface to implement asynchronous
I/0O since the data is moved through the network to a separate
I/O server. Furthermore, a background thread on the compute
node to transfer the data might not even be needed if the
network hardware provides a native asynchronous RDMA
interface.

We use Argobots [6] as the background thread execution
engine due to its low overhead. Argobots is a lightweight,
low-level threading and tasking framework. It directly lever-
ages the lowest-level constructs in the hardware and OS:
lightweight notification mechanisms, data movement engines,
memory mapping, and data placement strategies. However, our
implementation is not tied to Argobots and it could be replaced
by other thread management libraries, such as future versions
of OpenMP [7]. By default, we use one background thread for
executing I/O tasks separate from the applications main thread,
which provides the asynchronous I/O benefits and limits the
performance impact to the multi-threaded applications.

D. Main Thread Status Detection

Without special intervention, task execution could happen
concurrently in the background thread and the application’s
main thread, and it is possible that the two threads would
compete for access to shared resources, such as the modifying
the asynchronous task queue. It is also common for a scientific
application to perform a number of I/O operations before or
after a period of computation. Thus it is desirable for the
background thread to know the status of the application’s main
thread, such that it does not start asynchronous task execution
immediately after a new task is created by the main thread,
but rather waits until the main thread finishes queuing all its
I/O operations and moves on to other operations. In this way,
the two threads avoid competition for shared resources that
could lead to an effectively synchronous execution.

When the application issues a number of asynchronous
I/O operations, the time gap between consecutive ones are
very small, in the microseconds level. Thus by maintaining a
counter to track the number of asynchronous I/O tasks created
by the application, and monitoring the value of the counter, we
can determine if the application is currently busy issuing I/O
requests or not. The asynchronous execution engine checks
the counter value twice with a sleep time in between (by
default it is set 100 microseconds). If the counter value
does not increase between the two checks, then the main
thread is considered to have finished queuing I/O operations,
and the background thread can start the execution of I/O
tasks. Otherwise, the background thread waits and repeats the
procedure. This mandatory sleep time can become a significant
overhead when executing a large number of I/O operations
that take comparable time to the wait time, such as metadata
access that may only take a few microseconds. To reduce
such overhead, we do not perform the counter status check
every time, but check every few operations. We also vary

the frequency between fast I/O (i.e., metadata operations,
frequency = 8) and the slow I/O (i.e., raw data operations,
frequency = 2) to achieve the best performance.

III. IMPLEMENTATION AS AN HDF5 VOL CONNECTOR

HDF5 [5] is a popular high level I/O library that has been
used in a wide variety of scientific domains. Currently, HDF5
does not support asynchronous 1/O, adding asynchronous I/O
support to the HDF5 library would benefit a large number of
existing applications. HDF5 provides the Virtual Object Layer
(VOL) [8], which intercepts all HDF5 API calls that could
potentially access objects in the file and forwards those calls to
a VOL connector that accesses the objects. The user still gets
the same data model where access is done to a single HDF5
“container”’; however the VOL connector translates from what
the user sees to how the data is actually stored. The HDF5
VOL is an ideal place for us to implement our asynchronous
I/O framework and enables existing applications that already
use HDF5 to take advantage of this feature with minimal code
changes. Our implementation can be compiled as a dynamic-
link library, and can be linked to the user’s application directly,
remaining separate from the installed version of HDF5.

However, adding asynchronous operations to the HDF5
library is not an easy task, because of the large number and
variety of HDF5 operation types. HDF5 operations can be
divided into three categories:

1) Metadata operations: Operations like creating files and
objects (groups, datasets, etc), managing the HDF5 group
hierarchy, creating and operating on attributes, etc. This
further breaks down into several categories:

a) Initiation operations — Create and open objects, etc.

b) Modification operations — Extend dataset dimensions,
write an attribute, flush the file, etc.

¢) Query operations — Get the number of links in a group,
get the datatype or dataspace for a dataset, read an
attribute, etc.

d) Close operations — Close an object or file.

2) Raw Data operations: Reading and writing HDF5 datasets
(i.e., H5Dread and H5Dwrite).

3) HDFS5 local operations: Those are operations that do not
access the HDF5S file but just aid users in accessing
the files (creating and managing property lists, IDs,
dataspaces, etc.). These types of operations are memory-
only operations and can not perform any I/O, so they do
not need to be performed asynchronously.

Implicitly executing operations asynchronously requires that
we make H5Fclose and metadata query operations blocking.
H5Fclose waits for all the previous asynchronous tasks to
complete before returning, so that the application won’t exit
until all tasks have been completed. Metadata query operations
return information that the application may use immediately
after the call, and thus must be executed successfully before
proceeding to the next operation. All other HDF5 I/O functions
are non-blocking by default.



1) Additional Functions: To allow users to explicitly

enable  asynchronous I/O  operations and  check
their status, we provide a few APIs in the HDF5
asynchronous VOL connector: H5Pset_vol_async,
H5Pset_dxpl_async_cp_limit, H5Dtest,
H5Dwait, H5Ftest, and H5Fwait.
H5Pset_async_vol sets the HDF5 file access
property list to enable asynchronous I/O when it

is used at file open or creation time, this call can
also be replaced by setting an environment variable
(HDF5_VOL_CONNECTOR) before launching the application.
H5Pset_dxpl_async_cp_limit controls the size limit
when making a copy of the user’s data buffer, setting it to
0 would disable the duplication and it would become the
application’s responsibility to ensure the validity of the data
before it is written by the background thread. H5Dtest and
H5Ftest return the status of the asynchronous task for a
dataset or all operations in a file. H5Dwait and H5Fwait
block the application’s main thread until the corresponding
asynchronous dataset or file operations have completed in the
background thread. All of these functions are optional and the
user could simply set an environment variable before running
their program and take advantage of the asynchronous I/O.

2) Error Reporting: One downside of our proposed ap-
proach is its lack of immediate feedback for errors that occur
when implicitly executed asynchronous operations fail, which
could cause the remaining operations to fail subsequently.
Thus effective error reporting becomes important to help users
locate the root cause of the errors when they occur. In our
implementation, we log and output the asynchronous tasks’
errors, and prevent the remaining tasks that depend on the
successful execution of the failed task from getting executed.
Using this approach can greatly reduce the number of error
messages and makes it easier for the user to trace the root
cause of failures.

IV. EXPERIMENTAL SETUP

We have evaluated the performance of our proposed asyn-
chronous I/O framework with benchmarks and I/O kernels
from scientific applications. We ran experiments on the Cori
supercomputer at the National Energy Research Scientific
Computing Center (NERSC). Cori is a Cray XC40 supercom-
puter with 1630 Intel Xeon “Haswell” nodes, where each node
consists of 32 cores and 128GB memory. Its Lustre storage
system has 248 OSTs and is shared by all users. We configured
the asynchronous I/O framework to use 1 background thread.

To measure the performance, we have created micro-
benchmarks that simulate the I/O behavior of a serial or
parallel application, which can write or read time-series data.
The data of each timestep is stored in one group of an HDF5
file. Each group has a number of datasets (raw data) as well
as attributes (metadata). The micro-benchmark also includes
a configurable “computation” time duration between writes
or reads, which mimics the behavior of computation between
timesteps in scientific applications.

In addition to the micro-benchmark, we used two I/O
kernels, VPIC-IO and BD-CATS-IO, to evaluate the parallel
performance of our proposed asynchronous I/O framework.

1) VPIC-IO: The VPIC-IO kernel' is extracted from a
plasma physics code called VPIC [9], which simulates kinetic
plasma in a multi-dimensional space. In this kernel, each MPI
process writes 8M (8 x 229) particles with eight properties,
including x, y, z, Ux, Uy, Uz, id1, and id2, with a total size of
256 M B data for each process. With a fixed amount of data
written by each process, VPIC-1O is a weak scaling test. Only
a few lines of code are modified to enable the asynchronous
I/O. When there is sufficient computation time, only the last
timestep’s write time plus the asynchronous I/O framework’s
overhead are observed by the application.

2) BD-CATS-10: The BD-CATS-IO kernel® is extracted
from a parallel clustering algorithm code [10], used for an-
alyzing the data produced by particle simulations, such as
VPIC. In this kernel, the I/O patterns exactly match that
of the simulation and analysis, such that data related to the
particles are read among all the MPI processes with an even
distribution. Similar to the VPIC-IO, BD-CATS-IO is also a
weak scaling test. We have modified the BD-CATS-IO code
to prefetch the next timestep’s data before processing the
current timestep, allowing the background thread to overlap
I/O with the application’s computation. In this way, only the
first timestep’s read time and the overhead are observed by
the application.

For all the results presented in the following section, we
have measured the elapsed I/O time observed by the appli-
cation, which is the time from the first I/O operation until
the last I/O operation finishes, and excludes the computation
time between the I/O operations if there are any. We ran
each experiment at least 10 times and report the time of
the best results. The variance of different runs for the same
configuration is less than 10% for the majority of cases. For
serial tests, we set the Lustre stripe count to 4 and stripe size
to 4MB, and for parallel experiments, the stripe count is set
to 128 and stripe size is 32MB. To avoid any cache effect, we
configured each run to operate on a separate file.

V. EVALUATION

A. Serial I/0 Performance

To verify the correctness and evaluate the overhead of our
asynchronous I/O framework, we first show the results that
compare the write and read time between the original HDF5
and HDF5 with asynchronous I/O support. We configured the
micro-benchmarks to write or read 10 timesteps of both data
and metadata, stored as datasets and attributes in 10 different
groups in one HDF5 file. Each group has O or 5 datasets
with varying sizes (IMB to 128MB), and a varying number
of attributes (0 to 128). By varying the number and size
of datasets and the number of attributes, we simulate serial

Uhttps://sdm.Ibl.gov/exahdf5/ascr/software. html
Zhttps://github.com/glennklockwood/bdcats-io
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applications that have data-intensive, metadata-intensive, or a
mixture of data and metadata workload.

In Figure 3, we compare the asynchronous I/O-enabled
HDF5 with the original HDF5 for reading and writing data
with no computation time between the I/O operations. Essen-
tially the performance difference between the two is the over-
head of creating, managing, and executing the asynchronous
I/O operations. As the HDF5 library caches metadata in
memory and does not flush the metadata to the storage system
every time, the metadata operations are almost all memory
operations, with an execution time comparable to those of
asynchronous task management. Thus the overhead is more
significant with the metadata-intensive workload. However,
when there are more raw data I/O operations, which have more
disk I/O accesses, the overhead becomes lower, as shown in
the bottom three cases.

Unlike the previous figure, in Figure 4, we show the per-
formance comparison when there is computation time between
the I/O operations, which is more common in time-series data
accesses. We set the computation time between each timestep
to be 5 seconds, which is more than that of the I/O time and
can fully mask the background threads’ I/O operations. We
can see from the figure the asynchronous I/O-enabled HDF5
has a multi-fold I/O time speedup than the original HDFS5,
demonstrating the effectiveness of our implementation.

B. Parallel I/O Performance

1) Parallel Metadata I/O: In the previous section, we
have observed that with the metadata-intensive workload, a
serial application may not get the full benefits from using
asynchronous I/0. This is mainly due to the HDF5’s metadata
cache mechanism, where the majority of the metadata /O
are executed as in-memory operations, and can finish in
milliseconds. However, when it comes to parallel metadata
I/0, the communication cost among all processes (necessary
for HDF5 metadata operations) becomes significant and is
much more time-consuming. This added communication cost
provides an opportunity to take advantage of asynchronous I/O
and hide such cost.

Figures 5 and 6 compare the I/O time using the parallel ver-
sion of the micro-benchmark with the metadata-only workload.
The micro-benchmark writes or reads 10 timesteps, each with
64 attributes. Due to the communication cost within HDF5 for
those operations, the total I/O time increases with the number
of application processes. “Async-0%” has no computation time
for the I/O operations to overlap with, and thus has similar
performance with the regular HDFS5, with the time difference
being the asynchronous framework overhead. On the other
hand, when there is enough computation time, as shown in
the “Async-100%” cases, we can see a significant I/O time
reduction, demonstrating the advantage of using asynchronous
I/0.

2) Parallel Raw Data I/0: We use the results from running
two I/0O kernels that perform primarily raw data operations
to demonstrate the speedup of our proposed asynchronous
I/O framework at large scale. Using the original HDFS5 as
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Fig. 5. Parallel metadata write performance comparison between HDF5
and HDFS with asynchronous I/O support. At each timestep, 64 attributes
are created and write to an HDF5 file. “Async-0%” writes all timesteps’
data without computation time between the writes, and “Async-100%" has
computation time that is more than the metadata write time.
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Fig. 6. Parallel metadata read performance comparison between HDF5 and
HDFS5 with asynchronous I/O support. At each timestep, 64 attributes are read
from the HDFS file. “Async-0%" reads all timesteps’ data without computation
time in between, and “Async-100%" has computation time that is more than
the metadata I/O time.

a baseline comparison, we show three different /O kernel
configurations with asynchronous I/O enabled, by varying the
amount of computation time between each timestep.

Figure 7 shows the VPIC-IO performance comparison: with
no computation time between the timesteps, our asynchronous
I/O-enabled HDF5 shows a small amount of overhead com-
pared to the original version of HDF5. However, when there
is computation time, significant performance improvement can
be observed. The “Async-50%” case has a computation time
after each timestep’s write and is approximately half the I/O
time of each timestep, with the I/O partially hidden by the
computation time. The “Async-100%” case has a computation
time that is more than the I/O time of each timestep, such that
the I/O time can be fully overlapped with the computation.
Note that after the last timestep’s write, there is no compu-
tation time for the I/O time to overlap with, so the observed
write time of “Async-100%" is composed of the last timestep’s
write time plus the asynchronous I/O framework’s overhead of
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Fig. 7.  Performance comparison between HDF5 and HDF5 with asyn-

chronous I/O support. 10 timesteps of VPIC data is written with a varying
amount of computation time between the writes. “Async-0%” writes all
timesteps’ data without computation time between consecutive writes, “Async-
50%” has a simulated computation time that is approximately 50% of the
individual write time between the writes, and “Async-100%" has computation
time that is more than the individual write time.

all 10 timesteps.
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Fig. 8.  Performance comparison between HDF5 and HDF5 with asyn-

chronous I/O support. 10 timesteps of VPIC data is read and prefetched with
a varying amount of computation time between them. “Async-0%” reads all
timesteps’ data without computation time between consecutive reads, “Async-
50%” has a simulated computation time that is approximately 50% of the
individual read time, and “Async-100%” has computation time that is more
than the individual read time, such that the prefetching is fully overlap with
the computation.

Figure 8 shows the performance comparison using the BD-
CATS-10, which reads the VPIC data. The asynchronous
framework’s overhead for read operations is almost negligible
in most of the cases. Similar to the previous VPIC-IO results,
when the computation time is half or more than the I/O time of
each timestep, the performance of asynchronous I/O is already
several times faster than the original HDFS5. Since there is no
computation time before the first timestep’s read, the observed
I/O time for “Async-100%” includes the first timestep’s read
time and the asynchronous overhead.

C. Overhead

We measured the overhead of our asynchronous I/O frame-
work by running the same workload using HDF5 with and
without asynchronous I/O support (shown in previous figures).
When there is no computation time between the I/O opera-
tions, the overhead is fully exposed to the application. For the
serial write and read cases in Figure 3, the overhead ranges
from 0.6% to 20% of the total I/O time, with an average of 5%.
For the parallel results in Figures 7 and 8, the overhead ranges
from 0.8% to 9%, with an average of 4%. On the other hand,
if there is some computation time between the I/O operations,
the asynchronous I/O overhead can be partially masked by the
computation. In this case, the overhead of asynchronous I/O
becomes less than 2% of the total I/O time in all cases.

VI. RELATED WORK

As exascale supercomputers are deployed in the next few
years, an increasing amount of data will be generated and
analyzed. Dealing with such huge volumes of data is not an
easy task, and various I/O performance optimizations have
been proposed to alleviate the I/O bottleneck and accelerate the
process of scientific discovery. Existing parallel file systems
such as Lustre [11], PVFS [12], GPFS [13], and NFS [14]
aim to provide efficient parallel data access, but still requires
a significant amount of expertise and effort to reduce the I/O
latency.

There is a growing trend toward enabling applications to use
asynchronous I/0. Lazy AIO has been proposed as a general
OS mechanism for automatically converting any system call
that blocks into an asynchronous call [15], however, it still
requires the user to manage data dependencies and is operating
with low-level system calls. The light weight file system
(LWFS) [16] has been proposed, however, to utilize its asyn-
chronous I/O support, the entire file system must be replaced
with LWFS, which is not practical in leadership computing
facilities. The impact of various overlapping strategies of MPI-
IO has been studied [17], but only at a rather small scale.

Other approaches focus on data staging and caching ap-
proaches to offload the I/O to dedicated servers. [18] improves
the I/O performance by caching data on additional compute
nodes. I/O middleware such as ADIOS [3] provides asyn-
chronous I/0 support through their staging interface, where the
data can be transferred to the staging nodes through remote
direct memory access. Proactive Data Containers (PDC) [4]
framework uses extra cores to run I/O servers that move data
across the storage hierarchy without blocking the application.
Compared with our proposed background thread approach,
these methods require extra computing resources to move and
store the data, as well as configuration and set up by users.

VII. CONCLUSIONS AND FUTURE WORK

Our results show that enabling asynchronous I/O operations
can effectively alleviate the I/O bottleneck in scientific appli-
cations. We have presented our design and implementation
of an asynchronous I/O framework that supports all types
of 1/O operations (including collective parallel I/O), manages



the I/O tasks’ dependencies transparently and automatically,
and has low overhead. Our implementation of an HDF5
VOL connector allows the goal of minimal code changes.
The experimental results using benchmarks and I/O kernels
demonstrate a multi-fold I/O time reduction.

Our future work includes the support of providing asyn-
chronous task “tokens” to users such that it is easier to
track and wait for a group of asynchronous tasks instead
of individual ones. We will also apply this work to more
applications and to other I/O libraries and frameworks and
further optimize the performance.
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