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Abstract—One of the major differences in many-core versus
multicore architectures is the presence of two different memory
spaces: a host space and a device space. In the case of NVIDIA
GPUs, the device is supplied with data from the host via one
of the multiple memory management API calls provided by
the CUDA framework, including cudaMallocManaged and cud-
aMemcpy. Modern systems, such as the Summit supercomputer,
have the capability to avoid the use of CUDA calls for memory
management and access the same data on GPU and CPU. This
is done via the Address Translation Services (ATS) technology
that gives a unified virtual address space for data allocated with
malloc and new via the NVLink connection between the two
memory spaces. In this paper, we perform a deep analysis of the
performance achieved when using two types of unified virtual
memory addressing: ATS and managed memory.

Index Terms—GPU, CUDA, managed memory, ATS, Unified
Virtual Memory.

I. INTRODUCTION

Unlike multicore architectures, accelerator architectures
have two distinct memory spaces: one on the CPU and one
on the GPU. For a kernel to run on a GPU, data needs
to be transferred from CPU to GPU either via an explicit
memory transfer made by the programmer or by making the
data accessible to both memory spaces via a Unified Virtual
Memory system. If the data is transferred by the explicit
memory transfer calls provided in the CUDA API [2], such as
cudaMalloc and cudaMemcpy, the data accessed by the GPU
travels through the various memory hierarchies in the GPU
memory space. These CUDA API calls are in addition to the
regular host memory allocation, which adds an additional level
of complexity to proper data management.

CUDA also has support for managed memory allocation
which allows the user to access the same data on both memory
spaces without the need for an explicit memory transfer. Data
transfer is done by the Memory Management Unit (MMU)
at the granularity of a page. In order to use this feature
the memory allocation has to be done via the CUDA API
call cudaMallocManaged. This feature has been available in
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CUDA since version 6.0. For convenience, this paper will refer
to this methodology as managed memory.

CUDA 9.2 introduced support for Address Translation Ser-
vices (ATS) [3] [4] for power platforms. This technology
allows GPUs to access CPU page tables directly and is
supported on Volta GPUs through NVLink connections. A
miss in the MMU will result in an Address Translation Request
to the CPU. The CPU looks in its page tables for the virtual-to-
physical mapping for that address and supplies the translation
back to the GPU.

ATS provides the GPU complete access to CPU memory,
including memory allocated with the standard host-side func-
tions malloc and new [3] [7]. This functionality means that on
such systems, a programmer does not need to use CUDA API
calls to handle memory management between the device and
host memory spaces. For convenience, this paper will refer to
this methodology as ATS.

One important difference between managed memory and
ATS is the granularity at which the data is brought into the
GPU memory hierarchies. In the case of managed memory,
a memory miss leads to the memory page with the requested
data being copied between memory spaces. ATS copies the
data between host and device on the granularity of a cache
line in a cache coherent manner (the CPU can cache GPU
memory), immediately updating the CPU memory with the
new values from the GPU.

ATS can adjust the granularity of the data movement
with the use of optimization from the user such as memory
prefetching. This requires the use of a CUDA API call,
cudaMemPrefetchAsync. Managed memory also allows the
programmer to provide memory prefetch optimization, which
allows preemptive data transfers without the need to page fault.

The goal of the paper is to evaluate the differences in
performances of CPU and GPU kernels between ATS and
managed memory implemented through the CUDA API. In
order to evaluate these differences, a benchmark has been
designed that allows accesses on the CPUs and GPUs to
be parameterized. This benchmark is used to evaluate the
performance of both memory management systems with and
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without prefetching.
This study is organized as follows: Section II will describe

the DAXPY kernel benchmark developed to study ATS and
managed memory. In Section III, the performance results of
ATS and managed memory are presented. The results also
present the performance differences between managed and
ATS, when prefetching has been utilized. Finally, Section IV
summarizes the observed behavior and describes when one
memory management technique should be preferred over the
other.

II. DAXPY KERNEL

For this benchmark we use a DAXPY kernel which is
represented by the equation below:

y = y + a ∗ x (1)

In equation 1, y and x are two-dimensional vectors of type
double and their dimensions are N and M respectively. This
can be solved sequentially using the DAXPY kernel shown in
Listing 1:

Listing 1: Sequential DAXPY kernel
//Standard CPU implementation of DAXPY.
void daxpy_kernel (double *x, double *y)
{
int i = 0, j = 0;
for(i=0; i<N; i++)
for(j=0; j<M; j++)
y(i,j) += a*x(i,j);

}

The first loop iterates over the N rows of x and y vectors,
whereas the second loop iterates over the M columns within
each row.

Given each iteration is independent, this algorithm is well-
suited for GPUs. A variety of parallel techniques could be
applied to this algorithm, but a simple and direct threading
technique was chosen for this study, as shown in Listing 2:

Listing 2: GPU DAXPY kernel
//Threaded GPU implementation of DAXPY.
__global__ void daxpy_kernel (double *x, double *y)
{
int i = 0, j = 0;
for(i=blockIdx.x; i<N; i+=gridDim.x)
for(j=threadIdx.x; j<M; j+=blockDim.x)
y(i,j) += a*x(i,j);

}

The kernel is built to distribute the N dimension across the
thread-blocks and the M across threads with each thread-block.

Listing 3 shows the memory setup for the benchmark:

Listing 3: Setup the memory
void benchmark(double *x, double *y)
{
//If using managed memory allocate x and y vectors with

cudaMallocManaged
#if managed_memory
cudaMallocManaged(x,N*M*sizeof(double));
cudaMallocManaged(y,N*M*sizeof(double));

//Otherwise, allocate x and y with malloc to test ATS
#elif defined(ATS)

x = malloc(N*M*sizeof(double))
y = malloc(N*M*sizeof(double))

#endif
... // Continued in Listing 4

The x and y vectors are stored as N*M sized double-type
arrays. They are allocated by calling cudaMallocManaged
when testing managed memory or malloc when testing ATS.

Then, the data is initialized and prepared as shown in Listing
4:

Listing 4: Preparing DAXPY
... // Continued from Listing 3
//One threadblock per outer loop (N).
//Each threadblock is launched with 1 warp (32 threads).
daxpy_kernel<<<N, 32>>>(x,y);
daxpy_kernel<<<N, 32>>>(x,y);

TouchOnCPU(y);
... // Continued in Listing 5

Before the benchmark begins, the DAXPY kernel is launched
a few times to eliminate any first-time effects and the y array
is returned to the CPU for the beginning of the benchmark.
Note that the value of the x array is unchanged, as it is not
accessed on the CPU, which should be consistent with most
real implementations.

Next, the benchmark is performed as shown in Listing 5:

Listing 5: Launching DAXPY
... // Continued from Listing 4
//outer - times the data is brought back to the CPU
//inner - times the given GPU kernel is consecutively

launched
for(outer){
for(inner){
daxpy_kernel<<<N, 32>>>(x,y);
} //end inner
TouchOnCPU(y);

} //end outer
} \\ End of function benchmark

The DAXPY kernel is launched with N thread-blocks, each
with 32 threads. The M dimension is used to independently
change the size of the data set being investigated. The loop
structure in listing 5 has been designed to control data move-
ment of the x and y arrays on CPUs and GPUs: the outer
loop controls the number of times the memory is transferred
between host and device while the inner loop controls the
number of times the data set is consecutively accessed on
the GPU, either on a page-level granularity when allocated
via managed memory or on a cache-level granularity when
allocated via malloc.

The data is returned to the CPU through the implementation
of Listing 6:

Listing 6: Returning data to the CPU
//The kernel touches data on CPU
void TouchOnCPU(double *y)
{
int i = 0, j = 0;
for(i=0; i<N; ++i)
for(j=0; j<M; ++j)
y(i,j) -= 0.5;

}

This is a simple calculation performed on every point in the y
array to ensure the data has fully returned to the host before
continuing.
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III. RESULTS

The results presented in this section are collected on the
Summit supercomputer [1] from Oak Ridge National Labora-
tory (ORNL). A Summit node is comprised of two sockets,
each containing one IBM Power9 CPU [5] and three NVIDIA
Volta GPUs (V100) [6]. The Power9 CPUs and NVIDIA GPUs
are connected via high-speed NVLink.

Each of the V100 GPUs has 16GB of high bandwidth
memory and 6MB of L2 cache shared between its 80 Stream-
ing Multiprocessors (SM). Each SM has a 128KB block of
memory that is divided among the L1 cache and shared
memory. The cache line size is 128 bytes [8], the CPU page
size is 4KB and the GPU page size is up to 2MB.

The study begins by exploring the conditions under which
each memory space is preferable in III-A. Later we discuss
the effects of prefetching in III-B. In III-C, we discuss the
effects of the various memory management strategies on the
performance of TouchOnCPU and on the total time taken for
the experiment.

A. ATS vs Managed

First, ATS and managed memory are examined for different
memory movement strategies by changing the size of the inner
and outer loops. The inner loop controls the the number of
times a memory location is accessed on the device before
being updated on the host. Meanwhile, the outer loop controls
the number of times a memory location is transferred between
host-and-device.

Each of these tests are performed for a variety of data sizes.
In the results, the X-axis represents the number of inner or
outer accesses and the Y-axis represents the time taken by
the DAXPY GPU kernel in micorseconds. Data size refers to
the amount of data accessed by each of the thread-blocks:
data size=M*sizeof(double).

1) Varying the number of host-to-device transfers: The
effect of increasing the number of host-to-device data transfers
was tested by fixing the inner loop and varying the size of the
outer loop with different data sizes. The results for inner=4
and inner=7 are shown in Figures 1 and 2.

Figure 1 shows that, for this DAXPY benchmark, if there
are 4 consecutive GPU kernel calls ATS is always better than
managed memory. This remains true if the number of GPU
calls is less than 4. Additionally, ATS has a smaller slope,
which implies that as the number of CPU touches increases
ATS would be more beneficial. From Figure 2, we see that as
the data size increases managed memory overtakes ATS. At
larger data sizes, managed memory is always better than ATS.

These results imply that managed memory should be chosen
whenever data is substantially larger than a cache line and can
be reused on the GPU regularly before being returned to the
CPU. While there is some effect from the frequency of CPU
accesses, the number of consecutive GPU accesses is more
important to memory technique selection.

2) Varying the number of consecutive GPU kernel calls:
Next, the effects of increasing the number of consecutive
GPU kernel calls is explored by fixing the outer loop to 4.
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Figure 1: Varying the number of CPU memory touches (outer),
using 4 consecutive kernel calls. (inner).
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Figure 2: Varying the number of CPU memory touches (outer),
using 7 consecutive kernel calls. (inner).

The results are given in Figure 3. As expected, the relative
performance of managed memory improves as the number
of consecutive GPU kernel calls is increased. The effect of
granularity can be observed in Figure 3. When the data size is
substantially larger than a cache line, the DAXPY GPU kernel
has to be run substantially fewer times in a row for managed
memory to outperform ATS. For Figures 3b, 3c and 3d, ATS
overtakes managed memory after only 6-to-8 consecutive GPU
kernel calls. This is due to the difference in the granularity at
which the data is moved between the host and device among
the two memory management techniques.

The major benefit of managed memory in cases with large
data-set sizes and many kernel invocations is that after paying
the expense of migrating the pages over to GPU memory for
the first kernel execution, subsequent kernels calls can reuse
the data out of high-bandwidth GPU memory, whereas, with
ATS, the data still resides on the CPU and must be accessed
across the CPU-GPU bus in each kernel invocation. This ATS
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Figure 3: Varying the number of consecutive kernel calls
(inner), using 4 CPU memory touches. (outer).

behavior can be changed by implementing prefetching.

B. ATS vs managed when provided with prefetch optimization

This section explores the effect of adding the prefetching
optimization to both ATS and managed memory. Prefetching
informs the run-time that the data is available for asynchronous
prefetching and may allow for additional optimizations on
the number and timing of data transfers. In the case of this
DAXPY benchmark, the prefetching informs the CUDA run-
time that we will require the entire x and y arrays either
on the host or the device, so the run-time is expected to
copy the entire data structure to the corresponding memory
space when the CUDA runtime has available resources. The
implementation of the bnechmark with prefetching is shown
in Listing 7:

Listing 7: Prefetching during DAXPY
// Benchmark with prefetching
for(outer){
//Prefetch y to GPU before the kernel launches.
cudaMemPrefetchAsync (y, N*M*sizeof(double),

gpuDeviceId, 0 );

for(inner){
daxpy_kernel<<<N, 32>>>(x,y);

}

//Prefetch y back to CPU before accessing it.
cudaMemPrefetchAsync (d_Y, N*M*sizeof(double),

cudaCpuDeviceId, 0 );

TouchOnCPU(y);
}

1) Vary the number of consecutive GPU kernels with
prefetching: Figure 4 compares the performance of the GPU
kernels when both ATS and managed memory allocation
techniques are provided with prefetch optimization. For this
test, the number of CPU accesses, outer, is fixed at 4 and the
y-axis is kept identical to Figure 3 to allow direct comparisons.

Comparing Figures 4 and 3 shows that both ATS and man-
aged memory improve performance when using prefetching
for large data sizes. Prefetching substantially increases the
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Figure 4: Prefetching effect on varying number of consecutive
kernel calls (inner) using 4 CPU memory touches (outer).
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Figure 5: Prefetching effect on varying number of CPU mem-
ory touches (outer), using 4 consecutive kernel calls (inner).

number of consecutive GPU kernels required for managed
to overtake ATS, making ATS more useful when proper
prefetching optimizations can be applied.

2) Vary the number of host-to-device transfers with
prefetching: Figure 5 shows the effects of prefetch on the
performance of ATS and managed memory for a varying
number of CPU accesses.

From Figure 1 and Figure 5, it is observed that ATS with
prefetching optimization is consistently better for GPU kernels
of large data sizes (with 4 inner GPU kernel invocations).
Additionally, the relative benefits of ATS with prefetch opti-
mization increase with the amount of data accessed by each
thread-block. While the prefetching optimization benefits both
managed and ATS memory allocation strategies, ATS has a
higher benefit. The prefetch optimization cause ATS data to
be migrated to the GPU, which is the more optimal behavior
in this implementation and results in bigger performance
improvements.
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Figure 6: TouchOnCPU timing with 4 consecutive GPU kernel
calls inner=4).

In this section it has been shown that both ATS and managed
memory gain benefits in the performance of the GPU DAXPY
kernel when provided with prefetching optimization. When
prefetching is possible, ATS should be chosen for cases that
do not substantially reuse the data on the GPU, while managed
is still preferred whenever data will be substantially reused on
the device.

C. Effect of prefetching for CPU accesses and overall runtime

This section explores the performance of other features
of the benchmark, including the TouchOnCPU function
and the total algorithm time, with all 4 memory manage-
ment techniques: ATS, managed, ATS+prefetching and man-
aged+prefetching. The TouchOnCPU performance does not
change if we vary the number of consecutive GPU kernels
inner, so inner is fixed and the number of CPU accesses
is changed. Figure 6 shows the time taken by TouchOnCPU
with 4 consecutive GPU kernels. Figure 6 shows that there
is a drastic increase in the time taken by TouchOnCPU when
the memory handled via ATS is provided with the prefetch
optimization. This is because when ATS is prefetched, the
data is cached on the GPU and must be returned during
TouchOnCPU, whereas ATS without prefetching leaves the
data on the CPU.

On the other hand, prefetching improves the managed
memory performance in all cases. When using data sizes
on the order of pages or larger, managed+prefetch is the
fastest method to move the data to the CPU in almost all
configurations.

Figure 7 shows the total performance of the experiment
when we fix the number of consecutive GPU kernels to 4 and
vary the number of times we toggle the data between host-
to-device. The timings shown in 7 include the time taken by
the initial memory allocation of x and y shown in listing 3,
initialization of x, warm up DAXPY and TouchOnCPU kernel
executions shown in 4 and the experiment shown in listing 5
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Figure 7: Total timing with 4 consecutive GPU kernel calls
inner=4).
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Figure 8: Total timing with 4 CPU memory accesses (outer=4).

From Figure 7, we can observe that while for the smaller
problem size all 4 memory management techniques give
similar performance. As the data size increases ATS and
ATS+prefetch perform better compared to managed and man-
aged+prefetch. When taking the entire time into account, ATS
yields better performance without prefetching and managed
memory is faster with prefetching. These results suggest for
a fixed number of CPU accesses, ATS can be the superior
choice, regardless of other kernel parameters.

Figure 8 shows the total time taken by the experiment when
we fix the number of times data is transferred between CPU-to-
GPU, i.e., outer while varying the number of consecutive GPU
kernels, i.e., inner. Again, for smaller data sizes the memory
management techniques show similar results, regardless of
prefetching. However, for larger data sizes, the patterns seen
in the kernel timings begin to emerge: ATS is dominant
when minimal GPU data reuse occurs, ATS+prefetch is the
superior for a small number of reuses and managed+prefetch
eventually becomes dominant when GPU reuse is substantial.
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The managed strategies show the smallest increases in time as
the number of kernel calls increase, which is consistent with
previous results.

IV. SUMMARY OF RESULTS

The performance of GPU kernels when using memory
allocated via malloc and handled via ATS versus managed
memory allocated via cudaMallocManaged with and without
prefetching was assessed.

• ATS with and without prefetching shows better perfor-
mance when data is accessed on the CPU frequently and
GPU reuse is minimial.

• Providing optimizations such as prefetch greatly improves
the performance of both memory handled via ATS and
managed memory, but slows down CPU accesses for ATS
on the CPU.

• Managed memory with prefetching is superior when a
large amount of GPU data reuse can be utilized.

• Without prefetching, the optimal method depends on data
movement patterns and should be carefully explored for
each application.

V. CONCLUSION

In this paper we devised a benchmark to study the perfor-
mance of two different UVM implementations on NVIDIA
GPUs: 1) Memory allocated via malloc and new is han-
dled via ATS versus 2) managed memory allocated via cu-
daMallocManaged on an NVIDIA GPU DAXPY kernel. The
benchmark was designed to test the performance of the GPU
kernels when memory is transferred between host and device
in these two models. It was observed that although managed
memory allocation performed better in most cases when there
is significant GPU data reuse, ATS is beneficial for when
data is returned to the CPU often. The benefits of prefetch-
ing were also explored. Managed memory shows consistent
improvement when using prefetching. ATS shows substantial
GPU improvement from prefetching, but CPU performance
is substantially reduced which is important for cases which
require consistent access on the CPU.

In general, for cases with significant data reuse on the GPU,
ATS can benefit significantly from prefetch optimization.
However, one may point out that this is similar in spirit to
manually managing memory via explicit CUDA API calls -
diminishing the usability and automatic management value of
ATS.

Overall, managed memory tends to be a better memory
allocation strategy when data-set sizes on the order of MB
or higher and data reuse on the GPU is frequent.
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