
Testing the Limits of Tapered Fat Tree Networks
Philip Taffet

Dept. of Computer Science
Rice University
Houston, TX

ptaffet@rice.edu

Sanil Rao
Dept. of Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA

sanilrao@cmu.edu

Edgar A. León and Ian Karlin
Livermore Computing

Lawrence Livermore National Laboratory
Livermore, CA

{leon,karlin1}@llnl.gov

Abstract—HPC system procurement with a fixed budget is an
optimization problem with many trade-offs. In particular, the
choice of an interconnection network for a system is a major
choice, since communication performance is important to overall
application performance and the network makes up a substantial
fraction of a supercomputer’s overall price. It is necessary to
understand how sensitive representative jobs are to various
aspects of network performance to procure the right network.
Unlike previous studies, which used mostly communication-only
motifs or simulation, this work employs a real system and
measures the performance of representative applications under
controlled environments. We vary background congestion, job
mapping, and job placement with different levels of network
tapering on a fat tree. Overall, we find that a 2:1 tapered
fat tree provides sufficiently robust communication performance
for a representative mix of applications while generating me-
aningful cost savings relative to a full bisection bandwidth fat
tree. Furthermore, our results advise against further tapering,
as the resulting performance degradation would exceed cost
savings. However, application-specific mappings and topology-
aware schedulers may reduce global bandwidth needs, providing
room for additional network tapering.

Index Terms—Communication performance, system procure-
ment, networking, application benchmarking, performance me-
asurement, high performance computing.

I. INTRODUCTION

Buying a new machine is an optimization problem. Inputs
into this optimization problem include target applications, the
scale at which applications are expected to run, the cost of
components, and the performance impact of various trade-
offs. The system interconnect is typically among the most
significant costs in a machine procurement, sometimes as
much as 25% of the cost of a high-performance computing
(HPC) system. Because of cost, both empirical and simulation
studies [1]–[3] have explored various network configurations
to determine the optimal configuration in a fixed-budget procu-
rement. Using a less expensive network enables reinvestment
of the savings into other parts of the system, e.g. additional
nodes, more RAM, or faster CPUs, ultimately resulting in a
faster system. However, a network must be chosen carefully
because networks that do not provide sufficient bandwidth to
meet application demands severely degrade performance [4].

While there are general rules of thumb for network design,
the optimal design depends on expected workload and node
architecture [5]. Many forward-looking studies attempt to de-
termine the optimal system balance for a future procurement,
but few look backwards to evaluate if the correct decision

was made. This work takes a view back at previous work to
evaluate the decision made to use a 2:1 tapered network [1] for
Quartz, a system at Lawrence Livermore National Laboratory
(LLNL). We use three applications from this study, including
the two that were most impacted by network tapering and
one of the most latency sensitive applications. Building on
our work previously presented in poster form at SC17 and
SC18 [6], [7], we add controlled congestion to study applica-
tion performance under adverse traffic conditions. Our work
makes the following contributions:

• We affirm the decision to procure a 2:1 tapered fat
tree [1] and show that the network on the production
machine delivers good application throughput even with
adversarial traffic.

• Additional tapering, e.g. 4:1, is likely unprofitable for ap-
plication throughput without further mitigation strategies.

• Application mapping strategies can enable further cost-
effective network tapering in fat trees.

The rest of this paper discusses experiments using applica-
tions running under adverse conditions on real hardware.

II. BACKGROUND AND RELATED WORK

There are multiple network topology options and ways to
run machines with those topologies. The torus topology was
formerly common and is still in use on some machines, alt-
hough it has fallen out of favor to lower radix networks. Torus
networks can map jobs to the topology well [8]; however,
they can suffer from inter-job interference [4]. One approach
to mitigate inter-job interference used in BlueGene systems
is partitioning the network so that each allocation has an
electrically isolated partition [9]. This leads to very consistent
performance, but at the cost of idling nodes more frequently.

The dragonfly topology is another popular topology for
large scale systems due to an optimized design that minimizes
the need for expensive long optical cables [10]. However, they
depend on good adaptive routing to minimize congestion and
system noise, and many production implementations have not
been good enough [11].

The third commonly deployed topology is a fat tree or
folded Clos [12]. Fat trees also can suffer from inter-job
interference, and some work has suggested isolating jobs to
address this [13], but it is often less severe in practice. Fat
trees are more expensive than comparable dragonfly networks
because they require many optical cables, but the cost of fat

47

2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)

978-1-7281-5977-5/19/$31.00 ©2019 IEEE
DOI 10.1109/PMBS49563.2019.00011

trees can be significantly reduced by tapering at the edge
switches [1]. As we show in this paper, tapered fat trees
without adaptive routing are robust to network noise.

Several studies have evaluated network performance using
network simulators [2], [14], [15]. Simulation allows for
full control of the entire simulated system, but simulations
rely on either communication patterns or motifs [16], which
abstract away some nuances of application performance. In
particular, communication patterns cannot account for complex
interactions and often only a few timesteps of an application
can be run. This paper uses empirical studies of network
performance rather than simulation. Empirical measurements
enable the use of real applications on real hardware, and pro-
vide a more accurate view of performance. Furthermore, these
measurements take into consideration larger scale issues, such
as aggregate throughput, rather than micro-level congestion
events needed to design network routing policies. Using real
hardware, however, limits the experiments we can perform and
the types of measurements we can collect.

III. EXPERIMENTAL METHODOLOGY

In this section we describe the methodology we employ for
our experiments. This includes the applications we used for
tests, the problems we ran, the machines we ran them on, and
how those machines were configured.

A. Applications

In our experiments, we used three applications with different
messaging patterns and message sizes. These applications
include key communication patterns common in many HPC
applications. Our mix of applications includes a range of
message sizes and various common collectives. Applications
used either MVAPICH2 or Intel MPI implementations.

AMG [17] is a multigrid solver for linear systems used
in many applications, including simulations of elastic and
plastic deformations. Our chosen test problem solves the linear
system resulting from a 27-point nearest neighbor stencil.
Communication starts as a 27-point halo exchange and global
AllReduce operations on the finest grid. As the computation
progresses, more communication becomes non-local with a
larger number of communication partners on coarser grids
and more frequent AllReduce operations. Message size
varies widely, from 8 bytes to over 100 kB, but latency-
bound messages, both point to point and AllReduce, tend
to dominate its communication.

UMT [18] is a deterministic (Sn) radiation transport mini-
app. It exchanges messages to neighbors in a 3D wavefront
pattern across the faces in its unstructured grid, resulting in a
7 point stencil pattern.

pF3D [19] is a multi-physics code that simulates laser-
plasma interaction experiments at the National Ignition Fa-
cility. pF3D is used to understand the effects of backscatter
light, a side-effect of the laser. The code models a 3D domain
in which the dominant communication pattern, taking up to
30% of the runtime in some cases [19], is FFTs computed

TABLE I
OVERVIEW OF APPLICATIONS USED IN EXPERIMENTS. THE LAST THREE

COLUMNS REFER TO THE LARGE PROBLEM SIZE.

Applica-
tion

% Time Spent in
MPI1

Average Message
Size2

Message
Count

AMG 26% 4.8 kB 404 M
UMT 45% 1.6 MB 1.2 M
pF3D 25% 16 kB 160 M

across 2D slabs. For our test problem, 144 MPI ranks were
assigned to each slab, and the FFTs were 16 kB per rank.

B. System Overview

Quartz [20], a petascale system at LLNL, was used for
all experiments in this paper. Quartz supports a large mix of
unclassified applications and job sizes [1]. Quartz consists of
2,688 nodes with dual 18-core Broadwell CPUs connected by
a 3-level 100 Gbps Omni-path [21] fat tree network with a 2:1
taper, i.e., as illustrated in Figure 1a, each leaf switch has 32
links to compute nodes and 16 links to second level switches.
Each second-level switch connects to eight leaf switches,
grouping 256 nodes together in a “pod”. Quartz’s network is
statically routed using the Ftree routing algorithm [22]. One
node from each leaf switch is reserved for system support
tasks (e.g. login or gateway nodes), leaving 31 user-accessible
nodes per leaf switch and 248 per pod. Due to difficulty tuning
Omni-path QoS features [21] during initial system installation,
Quartz normally runs with these features disabled; we did not
re-enable them for our experiments. However, to eliminate the
impact of interference from other users running applications
during our experiments, we reserved dedicated time on the
system.

We also ran some experiments with the network configured
as a 4:1 taper instead of the default 2:1 taper. In this confi-
guration, shown in Figure 1b, each leaf switch had 32 links
to compute nodes and 8 links to second level switches; the
other 8 ports were disabled. If we were to deploy a similar
system with a 4:1 taper we would expect a 3-4% full system
cost reduction. The reduction is due to a 50% reduction in
optical cables and director switches, along with about a 15%
reduction in top of rack switches.

C. Problem Selection

We ran each application with a small problem and a large
problem. Small problems ran on 30 nodes (28 for pF3D,
which requires a multiple of 4 nodes)–approximately one
leaf switch worth of nodes–while large problems ran on 224
nodes–approximately one pod worth of nodes. All problems
were run with “MPI everywhere” and used one MPI rank per
core, i.e., 36 ranks per node, meaning that small problems
used approximately 1,000 MPI ranks and large problems used
approximately 8,000 MPI ranks. Many applications on Quartz
run this way.

1Includes time spent due to load imbalance and system noise
2Only includes messasges part of primary communication pattern

48

Leaf Switch 16 up
32 down

Compute NodeCompute NodeCompute NodeCompute Node ×32

Director
Switch

Director
Switch

/
8

/
8

(a) 2:1 taper

Leaf Switch
8 up
32 down
8 disabled

Compute NodeCompute NodeCompute NodeCompute Node ×32

Director
Switch

/
8

(b) 4:1 taper

Fig. 1. Quartz’s network with the two configurations used. Each director
switch is composed of two levels of internal switches which are not illustrated.

TABLE II
OVERVIEW OF LOCALITY EXPERIMENTS. APPLICATIONS EXECUTED

SMALL PROBLEMS EXCEPT WHERE INDICATED.

Name (Abbrev.) Nodes per leaf sw. # of leaf sw. Pattern

Control (Cs) 30 1 Linear
Split 2 (S2s) 15 2 Linear
Split 3 (S3s) 10 3 Linear
Split 6 (S6s) 5 6 Linear
Random (RDs) Variable Variable Random
Random, large (RDl) Variable Variable Random

AMG and UMT report application-specific figures of merit
that we use for measuring performance. Since pF3D is an
application instead of a benchmark, we compute our own
figure of merit for pF3D. Specifically, we take a constant
multiple of reciprocal time, where time is measured by the
application as CPU time and messaging time but not time spent
performing file I/O operations. Due to a configuration error,
for pF3D experiments with large problems, FOM calculations
only take into account the first full timestep which consists
of 10 light physics sub-cycles and 1 hydro physics sub-cycle.
Although this may increase the variance in our measurements,
we do not believe it has a significant impact on our results.

D. Locality Experiments

To measure the impact of locality on communication per-
formance, we measured the performance of each application
on the small problem on nodes split across 2, 3, and 6 leaf
switches, all part of the same pod. During each experiment,
applications split across s leaf switches shared those leaf
switches with s − 1 applications instances part of the same
experiment. Results for these experiments are compared to
a control experiment with all nodes for each application
connected to a single leaf switch. Table II summarizes locality
experiments. Additionally, we also ran applications on both
small and large problems with random allocations, and we
ran each small locality experiment block and cyclic task
mapping strategies to investigate how task mapping impacts
performance and how it interacts with locality.

TABLE III
OVERVIEW OF CONGESTION EXPERIMENTS. NODE COUNT IS PER LEAF
SWITCH. APPLICATIONS EXECUTED LARGE PROBLEMS EXCEPT WHERE

INDICATED.

Nodes
running

Name (Abbrev.) Bully App Type of traffic

Control (Cl) 0 28 None
Control, small (Cs) 0 30 None
Light leaf bully (LBl) 10 14 Large messages to adjacent

leaf switch
Adjacent leaf bully
(ABl)

17 14 Large messages to adjacent
leaf switch

Adjacent leaf bully,
small (ABs)

15 15 Large messages to adjacent
leaf switch

Bisection bully (BBl) 17 14 Large messages crossing
network bisection

Incast bully (IBl) 3 28 7:1 incast pattern to a single
leaf switch

E. Congestion Experiments

To understand how each application responds to different
levels of network congestion we ran multiple experiments
alongside different traffic patterns designed to cause conge-
stion. Applications running the small problems were split
across two leaf switches while 15 nodes from each leaf switch
ran an application designed to cause congesting traffic. For
most experiments, applications running the large problems
used 14 nodes per leaf switch, leaving 17 nodes per leaf
switch free to cause congestion. Table III describes a collection
of communication traffic patterns that compete for network
bandwidth against a code that is the object of our study.
We refer to applications whose sole purpose is to inject
communication traffic patterns designed to cause congestion
as bullies and use them to understand how our applications
under study perform when the network is under different types
of stress.

Because each leaf switch has 16 up-links, the light bully
should consume at most 62.5% of available bandwidth while
other bullies can consume all available bandwidth, routing
permitting. Unlike other bullies, congesting traffic created by
the bisection bully application travels between pods, crossing
the bisection of the network. The incast bully pattern had three
nodes in each of seven leaf switches sending to the eight leaf
switch in the pod, oversubscribing links in that leaf switch.
The incast pattern mimics I/O traffic and can cause severe
performance degradation due to congestion trees if the network
doesn’t handle it well [23].

IV. NOTABLE FINDINGS

We ran several trials for each locality and congestion
experiment and measured the performance of each run. This
section summarizes and interprets the results. To assess the
statistical significance of each result, we use a Student’s t-test.
Italic orange values are statistically significant at the p = 0.05
level while bold green values are also statistically significant
at the p = 0.01 level. Statistical significance takes into account

49

TABLE IV
PERFORMANCE DEGRADATION COMPARED TO CONTROL. NEGATIVE

VALUES INDICATE EXPERIMENT WAS SLOWER THAN CONTROL.

Experiment AMG UMT pF3D

S2s -0.11% 0.10% 0.47%
S3s -2.14% -0.04% 0.01%
S6s -2.79% -0.37% 0.39%
RDs -1.48% -0.09% 0.18%
RDl -3.17% -0.47% -0.45%
LBl -0.70% -0.68% 0.22%
ABl -1.74% -0.52% 0.19%
ABs 0.15% -0.20% 0.40%
BBl -6.47% -1.94% 0.22%
IBl -0.74% 0.01% 0.08%

TABLE V
PERFORMANCE DEGRADATION COMPARED TO CONTROL RUN ON A 4:1

TAPER AND COMPARED TO THE SAME EXPERIMENT ON A 2:1 TAPER.

Experi-
ment

AMG UMT

vs. 4:1
control

vs. 2:1
experiment

vs. 4:1
control

vs. 2:1
experiment

Cl – -1.41% – -0.65%
RDl -7.72% -0.19% -1.54% -0.44%
LBl -3.15% -3.84% -0.83% -0.81%
ABl -7.72% -7.42% -1.54% -1.67%
BBl -9.29% -4.37% -3.88% -2.61%
IBl -0.62% -1.29% 0.00% -0.66%

the magnitude of the difference, run-to-run variance, and the
number of successful runs for each experiment.

A. Robustness of 2:1 Tapered Fat Trees

The strongest finding from our experiments was that the im-
pact of decreasing locality and adding congestion was smaller
than expected. As shown in Table IV, most experiments did
not result in statistically significant performance degradation.
Furthermore, other than in two cases, the performance impact
was less than 3%. Overall, this is strong evidence that a
2:1 tapered fat tree provides enough bandwidth to meet the
communication demands of these applications.

This matches other experimental studies with applicati-
ons [1] but is smaller than results that use communication-only
motifs. This is not surprising, since computation essentially
dilutes the impact of communication performance. Further-
more, overlapping communication with useful computation, as
all three applications do, can hide communication slowdowns.
Studies and simulations using communication-only motifs are
important and useful, but their results must be understood as
an exaggeration of the impact on real applications.

Even with adversarial traffic causing heavy background
congestion, the performance impact was almost always below
the cost savings from using a tapered network. This suggests
that the procurement decision of using a tapered network was
correct and, since the cost savings were re-invested in more
nodes, actually increased overall system performance.

B. Comparison with 4:1 Taper

To explore further tapering of future machines, we also
ran several experiments after disabling one of the director
switches, essentially mimicking a system with a 4:1 taper.
Table V shows the results for experiments using AMG and
UMT3. Performance degradations are noticeably higher than
with the 2:1 taper in almost every experiment. For example,
the light leaf bully (LBl) and adjacent leaf bully (ABl), which
both cause congestion on the links in the tapered level, had
relatively modest impact on AMG with a 2:1 taper but have
severe impact with a 4:1 taper. Furthermore, the threshold for
the intensity of background traffic at which significant per-
formance degradations begin to occur decreases substantially
with the additional reduction in global bandwidth. While the
light leaf bully had a small performance impact with a 2:1
taper, it has a substantial impact on AMG with a 4:1 taper.

To evaluate the impact of using a 4:1 tapered network
in a future machine, we consider the performance of each
experiment relative to the same experiment in the 2:1 tapered
network. Performance with a 4:1 taper is typically about 1–
2% worse than with a 2:1 taper, but sometimes much higher.
Since switching from a 2:1 taper to a 4:1 taper only saves
about 3% of the machine cost, using a 4:1 taper is not clearly
beneficial. Although reinvesting the cost savings may result
in a net performance increase for some jobs, this suggests a
significant number of jobs would experience a net performance
degradation. Thus, we do not recommend additional tapering
beyond the current 2:1 taper for future systems.

C. Communication-Local Mappings

Another clear observation from Table IV is that the magni-
tude of performance impact varies by application, with AMG
the most affected and pF3D the least affected. Interestingly,
there is little correspondence between time spent in MPI (from
Table I) and sensitivity to congestion, suggesting that sensiti-
vity is a product of an application’s specific communication
behavior and how it maps onto the system.

We explored, in particular, the finding that pF3D is es-
sentially unaffected by congestion and discovered it is due
to pF3D’s logical-to-physical mapping. pF3D performs FFTs
using collectives on subcommunicators within each slab com-
prised of 144 consecutive MPI ranks, which is equivalent to
4 compute nodes. Thus, pF3D’s logical-to-physical mapping
ensures that traffic from the dominant communication pattern
is localized to within each group of 4 nodes. On a relatively
compact allocation, as were used in these experiments, each
4 node group was often connected to the same leaf switch.
Since links connected to compute nodes are not shared, traffic
localized to a single leaf switch is essentially impervious to
network congestion from background traffic, making pF3D
highly robust against congestion.

If all applications used communication-localizing mappings,
the reduction in global bandwidth demands could justify using
a 4:1 tapered network. However, allocations of nodes given by

3Due to a configuration error, we do not have results for pF3D.

50

TABLE VI
PERFORMANCE OF CYCLIC COMPARED TO BLOCK. POSITIVE VALUES

INDICATE CYCLIC MAPPING WAS FASTER.

Experiment AMG UMT pF3D

Cs 3.61% 1.64% 10.29%
S2s 3.58% 1.53% 9.67%
S3s 5.65% 1.44% 8.61%
S6s 6.24% 1.59% 9.14%
RDs 4.98% 1.23% 8.18%
ABs 3.16% 1.79% 10.05%

batch schedulers in a production environment are typically not
as compact as the allocations we used in many experiments,
meaning that it may be necessary to use a locality-aware batch
scheduler to actually reap the benefits of communication-local
mappings or to tolerate a tapered network.

D. Performance of Shared Memory MPI Transport

Although not originally a goal of our investigation, we
discovered interesting and unexpected results from comparing
locality experiments using the block task mapping strategy
with the cyclic strategy. Since block mapping ensures that
MPI ranks with adjacent rank numbers often run on the same
compute node, and we conjectured that many applications’
communication patterns have some locality in the MPI rank
space, we expected that block mapping would improve per-
formance by keeping more messages node-local. Essentially,
some messages that could be transported with shared memory
in a block mapping would instead must be transmitted over
the network under a cyclic mapping.

Our initial results in Table VI show the cyclic mapping was
faster than block in every instance. In fact, the performance
difference is often fairly substantial, for example, pF3D’s
performance on the small problem in the control experiment
is over 10% higher with cyclic mapping compared to block.

Upon further investigation, we discovered that although the
cyclic strategy did cause more network load, it performed
better unless the network was extremely heavily loaded. For
certain message sizes, the DMA engine of the 100 Gbps
Omni-Path NIC was able to transfer data between two nodes
faster than one process could transfer data to another process
running on the same node. This problem affected all MPI
implementations available on Quartz. Using the kernel sam-
pling feature of HPCToolkit [24], we discovered that message
transfers over shared memory were implemented using the
process_vm_readv system call [25] to copy 1 MB buffers
between address spaces with a single copy. We wrote a sim-
ple benchmark application that called process_vm_readv
directly, but were not able to drive more than 8.3 GB/s of
throughput compared to 13.1 GB/s for memcpy and 10.5 GB/s
NIC throughput. This suggests that software optimization of
process_vm_readv may be possible. Figure 2 shows the
performance using MPI_Isend for various message sizes
with the 2018.0 version of Intel’s MPI implementation. Results
for other MPI distributions and on some other systems at
LLNL exhibited similar behavior.

214 216 218 220 222 224

2,000

4,000

6,000

8,000

10,000

12,000

Message size (Bytes)

B
an

dw
id

th
(M

B
/s

)

Shared Memory
Network

Fig. 2. Mean achieved throughput with OSU bidirectional point-to-point
bandwidth benchmark [26] when two MPI ranks run on the same compute
node and transfer messages via shared memory (blue) or on different compute
nodes and transfer messages through the network (red). Error bars indicate
the minimum and maximum values observed over approximately 100 trials.

Unfortunately, switching to cyclic has significant drawbacks
as well. Since network bandwidth is shared among all MPI
ranks on a compute node, bandwidth per rank decreases
sharply as more MPI ranks per node attempt to send inter-
node messages simultaneously. Furthermore, since the cyclic
mapping tends to increase traffic on the network, it also makes
applications more sensitive to network congestion and locality.
For example, pF3D’s mapping with cyclic no longer employs
local communication; the S3s experiment ran 1.52% slower
than control when both S3s and control used cyclic compared
to essentially no change with block.

Our finding that the shared memory MPI transport mecha-
nism performs worse than expected in some cases creates a
conflict for developers attempting to optimize their mapping;
the fastest mappings for an application are likely those that de-
mand the most bandwidth from the network. Since this appears
to be a software issue, we expect that results with the block
mapping are most relevant for procurements. However we
also recommend that developers experiment with alternative
mappings for current machines, and that future nodes contain
a block transfer engine to accelerate intra-node transfers.

V. CONCLUSION AND FUTURE WORK

In this paper, we show that application performance on
Quartz’s 2:1 tapered fat tree network is not significantly
impacted under adversarial traffic conditions, validating the
conclusions reached in previous work [1]. Furthermore, our
analysis shows that if a 4:1 taper were used, it would result in
significant performance degradation and only save about half
(3-4% of system cost) the capital costs saved from 1:1 to 2:1.
Thus, a 4:1 tapering may not be cost effective.

Independent of tapering, our initial application task mapping
and job placement experiments show significant performance
advantages. By keeping traffic local, these techniques may

51

reduce the use of global links and improve network latency.
Additional experiments and analysis are needed to demonstrate
that a diverse set of applications can benefit from this and also
to understand the impact on job scheduling and throughput.

In future work, we plan to investigate the combined impact
of task mapping and job placement techniques with more ag-
gressive tapering, which may result in additional cost savings.
Another approach to mitigate congestion is to use adaptive
routing and quality of service mechanisms present in some
modern networks to prioritize traffic and take advantage of
underutilized links. Finally, we plan to extend this work to
GPU systems. In a GPU system, messages are typically more
frequent due to computation acceleration, and larger since one
MPI rank often uses the whole GPU. This will require more
bandwidth per node, but less bandwidth per unit of compute.
The impact of these GPU-driven changes on tapering, however,
is likely small as application messaging patterns and job
placement are the primary driver of global traffic.

ACKNOWLEDGMENT

We would like to thank John Mellor-Crummey for his va-
luable feedback. This work was performed under the auspices
of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.
LLNL-CONF-794561.

REFERENCES

[1] E. A. León, I. Karlin, A. Bhatele, S. H. Langer, C. Chambreau, L. H.
Howell, T. D’Hooge, and M. L. Leininger, “Characterizing parallel
scientific applications on commodity clusters: An empirical study of
a tapered fat-tree,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, ser.
SC ’16. Piscataway, NJ, USA: IEEE Press, 2016, pp. 78:1–78:12.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3014904.3015009

[2] N. Jain, A. Bhatele, S. White, T. Gamblin, and L. V. Kale,
“Evaluating HPC networks via simulation of parallel workloads,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’16. Piscataway,
NJ, USA: IEEE Press, 2016, pp. 14:1–14:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3014904.3014923

[3] E. A. León, C. Chambreau, and M. L. Leininger, “What do scientific
applications need? An empirical study of multirail network bandwidth,”
in International Conference on Advanced Communications and Compu-
tation, ser. INFOCOMP’17. Venice, Italy: IARIA, Jun. 2017.

[4] A. Bhatele, K. Mohror, S. H. Langer, and K. E. Isaacs, “There goes
the neighborhood: Performance degradation due to nearby jobs,” in
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’13. New
York, NY, USA: ACM, 2013, pp. 41:1–41:12. [Online]. Available:
http://doi.acm.org/10.1145/2503210.2503247

[5] C. Zimmer, S. Atchley, R. Pankajakshan, B. E. Smith, I. Karlin,
M. Leininger, A. Bertsch, B. S. Ryujin, J. Burmark, A. Walker-Loud,
K. M. A., and O. Pearce, “An evaluation of the CORAL interconnects,”
in Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis, ser. SC ’19, Nov. 2010.

[6] P. Taffet, I. Karlin, E. A. Leon, and J. Mellor-Crummey,
“Understanding the impact of fat-tree network locality on application
performance,” in SC 17, Denver, CO, Nov. 2017. [Online].
Available: http://sc17.supercomputing.org/SC17%20Archive/src poster/
poster files/spost153s2-file2.pdf

[7] P. Taffet, S. Rao, and I. Karlin, “Exploring application performance
on fat-tree networks in the presence of congestion,” in SC 18, Dallas,
TX, Nov. 2018. [Online]. Available: https://sc18.supercomputing.org/
proceedings/tech poster/poster files/post250s2-file3.pdf

[8] A. Bhatele, T. Gamblin, S. H. Langer, P.-T. Bremer, E. W.
Draeger, B. Hamann, K. E. Isaacs, A. G. Landge, J. A. Levine,
V. Pascucci, M. Schulz, and C. H. Still, “Mapping applications with
collectives over sub-communicators on torus networks,” in Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis, ser. SC ’12. Los Alamitos, CA,
USA: IEEE Computer Society Press, Nov. 2012, pp. 97:1–97:11.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2388996.2389128

[9] D. Chen, N. Eisley, P. Heidelberger, R. Senger, Y. Sugawara, V. Salapura,
D. Satterfield, B. Steinmacher-Burow, and J. Parker, “The IBM Blue
Gene/Q interconnection network and message unit,” 12 2011, pp. 1 –
10.

[10] J. Kim, W. J. Dally, S. Scott, and D. Abts, “Technology-driven, highly-
scalable dragonfly topology,” in 2008 International Symposium on
Computer Architecture, June 2008, pp. 77–88.

[11] T. Groves, Y. Gu, and N. J. Wright, “Understanding performance
variability on the Aries dragonfly network,” in 2017 IEEE International
Conference on Cluster Computing (CLUSTER), Sep. 2017, pp. 809–813.

[12] C. E. Leiserson, “Fat-trees: Universal networks for hardware-efficient
supercomputing,” IEEE Transactions on Computers, vol. C-34, no. 10,
pp. 892–901, Oct 1985.

[13] S. D. Pollard, N. Jain, S. Herbein, and A. Bhatele, “Evaluation of
an interference-free node allocation policy on fat-tree clusters,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, ser. SC ’18. Piscataway,
NJ, USA: IEEE Press, 2018, pp. 26:1–26:13. [Online]. Available:
https://doi.org/10.1109/SC.2018.00029

[14] A. Bhatele, N. Jain, M. Mubarak, and T. Gamblin, “Analyzing
cost-performance tradeoffs of HPC network designs under different
constraints using simulations,” in Proceedings of the 2019 ACM
SIGSIM Conference on Principles of Advanced Discrete Simulation,
ser. SIGSIM-PADS ’19. New York, NY, USA: ACM, 2019, pp. 1–12.
[Online]. Available: http://doi.acm.org/10.1145/3316480.3325516

[15] N. Jain, A. Bhatele, L. H. Howell, D. Böhme, I. Karlin, E. A.
León, M. Mubarak, N. Wolfe, T. Gamblin, and M. L. Leininger,
“Predicting the performance impact of different fat-tree configurations,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC ’17. New
York, NY, USA: ACM, 2017, pp. 50:1–50:13. [Online]. Available:
http://doi.acm.org/10.1145/3126908.3126967

[16] S. D. Hammond, K. S. Hemmert, M. J. Levenhagen, A. F. Rodrigues,
and G. R. Voskuilen, “Ember: Reference communication patterns for
exascale.” Aug. 2015.

[17] J. Park, M. Smelyanskiy, U. M. Yang, D. Mudigere, and P. Dubey,
“High-performance algebraic multigrid solver optimized for multi-core
based distributed parallel systems,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15. New York, NY, USA: ACM, 2015, pp. 54:1–
54:12. [Online]. Available: http://doi.acm.org/10.1145/2807591.2807603

[18] L. Howell, “Characterization of UMT2013 performance on advanced
architectures,” 12 2014.

[19] S. H. Langer, A. Bhatele, and C. H. Still, “pF3D simulations of
laser-plasma interactions in National Ignition Facility experiments,”
Computing in Science Engineering, vol. 16, no. 6, pp. 42–50, Nov. 2014.

[20] TOP500. (2018) LLNL CTS-1 Quartz - Tundra Extreme Scale,
Xeon E5-2695v4 18C 2.1GHz, Intel Omni-Path. [Online]. Available:
https://www.top500.org/system/178971

[21] M. S. Birrittella, M. Debbage, R. Huggahalli, J. Kunz, T. Lovett,
T. Rimmer, K. D. Underwood, and R. C. Zak, “Enabling scalable
high-performance systems with the Intel Omni-Path architecture,” IEEE
Micro, vol. 36, no. 4, pp. 38–47, Jul. 2016.

[22] E. Zahavi, G. Johnson, D. J. Kerbyson, and M. Lang, “Optimized
InfiniBand fat-tree routing for shift all-to-all communication patterns,”
Concurrency and Computation: Practice and Experience, vol. 22, no. 2,
pp. 217–231, 2010. [Online]. Available: https://onlinelibrary.wiley.com/
doi/abs/10.1002/cpe.1527

[23] G. F. Pfister and V. A. Norton, ““Hot spot” contention and combining in
multistage interconnection networks,” IEEE Transactions on Computers,
vol. 100, no. 10, pp. 943–948, 1985.

[24] J. Mellor-Crummey, L. Adhianto, M. Fagan, M. Krentel, and N. Tallent,
HPCToolkit User’s Manual, Rice University, May 2019. [Online].
Available: hpctoolkit.org/manual/HPCToolkit-users-manual.pdf

[25] process vm readv(2) Linux Programmer’s Manual, Mar. 2012. [Online].
Available: https://linux.die.net/man/2/process vm readv

[26] (2019) MVAPICH :: Benchmarks. [Online]. Available: http://mvapich.
cse.ohio-state.edu/benchmarks/

52

http://dl.acm.org/citation.cfm?id=3014904.3015009
http://dl.acm.org/citation.cfm?id=3014904.3014923
http://doi.acm.org/10.1145/2503210.2503247
http://sc17.supercomputing.org/SC17%20Archive/src_poster/poster_files/spost153s2-file2.pdf
http://sc17.supercomputing.org/SC17%20Archive/src_poster/poster_files/spost153s2-file2.pdf
https://sc18.supercomputing.org/proceedings/tech_poster/poster_files/post250s2-file3.pdf
https://sc18.supercomputing.org/proceedings/tech_poster/poster_files/post250s2-file3.pdf
http://dl.acm.org/citation.cfm?id=2388996.2389128
https://doi.org/10.1109/SC.2018.00029
http://doi.acm.org/10.1145/3316480.3325516
http://doi.acm.org/10.1145/3126908.3126967
http://doi.acm.org/10.1145/2807591.2807603
https://www.top500.org/system/178971
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1527
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.1527
hpctoolkit.org/manual/HPCToolkit-users-manual.pdf
https://linux.die.net/man/2/process_vm_readv
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/

