
Validation of the gem5 Simulator for x86
Architectures

Ayaz Akram1

University of California,
Davis, CA

yazakram@ucdavis.edu

Lina Sawalha2

Western Michigan University,
Kalamazoo, MI

lina.sawalha@wmich.edu

Abstract—gem5 has been extensively used in computer archi-
tecture simulations and in the evaluation of new architectures
for HPC (high performance computing) systems. Previous work
has validated gem5 against ARM platforms. However, gem5 still
shows high inaccuracy when modeling x86 based processors.
In this work, we focus on the simulation of a single node
high performance system and study the sources of inaccuracies
of gem5. Then we validate gem5 simulator against an Intel
processor, Core-i7 (Haswell microarchitecture). We configured
gem5 as close as possible to match Core-i7 Haswell microar-
chitecture configurations and made changes to the simulator to
add some features, modified existing code, and tuned built-in
configurations. As a result, we validated the simulator by fixing
many sources of errors to match real hardware results with
less than 6% mean error rate for different control, memory,
dependency and execution microbenchmarks.

I. INTRODUCTION

Architectural and microarchitectural simulators play a
vital role in computer architecture research and performance
evaluation as building real systems is very time consuming
and expensive. Unfortunately, simulators are susceptible to
modeling, abstraction and specification errors [1]. Validation
of simulators is important to find out the sources of experi-
mental errors and fixing them, which leads to an increased
confidence in simulation results. Although some may argue
that when evaluating a new design over a base design, relative
accuracy is more important; however, not validating the
absolute accuracy of simulators can lead to skewed results
and misleading conclusions. Absolute experimental error
(compared to real hardware) has been the main method
of measuring simulator’s inaccuracy and the need for their
validation [2]. In this paper, we validate one of the most
used computer architecture and microarchitecture simulators,
gem5 [3], against one of Intel’s high-performance processors
(Core i7-4770). Today’s high performance computing (HPC)
systems are very heterogeneous; for instance, they can be
composed of CPUs of various types, can integrate accelerators
and use heterogeneous memory technologies. This makes
gem5 one of the most appropriate architectural simulators to
study HPC system architectures, as it allows for simulating

1Ayaz Akram finished this work while at Western Michigan University.
2Corresponding Author: Lina Sawalha (lina.sawalha@wmich.edu)

heterogeneous systems composed of many cores and complex
configurations. gem5 has been used by ARM research to
perform HPC platform simulation and by AMD for their
Exascale project [4].

gem5 [3] supports several ISAs (instruction set architec-
tures) like x86, ARM, Alpha, MIPS, RISC-V and SPARC. It
supports simple and quick functional simulation and detailed
simulation modes. The detailed simulation can be either with
system call emulation or with full-system support, in which
gem5 is capable of booting a Linux operating system. gem5
supports two different pipeline implementations, in-order (IO)
and out-of-order (OoO). gem5 has been previously validated
for ARM based targets [5], [6]. However, there does not
exist any validation effort for x86 based targets (which is the
primary ISA for most of the HPC systems today). In this
work, we evaluate the accuracy of gem5 by comparing its
results to those of real hardware (Haswell microarchitecture).
Then we point out the sources of errors in this simulator
and discuss how we resolved those errors to achieve higher
accuracy. Finally, we validate the simulator for an out-of-
order core (OoO) of Intel Core i7-4770. Our results show
a significant reduction in the absolute mean error rate from
136% to less than 6% after validation.

The paper is organized as follows: Section II describes
our validation methodology for gem5 simulator. Section III
describes the sources of inaccuracies found in gem5, and
discusses the modifications that we performed to validate the
simulator. Section IV discusses related work and section V,
concludes the paper.

II. VALIDATION METHODOLOGY

In many HPC systems, performance evaluation or simu-
lation validation of different components can be done using
a mathematical model, for example, network simulation.
However, building a mathematical model is not suitable
for validating microarchitecture simulators because of the
huge amount of configurations and details in such simulators,
specifically gem5. In addition, many simulation results are not
known without knowing the runtime behavior of programs.
Thus, building a mathematical model will not result in an
accurate validation of such simulators.

53

2019 IEEE/ACM Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS)

978-1-7281-5977-5/19/$31.00 ©2019 IEEE
DOI 10.1109/PMBS49563.2019.00012

In this work, we validate gem5 by comparing its results with
the results obtained from real hardware runs using hardware
monitoring counters (HMCs). We use perf tool to profile
the different execution statistics with HMCs [7]. Then we
find the sources of inaccuracies in gem5 using the calculated
experimental error and by correlating the inaccuracies in
simulated performance to different simulated architectural
statistics and pipeline events. We configured gem5 as close as
possible to an Intel Haswell microarchitecture-based machine
(Core i7-4770), relying on multiple available sources [8]–[10].
Table I shows the main configurations of the microarchitecture.
The single-core experiments, which we focus on in this work,
will eventually help to improve the accuracy of multi-core
and multi-node HPC system simulations.

TABLE I: Target Configurations.
Parameter Core i7 Like

Pipeline Out of Order
Fetch width 6 instructions per cycle

Decode width 4-7 fused µ-ops
Decode queue 56 µ-ops

Rename and issue widths 4 fused µ-ops
Dispatch width 8 µ-ops
Commit width 4 fused µ-ops per cycle

Reservation station 60 entries
Reorder buffer 192 entries

Number of stages 19
L1 data cache 32KB, 8 way

L1 instruction cache 32KB, 8 way
L2 cache size 256KB, 8 way
L3 cache size 8 MB, 16 way

Cache line size 64 Bytes
L1 cache latency 4 cycles
L2 cache latency 12 cycles
L3 cache latency 36 cycles
Integer latency 1 cycle

Floating point latency 5 cycles
Packed latency 5 cycles

Mul/div latency 10 cycles
Branch predictor Hybrid

Branch misprediction penalty 14 cycles

Our adopted methodology for the validation of gem5
simulator is based on the use of a set of microbenchmarks to
focus on problems with specific sub-systems of the modeled
CPU. The microbenchmarks used in this work are the same as
the ones used for the validation of SiNUCA microarchitectural
simulator [11], which were inspired by the microbenchmarks
used for SimpleScalar simulator’s validation [2]. The used
microbenchmarks are divided into sets of four control, six
dependency, five execution, and six memory microbenchmarks.
Table II shows a summary of the different microbenchmarks
used in this validation.

The first step in our validation methodology is to perform
statistical analysis to find a correlation (Pearson’s correlation
coefficient [12]) of different simulation statistics and the per-
centage error in the simulated performance statistic (compared
to the real hardware). The specific simulation statistics we

use, include: number of instructions, micro-operations, load
operations, store operations, branch operations, floating point
operations, integer operations, branch mispredictions, cache
misses, speculated instructions, squashed instructions (after
misspeculation happens), execution cycles, and full-queue
events for various pipeline stages. The main performance
statistic we use in this work is instructions per cycle (IPC).
Then we analyze the correlation and simulated performance
results to discover the possible sources of error in the
simulator. This knowledge is combined with detailed results
and analysis of gem5’s code to improve the simulation
model. Finally, based on our findings, we apply two types of
changes in the simulator, configurational changes and code
changes. To discuss the configurational calibration, we refer
to the base configuration of the simulator as base config
and the calibrated configuration as calib config. base config
models Haswell on gem5 based on the parameters listed in
Table I, but this configuration is set without an in-depth
knowledge of the simulator, as any new user would do.
calib config is the configuration, which is achieved based on
the initial correlation analysis and knowledge of specific
implementation details of the simulator. This calibration
technique helps to improve the accuracy of our results. Code
changes include both modifying existing code, to fix the errors
that we found in the simulator, and developing and adding
new features/optimizations to gem5, to better represent the
Haswell microarchitecture. Most of our changes and tuned
configurations are available on github1.

III. RESULTS AND ANALYSIS

A. Observed Inaccuracies
Figure 1 shows the values of IPC (instructions per cycle)

for all microbenchmarks on the unmodified and the modified
versions of the simulator normalized to the IPC values
on real hardware. Figure 2 shows the average percentage
inaccuracy observed on both versions of the simulator for all
categories of the microbenchmarks separately. As shown in
Figure 2, the average inaccuracy for the unmodified simulator
can become very large. The observed average error in IPC
values is 39% for control benchmarks, 8.5% for dependency
benchmarks, 458% for execution benchmarks and 38.72% for
memory benchmarks. As discussed in the previous section,
in order to specify the possible sources of inaccuracies in
the simulation model, we also calculated the correlation
between various gem5 events (statistics produced by the
simulator) and percentage error in IPC values produced by the
simulator as shown in Figure 3. The figure shows an average
of Pearson’s correlation coefficient (for all benchmarks),
which can have a maximum value of +1 and a minimum
value of -1. Positive correlation indicates a positive error in
IPC value (overestimation of IPC by the simulator) and a
negative correlation indicates a negative error in IPC values
(underestimation of IPC by the simulator). Most of the

1https://github.com/ayaz91/gem5Valid Haswell.git

54

https://github.com/ayaz91/gem5Valid_Haswell.git

TABLE II: Description of the Used Microbenchmarks.

MicroBenchmarks Target Construct
Control Benchmarks

Control Conditional conditional branches if-then-else in a loop
Control Switch indirect jumps switch statements in a loop

Control Complex hard-to-predict branches if-else and switch statements in a loop
Control Random random behavior of branches if-then-else in a loop and branch outcome determined by a shift register

Dependency Benchmarks
Dep1 dependency chain dependent instructions with dependency length of 1 instruction
Dep2 dependency chain dependent instructions with dependency length of 2 instructions
Dep3 dependency chain dependent instructions with dependency length of 3 instruction
Dep4 dependency chain dependent instructions with dependency length of 4 instructions
Dep5 dependency chain dependent instructions with dependency length of 5 instructions
Dep6 dependency chain dependent instructions with dependency length of 6 instructions

Execution Benchmarks
Ex int-add integer adder 32 independent instructions in a loop

Ex int-multiply integer multiplier 32 independent instructions in a loop
Ex fp-add floating point adder 32 independent instructions in a loop

Ex fp-multiply floating point multiplier 32 independent instructions in a loop
Ex fp-division floating point divider 32 independent instructions in a loop

Memory Benchmarks
Load Dependent 1 & 2 memory hierarchy for dependent load instructions linked lists walked in loops

Load Independent 1 & 2 memory hierarchy for independent load instructions different cache sizes with 32 parallel independent loads in a loop
Store Independent memory hierarchy for independent store instructions different cache sizes with 32 parallel independent stores in a loop

2.6 21.3

C
on

tr
ol

C
om

pl
ex

C
on

tr
ol

R
an

do
m

C
on

tr
ol

Sm
al

l

C
on

tr
ol

Sw
itc

h
D

ep
1

D
ep

2

D
ep

3

D
ep

4

D
ep

5

D
ep

6

E
xi

nt
ad

d

E
xi

nt
m

ul
E

xf
pa

dd

E
xf

pm
ul

E
xf

pd
iv

M
em

L
oa

di
nd

1

M
em

L
oa

di
nd

2
M

em
L

oa
dD

ep
1

M
em

L
oa

dD
ep

2

M
em

St
or

ei
nd

1

M
em

St
or

ei
nd

2

0

0.5

1

1.5

2

N
or

m
al

iz
ed

IP
C

V
al

ue
s UnModified

Modified

Fig. 1: Normalized IPC values of microbenchmarks compared to the real hardware

458

C
on

tr
ol

D
ep

en
de

nc
y

E
xe

cu
tio

n

M
em

or
y

0

20

40

Pe
rc

en
ta

ge
E

rr
or

in
IP

C
va

lu
es

UnModified

Modified

Fig. 2: Average accuracy for
microbenchmarks compared to

the real hardware

cache related events at all levels (cache misses and accesses)
show negative correlation with the percentage error in IPC
values, indicating a possible overestimation of cache/memory
latencies. Similarly, many of the pipeline stall events (like
ROBFullEvents, IewSQFullEvents, IewIQFullEvents in gem5)
show a strong negative correlation with the percentage error.
This indicates that the number of wasted cycles in the
simulator in case of pipeline stall events are overestimated,
thus underestimating of performance. The number of exe-
cuted micro-operations (µ-ops) shows a positive correlation
with the percentage error in IPC values meaning that the
benchmarks with a very high number of µ-ops usually lead
to overestimated IPC values. The number of store operations
shows a very strong negative correlation explaining the
low accuracy of the memory store independent benchmarks
shown in Figure 3. This strong negative correlation should
be looked in association with strong negative correlation

of IewSQFullEvents (store-queue-full events), which shows
that the main reason for high inaccuracy in case of memory
store independent benchmarks would be an overestimated
wasted number of cycles in case of a store-queue-full event.
A negative correlation of branch mispredictions with the
percentage error in IPC suggests that the branch predictor is a
potential source of error. This was also indicated in previous
works [13], [14], as actual branch predictors used in the real
hardware are not published and branch predictors of gem5
appear to lag in performance when compared to the actual
hardware.

B. Applied Modifications to the Simulator
We use the knowledge obtained from previously discussed

statistical analysis to guide tuning and modifications in the
simulator. The applied changes to the simulator and the con-
figurational calibration improved the accuracy of the simulator
as shown in Figures 1 and 2. For the modified version of

55

In
st

ru
ct

io
ns

M
ic

ro
O

ps

L
oa

ds

St
or

es

B
ra

nc
he

s

Fp
op

s

In
te

ge
rO

ps

B
ra

nc
hP

re
di

ct
io

ns

B
ra

nc
hM

is
pr

ed
ic

tio
ns

B
T

B
L

oo
ku

ps

In
sS

pe
cu

la
tiv

e

In
sS

qu
as

he
d

M
em

A
cc

es
se

s

L
1D

A
cc

es
se

s

L
1D

M
is

se
s

L
1I

A
cc

es
se

s

L
1I

M
is

se
s

L
2A

cc
es

se
s

L
2M

is
se

s

L
3A

cc
es

se
s

L
3M

is
se

s

R
en

am
eI

Q
Fu

llE
ve

nt
s

Ie
w

IQ
Fu

llE
ve

nt
s

R
en

am
eS

Q
Fu

llE
ve

nt
s

Ie
w

SQ
fu

llE
ve

nt
s

R
O

B
Fu

llE
ve

nt
s

C
yc

le
s

−1

−0.5

0

0.5

1

−2.08 · 10−2

0.39

−0.15

−0.71

0.22

−9.05 · 10−2−0.11

0.19

−0.36

0.19

−0.31−0.3

−0.57

−0.34−0.42−0.47
−0.37−0.41−0.51−0.51−0.57

0.39

−0.31

−0.65
−0.79

−0.39
−0.6C

or
re

la
tio

n
w

ith
E

rr
or

Correlation

Fig. 3: Correlation of gem5 events with the percentage error in performance (IPC)

the simulator, the observed average error in IPC values is
reduced to 9% for control benchmarks, 5.4% for dependency
microbenchmarks, 0.5% for execution microbenchmarks and
7.7% for memory benchmarks. Next, we discuss the changes
made to the simulator (or configuration) in the context of
observed problems.

We found that increasing the value of issueToExecute
delay parameter (delay between the issue and the execute
stages of the pipeline) beyond one, inhibits “back-to-back”
execution of two instructions, (this issue has been observed
by others as well [15]). In base config of the simulator,
this parameter was set as two along with different delay
values between the pipeline stages, so that the overall
required pipeline length was achieved. Changing the value
of issueToExecute delay to one in calib config improves
the IPC values for many microbenchmarks (and improves
accuracy). For example, this change reduced the inaccuracy in
control small microbenchmark from 33.6% to only 0.4%. In
base config the instruction cache (i-cache) access latency was
set as four cycles (as in the real hardware). We observed that
fetch unit in the out-of-order (OoO) pipeline of gem5 does
not request to i-cache while it is waiting on a response from
i-cache (as also discussed here: [16]). In other words, even if
the i-cache is configured as a non-blocking cache, the fetch
unit makes it behave as a blocking cache. This reduces the
fetch unit’s throughput considerably. One possible solution
is to keep the i-cache hit latency equal to one and add an
additional latency in the front end stages of the pipeline to
compensate for the missing i-cache latency [16]. Specifically,
this extra latency is added between the fetch and the decode
stages (in fetchToDecode delay parameter) in calib config.
This change particularly improved the IPC of control switch
by a factor of three (and thus improved its accuracy).

We also found that microoperations (µ-ops) to instructions
ratio was very high in many cases in gem5. Thus, we changed
the source code of the simulator to make x86 instructions

to µ-ops decoding more practical. To make these changes
we used information available in [9] and also looked at
the code of other x86 simulators such as ZSim [17] and
Sniper [18], which exhibit more realistic values of µ-ops to
instructions ratios. Our modifications achieved an x86 (µ-
ops) to instructions ratio within 5% of what is observed on
the real hardware and other sources [19], [20], for SPEC-
CPU2006 benchmarks. Since, in gem5, all pipeline widths
are defined in terms of µ-ops and all pipeline structures (like
reservation stations (RS) and reorder buffers (ROB)) hold µ-
ops, reducing the values of µ-ops to instruction ratios improves
the overall IPC values and improves the accuracy as well.
For example, this change reduced the inaccuracy from 10.5%
to 5.1% in dep5 microbenchmark and from 6.5% to 1.5% in
ex int add microbenchmark. The labelling of different classes
of µ-ops in gem5 needs improvement as well. We noticed
that the floating point multiplication and division operations
are wrongly classified as floating point add operations in
gem5. We modified gem5’s code to correct their labels, which
eliminated the large inaccuracies observed in floating point
related microbenchmarks (ex fp mul and ex fp div) shown
in Figure 1.

Memory load ind2 microbenchmark loads independent
data values from L1 data cache (of 32KB size) with an offset
of 64 bytes (the cache line size). The accesses occur in a loop
and the number of data cache misses should be very low in
this case as the memory footprint is the same as the size of
L1 data cache. The simulator showed a significant number
of data cache misses for this microbenchmark. Digging into
this problem, we observed that the origin of the problem is
related to the branch prediction. The microbenchmark consists
of a nested loop, where the inner loop is responsible for
traversing through the data array, while the outer one repeats
this process a specific number of times. It is observed that on
every last iteration of the inner loop, the branch instruction
(responsible for this loop) is mispredicted to be taken. This

56

TABLE III: Branch Miss Ratio
Benchmark Real SimUnMod SimMod
ControlComplex 0.0012 0.000205 0.00021
ControlRandom 28.26 30 28.78
ControlSmall 0.0004 0.000068 0.00007
ControlSwitch 0.0011 0.01609 0.000179
MemLoadind1 0.0576 0.00936 0.00947
MemLoadind2 0.0239 5.559 0.00513
MemLoadDep1 0.0698 0.0093 0.00953
MemLoadDep2 0.0528 5.55975 5.559
MemStoreind1 0.0528 0.009387 0.00956
MemStoreind2 0.0298 5.56 0.00513

results into access of a new cache block (on wrong path) in
set 0 of the cache, kicking out a useful block. This in turn
causes a high number of data cache misses leading to lower
IPC values. We implemented a loop predictor in gem5 that
eliminated the problem and improved the accuracy of this
type of microbenchmarks as shown in Figure 1. Similar is
the case with Memory Store ind2 microbenchmark.

We also observed that gem5 is quite conservative in terms of
its pipelining behavior in the front-end stages of the pipeline.
Instead of proper queuing in case of a blocking events, gem5
has SkidBuffers at each stage that absorb inflight instructions
whenever there is a blocking event. Moreover, in case of
removal of blocking event, any stage will get unblocked
completely only after its SkidBuffer is fully drained, and
then would allow the previous stages to unblock as well. For
example, in a worst case scenario, pipeline bubbles (or stalls)
is equal to a sum of delay between decode and rename stages
and delay between fetch and decode stages in case of a rename
stage block. This behavior has also been observed by [15],
[21]. This behavior should be analyzed in association with the
observed strong negative correlation of pipeline stall events
and the percentage error in simulation results (shown in Figure
3) as discussed previously. To make the pipelining behavior
less conservative, we might need more structural changes in
the pipeline of the simulator. For the moment, we relied on
tweaking of the pipeline configuration (in calib config) to
decrease the effect of additional pipeline bubbles. We figured
out that we can change the values of the backward path
delays between stages of the pipeline (which are set to 1
by default). Since these delays are set to 1, whenever any
stage gets blocked it sends a message to previous stages to
block as well on the next cycle irrespective of any spaces
in queues between the stages and the stages’ SkidBuffers
(gem5 structures used to store instructions in case of blocking
events). Setting the values of delays on backward paths same
as forward path for a particular stage can avoid most of
the wasted cycles in case of stalls, as any blocking stage
would wait for the number of set cycles before conveying
the blocking message to the previous stage. This change
improved the performance specifically for control random
and control switch microbenchmarks.

Furthermore, we studied a couple of microarchitectural
events to observe the differences in their values on the

TABLE IV: L1D Cache MPKI
Benchmark Real SimUnMod SimMod
MemLoadind1 0.01065 0.0020794 0.00209926
MemLoadind2 0.114602 120.399 0.00156352
MemLoadDep1 0.073911 0.001996 0.00200671
MemLoadDep2 15.825 25.774 25.774077
MemStoreind1 0.01583 0.001935 0.001996
MemStoreind2 0.132615 0.001522 0.001547

simulator and the real hardware. Tables III and IV show a
comparison of the real hardware, the unmodified simulator and
the modified version of the simulator using two microarchi-
tectural events (branch miss ratio (branch misses per thousand
branch instructions) and L1 data cache misses per thousand
instructions). The tables show only those microbenchmarks
for which the events are relevant, control and memory
microbenchmarks. Generally the difference between the values
of these events in the modified and unmodified versions of
the simulator is small. Moreover, the simulated event counts
are generally underestimated. These event counts should be
analyzed carefully as the inaccuracy observed in most of
the cases is insignificant due to the small values of the
events, and it does not affect the overall performance results
of the simulator. The difference in events’ values of the
simulator and that of the real hardware can also be attributed
to the noise in the measured values of events on the real
hardware, which can become visible when the counts of the
measured events are very small as is the case for most of the
microbenchmarks. Few interesting cases where the accuracy
in the values of the events in the modified version of the
simulator is improved significantly include: control random,
memory load ind2 and memory store ind2 for branch miss
ratios and memory load ind2 for L1D cache MPKI (misses
per thousand instructions).

IV. RELATEDWORK

There are many validation works of different simulators in
the literature for different architectural and microarchitectural
simulators, for example, SimpleScalar [2], SiNUCA [11],
ESESC [22], ZSim [19], MARSSx86 [23], gem5 (ARM
ISA) [5], [6], Multi2Sim [24], Sniper [25], and Mc-
SimA+ [26]. Nowatzki et al. [27] presented different observed
issues with four common performance and power simulators
including gem5. The issues they found with gem5 include
wrongly classified and inefficient µ-ops and inconsistent
pipeline replay mechanism.

Weaver and Mckee [28] showed that the use of unvalidated
cycle-by-cycle simulators with large inaccuracies cannot be
justified in comparison to fast tools like emulators, which
can provide similar results at a much higher speed. Asri
et al. [23] calibrated MARSSx86 to simulate “architecture-
rich” heterogeneous processors. They showed that unvalidated
simulators can result in significant differences between
simulation and real hardware results, which can be more
problematic for accelerator studies. Akram and Sawalha
[14], [29], [30] compared experimental errors for different
architectural simulators including gem5 and concluded that

57

the main sources of inaccuracies in simulation results are
overestimated branch mispredictions, imprecise decoding of
instructions into microoperations and high cache misses.
Walker et al. [13] recently presented GemStone; a systematic
tool to compare reference hardware and simulator results,
identify sources of error and apply modifications to the
simulation model to improve its accuracy using statistical
analysis. They used ARM Cortex-A15 gem5 model, to present
GemStone, and identified branch prediction to be the main
source of error in simulation results. Our work validates gem5
against an x86 single-core target platform, which has not been
performed before.

V. CONCLUSION

Validation of architectural simulators is important as it
increases the confidence in the results of simulators. While
gem5 has already been validated for ARM based processors,
there does not exist any validation effort for x86 based
processors to the best of our knowledge. In this work, we have
identified various errors in the x86 out-of-order CPU model of
gem5. The accuracy of x86 model of gem5 has been improved
significantly (reduction in mean error rate from 136% to 6%
for the studied microbenchmarks) after applying different
modifications in the simulator. Our modifications included
both simulator configuration calibration, code modification
and adding new structures to the simulator. In the future, we
would like to dig deeper into some of the problems that we
already identified here to further reduce the inaccuracy and
expand our study to use more realistic HPC benchmarks and
multi-core/multi-node HPC architectures.

REFERENCES

[1] B. Black and J. P. Shen, “Calibration of Microprocessor Performance
Models,” Computer, vol. 31, pp. 59–65, May 1998.

[2] R. Desikan, D. Burger, and S. W. Keckler, “Measuring Experimental
Error in Microprocessor Simulation,” in Proceedings of the 28th annual
International Symposium on Computer Architecture, pp. 266–277,
Gothenburg, Sweden, Gothenburg, Sweden, June 30-July 4 2001.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5
Simulator,” ACM SIGARCH Computer Architecture News, vol. 39,
pp. 1–7, May 2011.

[4] M. J. Schulte, M. Ignatowski, G. H. Loh, B. M. Beckmann, W. C.
Brantley, S. Gurumurthi, N. Jayasena, I. Paul, S. K. Reinhardt, and
G. Rodgers, “Achieving Exascale Capabilities through Heterogeneous
Computing,” IEEE Micro, vol. 35, no. 4, pp. 26–36, 2015.

[5] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy Evaluation
of GEM5 Simulator System,” in IEEE 7th International Workshop on
Reconfigurable Communication-centric Systems-on-Chip, pp. 1–7, York,
UK, York, UK, 9-11 July 2012.

[6] A. Gutierrez, J. Pusdesris, R. G. Dreslinski, T. Mudge, C. Sudanthi,
C. D. Emmons, M. Hayenga, and N. Paver, “Sources of Error in Full-
System Simulation,” in IEEE International Symposium on Performance
Analysis of Systems and Software, pp. 13–22, Monterey, CA, 2014.

[7] Perf, “perf: Linux profiling with performance counters,” 2015. Retrieved
August 5, 2015 from https://perf.wiki.kernel.org/index.php/Main Page.

[8] “Intel® 64 and IA-32 Architectures Software Developer Manu-
als.” Available: http://www.intel.com/content/www/us/en/processors/
architectures-software-developer-manuals.html, [Online, accessed Aug.,
2019].

[9] A. Fog, “Instruction tables: Lists of instruction latencies, throughputs
and micro-operation breakdowns for Intel, AMD and VIA CPUs.”
Available: http://www.agner.org/optimize/instruction tables.pdf, [Online,
accessed 3 September, 2016].

[10] Intel’s Haswell CPU Micrarchitecture. Available: http://www.
realworldtech.com/haswell-cpu/ [Online; accessed 1-June-2017].

[11] M. A. Z. Alves, C. Villavieja, M. Diener, F. B. Moreira, and P. O. A.
Navaux, “SiNUCA: A Validated Micro-Architecture Simulator,” in
IEEE High Performance Computing and Communications (HPCC),
pp. 605–610, 2015.

[12] J. Benesty, J. Chen, Y. Huang, and I. Cohen, “Pearson Correlation
Coefficient,” in Noise reduction in speech processing, pp. 1–4, Springer,
2009.

[13] M. Walker, S. Bischoff, S. Diestelhorst, G. Merrett, and B. Al-Hashimi,
“Hardware-validated cpu performance and energy modelling,” in IEEE
International Symposium on Performance Analysis of Systems and
Software, (Belfast, UK), pp. 44–53, April 2018.

[14] A. Akram and L. Sawalha, “x86 Computer Architecture Simulators:
A Comparative Study,” in IEEE 34th International Conference on
Computer Design (ICCD), pp. 638–645, 2016.

[15] “CPU configuration (gem5-users).” https://www.mail-archive.com/
gem5-users@gem5.org/msg12282.html, 2015. [Online; accessed 5-
August-20157].

[16] “O3 fetch throughput when i-cache hit latency is more than 1 cycle
(gem5-users).” https://www.mail-archive.com/gem5-users@gem5.org/
msg10393.html, 2015. [Online; accessed 5-August-2017].

[17] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microarchi-
tectural Simulation of Thousand-Core Systems,” in Proceedings of
the 40th Annual International Symposium on Computer Architecture
(ISCA), pp. 475–486, June 2013.

[18] T. E. Carlson, W. Heirman, and L. Eeckhout, “Sniper: Exploring the
Level of Abstraction for Scalable and Accurate Parallel Multi-Core
Simulation,” in ACM International Conference for High Performance
Computing, Networking, Storage and Analysis, (Seattle, WA), pp. 1–12,
Nov. 2011.

[19] Zsim, Zsim Tutorial Validation, 2015. Available: http://zsim.csail.mit.
edu/tutorial/slides/validation.pdf [Online; accessed 5-June-2017].

[20] ISA POWER STRUGGLES. Available: http://research.cs.wisc.edu/
vertical/wiki/index.php/Isa-power-struggles/Isa-power-struggles [On-
line; accessed 5-June-2017].

[21] T. Tanimoto, T. Ono, and K. Inoue, “Dependence Graph Model for
Accurate Critical Path Analysis on Out-of-Order Processors,” Journal
of Information Processing, vol. 25, pp. 983–992, 2017.

[22] E. K. Ardestani and J. Renau, “ESESC: A Fast Multicore Simulator
Using Time-Based Sampling,” in IEEE 19th International Symposium
on High Performance Computer Architecture, pp. 448–459, Shenzhen,
China, Shenzhen, China, 23-27 February 2013.

[23] M. Asri, A. Pedram, L. K. John, and A. Gerstlauer, “Simulator
Calibration for Accelerator-Rich Architecture Studies,” in International
Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation, Samos, Greece, July 2016.

[24] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2Sim:
A Simulation Framework for CPU-GPU Computing,” in Proceedings
of the 21st International Conference on Parallel Architectures and
Compilation Techniques, pp. 335–344, Minneapolis, MN, 2012.

[25] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout, “An
Evaluation of High-Level Mechanistic Core Models,” ACM Transactions
on Architecture and Code Optimization, vol. 11, no. 3, Article 28, 2014.
25 pages.

[26] J. H. Ahn, S. Li, O. Seongil, and N. P. Jouppi, “McSimA+: A
Manycore Simulator with Application-level+ Simulation and Detailed
Microarchitecture Modeling,” in IEEE International Symposium on
Performance Analysis of Systems and Software, pp. 74–85, Austin, Tx,
2013.

[27] T. Nowatzki, J. Menon, C.-H. Ho, and K. Sankaralingam, “Architectural
Simulators Considered Harmful,” IEEE Micro, vol. 35, no. 6, pp. 4–12,
2015.

[28] V. M. Weaver and S. A. McKee, “Are Cycle Accurate Simulations a
Waste of Time,” in 7th Workshop on Duplicating, Deconstructing, and
Debunking (WDDD), pp. 40–53, 2008.

[29] A. Akram and L. Sawalha, “A Comparison of x86 Computer Architec-
ture Simulators,” Tech. Rep. TR-CASRL-1-2016, Western Michigan
University, MI, October 2016.

[30] A. Akram and L. Sawalha, “A Survey of Computer Architecture
Simulation Techniques and Tools,” IEEE Access, 2019.

58

https://perf.wiki.kernel.org/index.php/Main_Page
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.agner.org/optimize/instruction_tables.pdf
http://www.realworldtech.com/haswell-cpu/
http://www.realworldtech.com/haswell-cpu/
https://www.mail-archive.com/gem5-users@gem5.org/msg12282.html
https://www.mail-archive.com/gem5-users@gem5.org/msg12282.html
https://www.mail-archive.com/gem5-users@gem5.org/msg10393.html
https://www.mail-archive.com/gem5-users@gem5.org/msg10393.html
http://zsim.csail.mit.edu/tutorial/slides/validation.pdf
http://zsim.csail.mit.edu/tutorial/slides/validation.pdf
http://research.cs.wisc.edu/vertical/wiki/index.php/Isa-power-struggles/Isa-power-struggles
http://research.cs.wisc.edu/vertical/wiki/index.php/Isa-power-struggles/Isa-power-struggles

