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Abstract—In this work we investigate the dynamic communi-
cation behavior of parent and proxy applications, and investigate
whether or not the dynamic communication behavior of the proxy
matches that of its respective parent application. The idea of
proxy applications is that they should match their parent well,
and should exercise the hardware and perform similarly, so that
from them lessons can be learned about how the HPC system
and the application can best be utilized. We show here that
some proxy/parent pairs do not need the extra detail of dynamic
behavior analysis, while others can benefit from it, and through
this we also identified a parent/proxy mismatch and improved
the proxy application.

Index Terms—Workload characterization; Proxy applications;
Performance evaluation

I. INTRODUCTION

In previous work [1], we explored how the communication
behavior of some proxy applications related to their respective
real, or parent, application. Proxy applications, sometimes
called mini-apps or proxies, are smaller, easier-to-use pro-
grams that are used in myriad ways: to evaluate systems,
find hardware bottlenecks, and perform algorithmic or system
design exploration. In that work, we used two forms of
aggregate data: aggregate MPI function data from mpiP [2],
and aggregate pairwise communication data from CrayPat. In
both cases, the quantitative data represented behaviors that
were totaled over the lifetime of the execution. This aggregate
data was collected both from the real and proxy applications,
and then compared using several novel metrics that we defined
and evaluated.

Using aggregate metrics ignores the possibility that the
proxy application might only be representing part of the
execution of the parent application. Sometimes this is not
true—for example, SW4 and SW4lite actually share a common
codebase, and our metrics ended up showing a very high
similarity between them. On the other hand, HACC, a cos-
mological code, has a related proxy called SWFFT, which by
its name indicates that it is focused only on the FFT portion of
the computation; our metrics thus showed less correspondence
between these. Proxies and parents could also have similar

aggregate communication behavior, but might peak or stress
the underlying interconnect in different ways and at different
times, thus causing performance differences that are hard to
understand.

This leads us to investigate the correspondence of real and
proxy applications in their communication behavior over time.
In this paper we explore an evaluation of various quantitative
metrics over the time-varying communication behavior of
applications. We use three pairs of real and proxy applications,
one of which is different from the ones we used in [1].
The two previously used pairs are LAMMPS/ExaminiMD,
and HACC/SWFFT. The new pair is the real application
CTH [3], a very large solid mechanics application, and the
proxy application miniAMR [4], a proxy application meant to
mimic a typical computation using adaptive mesh refinement,
and developed with CTH particularly in mind.

The research question that is thus explored here is: Can we
find meaningful quantitative ways to analyze the time-varying
communication behavior of parent and proxy applications in a
way that will give us insight into their dynamic correspondence
in terms of the communication they do during execution?

The contributions of this paper are: an exploration and
presentation of the dynamic communication behaviors and
relationships between three parent/proxy application pairs; an
evaluation of several different metrics over the time-varying
communication behavior that are potentially useful for com-
paring real applications to their proxy counterparts; and a
resulting improvement to miniAMR that makes it more closely
match its parent CTH. During the course of the research
described here, it became clear that CTH and miniAMR
had far more interesting dynamism in their communication
behavior than did the other parent/proxy pairs, and so while
we do present results for the other pairs, most of the content
of this paper describes CTH and miniAMR, and the results
for them.
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II. BACKGROUND

As part of our previous work we formulated and then evalu-
ated metrics that captured aspects of correspondence between
the communication behavior of two applications. We specif-
ically were concerned with comparing the communication
behavior of a proxy application with the parent application that
it intends to represent. For rigorous and detailed descriptions
of these metrics, please refer to [1].

Important to this paper are the correlation metrics we
devised. For quantitative data, we captured the total number
of messages sent from a sending process (rank) to a receiving
process (rank) during the execution of the application. This
gives us a 2-dimensional matrix of message counts, with the
sending and receiving process id’s as the row and column
indices. When comparing parent and proxy applications, hope-
fully most nonzero entries are nonzero in both the parent and
proxy matrices, but there will be some entries that are nonzero
in the parent matrix and zero in the proxy matrix, and some
that are zero in the parent and nonzero in the proxy. These,
along with different message counts, represent mismatches in
communication behavior.

We formed three different data vectors based on three dif-
ferent filters over these matrices, which embody three different
views of the data. The vectors end up having the exact same
set of (sender,receiver) entries for both the parent and proxy
applications, but with their own respective values. The views
are:

• Full view: Data vector includes all process pairs that have
non-zero message counts in either the parent or the proxy;
where a pair occurs in one but not the other, zero is
entered for the other’s corresponding message count. This
is thus the data for both applications over all pairs that
communicate in either the parent or the proxy.

• Parent view: Data vector contains data only for those
pairs who have nonzero message counts in the parent
application; proxy pairs outside of this are discarded, and
zero is entered in proxy data for pairs in the parent but
not in the proxy. This is thus data for both applications
over only the pairs that communicate in the parent.

• Proxy view: Data vector contains data only for those
pairs who have nonzero message counts in the proxy
application; parent pairs outside of this are discarded, and
zero is entered in parent data for pairs in the proxy but
not in the parent. This is thus data for both applications
over only the pairs that communicate in the proxy.

Thus, the first covers the full extent of both behaviors and
how they might correspond, the second focuses on how much
of the observed parent behavior is covered by the proxy, and
the last focuses on how much of the observed proxy behavior
actually matches parent behavior.

In the previous work we defined and evaluated descrip-
tive statistics (percent overlap) and correlations (Pearson
and Spearman) over these data sets. We saw a perfect
match between SW4 and SW4lite, very high similarity be-
tween LAMMPS and ExaminiMD, high similarity between

HACC and SWFFT, and some serious discrepancies between
Nek5000 and Nekbone. We also saw data instances that caused
anomalous correlation values.

III. METHODOLOGY

In this paper we use some of the basic metrics that we
defined and used in the previous work, but then also delve
into the dynamic time-varying communication behavior in
the applications. For this we capture the same 2-dimensional
message count data (for each source and destination pair) at
selected intervals during execution lifetime. What intervals are
selected is detailed in the results discussion in Section V.

We also investigate the use of another similarity metric,
cosine similarity. Cosine similarity calculates the cosine of
the angle between the vectors defined by the data, viewing
the data as defining a point in the N-dimensional space. This
ignores the magnitude of the vector. Thus, unlike the corre-
lation metrics, cosine similarity is not affected by absolute
magnitudes of data values, only their relative values. While
correlation metrics can also establish a relationship in the
presence of different magnitudes (e.g., Pearson will recognize
a linear relationship), cosine similarity is more robust in this
way. This would seem to be applicable to communication
behavior, where we might want to compare executions of
different size runs and see if the communication pattern is
the same, regardless of how many messages were sent.

IV. EXPERIMENT SETUP

A. Applications

As noted earlier, the parent and proxy application pairs
we used in this work are LAMMPS / ExaminiMD, HACC /
SWFFT, and CTH / miniAMR. More application pairs should
be subject to analysis similar to what we did in this work, but
our available time window precluded adding more pairs, and
some of our results below point out part of the difficulty in
identifying suitable application pairs.

1) HACC and SWFFT: The Hardware Accelerated Cosmol-
ogy Code (HACC) [5] is an N-body framework that simulates
the evolution of mass in the universe and its structure within
the context of dark matter and dark energy. It uses particle
mesh techniques, splitting the force calculation into a grid-
based spectral particle mesh component for medium to long-
range interactions and direct particle-to-particle solvers for
short-range interactions. The long-range solvers implement
an underlying 3D FFT that is domain-decomposed to 2D.
SWFFT [6] is the 3D FFT that is implemented in HACC.
Since this FFT accounts for a large portion of the HACC
execution time, SWFFT serves as a proxy for HACC. SWFFT
replicates the transform and is meant to be representative of
the computation and communication involved.

2) LAMMPS and ExaminiMD: LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) [7] is a clas-
sical molecular dynamics code that models particles in solid,
liquid, and gas states. A particle can range from a single
atom to a large composition of material. LAMMPS integrates
Newton’s equations of motion to model particle interaction,
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using lists to track neighboring particles. It implements mostly
short-range solvers, but does include some methods for long-
range particle interactions. Like LAMMPS, ExaMiniMD [8],
which is a proxy for LAMMPS, uses spatial domain decom-
position. But compared to LAMMPS, ExaMiniMD’s feature
set is extremely limited, and only three types of interac-
tions (Lennard-Jones/EAM/SNAP) are available. The SNAP
interaction is a much more complicated and computationally
expensive potential that attempts to approach quantum chem-
istry accuracy when modeling metals and other materials.
ExaMiniMD and LAMMPS both use neighbor lists for the
force calculation. ExaMiniMD is intended to represent both the
computation (including memory behavior) and communication
that is implemented in LAMMPS.

3) CTH and miniAMR: CTH is a multi-material, large
deformation, strong shock wave, solid mechanics code devel-
oped at Sandia National Laboratories [3]. CTH has models
for multi-phase, elastic viscoplastic, porous and explosive
materials, using second-order accurate numerical methods
to reduce dispersion and dissipation and produce accurate,
efficient results.

MiniAMR was developed to study CTH when it is run
using adaptive mesh refinement, or AMR [9]. Both CTH
and miniAMR use an octree-based AMR scheme, where each
processor has a number of blocks, each of which has a few
hundreds of cells. When a region needs to be refined, a block
is replaced with 8 blocks, each half the size of the original
block in each dimension, but with the same number of cells.
As the calculation progresses, the number and placement of
these blocks in the calculation can change.

In terms of communication, each block has to communicate
with its neighboring blocks in the mesh, so each process ends
up performing communication within the process as well as
to some number of neighboring processes, which can change
as the simulation progresses.

In this study, we use two different input simulations for
CTH and miniAMR. The first is a simulation with 4 spheres
moving through the mesh in such a way that they do not
interact and therefore have no distortion. The mesh is refined
on the surfaces of the spheres and the refinement of the mesh
from each sphere will interact with the refinement from the
others. The second problem is a ball hitting a plate. We refine
the mesh around the ball as it interacts with the plate as well
as on the shock wave moving through the plate. The shock
wave is modeled in miniAMR as an expanding hemisphere.

B. MiniAMRZ: a Modified miniAMR

Because this study was focused on time varying commu-
nication behaviors, we quickly saw differences between CTH
and miniAMR that was due to the ways that they do mesh
refinement. An investigation of these differences showed that
there are three factors which contribute to the differences, each
relating to the implementation of the Recursive Coordinate
Bisection (RCB) [10] algorithm in the load balancing phase.
For each step of the RCB algorithm, a direction and a number
of divisions are chosen. The blocks are sorted in that direction

and divided into nearly equal sets based on their position in
that direction, and the ranks are also divided. Divisions are
based on a prime factorization of the number of MPI ranks.
Each of the sets of blocks is assigned to a set of ranks and the
process is repeated until each rank has a set of blocks assigned
to it.

The first difference is that CTH uses the Zoltan load
balancing library [11] which has a generalized version of the
algorithm, while the algorithm in miniAMR is more taliored
to a rectilinear mesh where block centers are constrained to
be discreet values. The effect is that with CTH, when there
are several blocks that lie along the cut between groups of
blocks that will be assigned to one processor set or another,
the blocks are effectively assigned to one set or the other. In
miniAMR, those blocks are assigned based on their position
in the cutting plane so that blocks that are nearby to each other
are more likely to be assigned to the same set.

The second difference is that CTH only allows a certain
percentage of blocks to be moved during any refinement step
in order to limit the size of the messages that are being sent
during block reassignment. This results in random blocks not
being moved to the proper processor and has the effect of a
processor communicating with more other processors.

The third difference is that the Zoltan implementation of
RCB in CTH allows the cut direction for each group of blocks
to be determined when the cut is being made, while miniAMR
determines the order of cuts once at the beginning. When the
cut direction is changed for a group of blocks, this can cause
more blocks to be assigned for moving, but due to the limit
in CTH, not all of those blocks will be moved.

In order to try to make the communication patterns of
miniAMR more closely match that of CTH, we modified
miniAMR, creating a version we call miniAMRZ, in reference
to making it better mimic the Zoltan-based behavior of CTH.
Selectable options allow this modified codebase to run as
miniAMR or miniAMRZ. MiniAMRZ will do the following:
all of the blocks that fall on a cut will be distributed to one
side of the cut or the other; a limit can be specified for the
maximum number of blocks moved after load balancing; and
miniAMRZ allows the RCB algorithm to change the directions
of the cuts.

In this study we use both the standard miniAMR, and our
miniAMRZ. Uncovering these differences was directly due to
looking at the data collected during the course of this study,
and so miniAMRZ is a resulting contribution of this work.

C. Instrumentation

In our previous work we collected total aggregate message
counts for the lifetime of the program, using the CrayPat
tool (v7.0.1). Our interest in this paper is in refining this by
collecting data for time-varying communication behavior of
an application. Thus, we desired to collect data during the
execution rather than just total data at the end.

The CrayPat tool does have the ability for an application
to turn it on and off during execution, but not to actually
capture consistently sampled values during the execution. For
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A) miniAMR Simulation Result for 4 Spheres B) CTH Simulation state for Ball & Plate

Fig. 1. Simulation Visuals for MiniAMR and CTH.

the applications HACC, SWFFT, Lammps, and ExaminiMD,
we did instrument the code to turn CrayPat on for one com-
munication step in each execution, and then we ran executions
that would capture one unique step each time. This was a very
costly process and limited the amount of data we could collect
for these applications; however, as will be seen in the results,
Section V, this did not matter.

In order to look at the communication differences between
CTH and miniAMR, which are much more dynamic, we
needed a more efficient method to collect the fine-grained data
we wanted from CTH and miniAMR. Ultimately we decided
to use by-hand source instrumentation, instrumenting the codes
to output the communication matrices at times throughout
the execution of the code. For CTH, we counted all of the
communications on each rank for the first communication after
a refinement step, since once there is a new communication
pattern it remains fixed and in effect until the next refinement
step. We output that information into a file for each refinement
step and then post process the communication patterns for
the entire run. For miniAMR, we were able to look at the
data structures that are present after each refinement step and
determine and output the communication pattern that will
be used until the next refinement step. Thus the data from
miniAMR corresponded to those from CTH.

D. Input Problem Details

For LAMMPS and ExaminiMD, LAMMPS is set up with
a Lennard-Jones atomic interaction scenario, which is what
ExaminiMD is meant to correspond to, with a size of 100 in
each dimension, a timestep size of 0.005, and a run of 18,000
steps. For HACC, we used a typical example simulation that
corresponds with SWFFT, and both used 100 simulation steps
and size 1024.

For the 4 spheres problem in CTH and miniAMR, we
ran 7819 timesteps for 5e-6 seconds of simulation time with
2607 mesh refinement steps. MiniAMR is complex enough
that, given the simple nature of this problem, both codes end
up with the spheres in the same position. We estimated, by

observation, that number of blocks in the problem differs
between CTH and miniAMR by 2.5% at most.

For the ball and plate problem, CTH and miniAMR run
for 3642 timesteps and have 1214 mesh refinement steps.
This problem is more complex in its behavior, but fairly
reproducible in miniAMR. The shock wave is in the plate
and does not interact with anything, so there is not too much
distortion. Thus the shock wave behavior in CTH is fairly
reproducible in miniAMR, but the distortion of the ball and
crater will be somewhat different.

Figure 1A shows the resulting simulation state from mini-
AMR on the 4 spheres problem, while Figure 1B shows a late
simulation state from CTH for the ball and plate problem.
MiniAMR handles the non-interacting spheres well but is
much less accurate on the ball and plate distortion seen in the
CTH result. The adaptive mesh can be seen in the miniAMR
figure.

E. Platform

All experiments were performed on a partition of Mutrino,
a small Cray XC40-based cluster at Sandia National Labora-
tories, with partition nodes having two 16-core Intel Haswell
processors and the cluster having a Cray Aries interconnect.
For all six applications, all executions were done with 128
ranks over 4 nodes, and with no OpenMP being used (1 thread
per process).

V. RESULTS AND ANALYSIS

A. LAMMPS/ExaminiMD and HACC/SWFFT

Table I shows our results for the parent and proxy pairs
of LAMMPS and ExaminiMD, and HACC and SWFFT. The
rows with full application names are full-execution aggregate
results from our previous work (thus not from the same runs
as the other data), except that the new cosine similarity metric
is computed (using this original data). Rows with abbreviated
names are data from this study, each representing an interval
of time within the application, roughly about one third of the
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TABLE I
RESULTS FOR LAMMPS / EXAMINIMD AND HACC / SWFFT. ROWS WITH FULL NAMES ARE OVERALL RESULTS; THOSE WITH ‘@’ ARE INTERVAL

RESULTS.

Parent View Proxy View Pearson Corr Cosine
Parent/Proxy #msg #pair #msg #pair Full View Parent View Proxy View Similarity
LAMMPS/ExaMMD 100 100 100 100 0 0 0 0.94
L/M @ 100 100 100 100 100 1 1 1 0.94
L/M @ 500 100 100 100 100 1 1 1 0.94
L/M @ 1200 100 100 100 100 1 1 1 0.94
HACC/SWFFT 68.7 41.1 100 100 0.97 0.92 0.97 0.93
H/S @ 10 68.4 41.2 100 100 0.97 0.92 0.97 0.93
H/S @ 25 68.4 41.2 100 100 0.97 0.92 0.97 0.93
H/S @ 40 68.4 41.2 100 100 0.97 0.92 0.97 0.93
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Fig. 2. Communication overlap relations.

execution. Looking at the table, the interval results are virtually
identical to the aggregate results, and are equal to each other.

We present this data to show that applications that do not
do dynamic communication adapation do not need evaluation
over their execution lifetime; aggregate data and analysis
is sufficient. All four of these applications simply do the
same communication pattern over and over throughout their
lifetimes, and so each interval looks exactly like each other,
and like the whole execution. Thus, the rest of our analysis
focuses on our parent/proxy pair that does have dynamic
communication adaptation, namely CTH and miniAMR. This
static communication pattern is also a reason why we did not
include other parent / proxy pairs that we have used in previous
studies, and also points to the need to have more identified and
labeled proxy applications that are known to have a dynamic
communication model.

Note that the one large discrepancy in the table is the
correlation values of 0 for the old LAMMPS/ExaminiMD
whole-execution data, and 1 for the intervals. The original 0
correlation is due to the proxy being off by one in the message
counts, in a way that caused perfect un-correlation; in the
intervals the counts are exactly equal, which causes perfect
correlation. We believe the off-by-one message happens right

at the end, after our interval data collections. Note that the
cosine similarity metric over both the old and new data is the
same; this result provides some evidence that cosine similarity
is a more robust similarity mettric.

B. CTH and miniAMR

Figure 2 shows the basic overlap relations in the communi-
cation of CTH and the two miniAMR versions, and between
the two versions of miniAMR themselves (green bars). The
left two groups show the percentage of messages that occur
in the parent that also occur in the proxy (leftmost) and that
occur in the proxy and also occur in parent (left middle). The
two right-side groups are similar, except over communicating
pairs (boolean, whether they communicated or not) rather
than message counts. The percentages in the proxy views are
all very high, indicating that almost all message (and pair)
communication in the proxy matches communication in the
parent. The pairwise bars (far right) are slightly lower than
the message-count bars (left middle), indicating that there are
a few low-count communicating pairs in the proxies that are
not in the parent.

The parent view, however, is very different, indicating that
there is parent communication behavior that is not reflected
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Fig. 3. Correlations for Aggregate Data.

in the proxy. In terms of message count (leftmost), most
bars are above 60%, showing that most parent messages have
correspondence in the proxy, but when looking at communi-
cating pairs (right middle), most bars are very low (10-30%),
indicating that there are large numbers of process pairs that
communicate in the parent but not in the proxy (albeit with low
message counts). The exception to this is CTH and miniAMRZ
for the ball&plate simulation; here miniAMRZ has about 98%
correspondence to messages, and about 88% for communicat-
ing pairs. MiniAMRz is also significantly more correspondent
to CTH than miniAMR for the 4-sphere simulation. The green
bars compare miniAMR with miniAMRZ, and if one looks
across the groups, the pattern of the green bars is similar to
the pattern of the blue and orange bars; thus since miniAMR
has a similar relationship to miniAMRZ as it does to CTH,
we conclude that this indicates that miniAMRZ is more like
CTH than miniAMR.

Figure 3 shows the Pearson and Spearman correlations over
different views of parent-proxy relations. Full view means data
includes all process pairs that have non-zero message counts in
either the parent or the proxy; where a pair occurs in one but
not the other, zero is entered for the corresponding message
count. Proxy view means that process pair data is kept only for
those pairs who have nonzero message counts in the proxy;
parent pairs outside of this are discarded, and zero is entered
in parent data for pairs that occur in the proxy but not in the
parent. Parent view means that process pair data is kept only
for those pairs who have nonzero message counts in the parent
application; proxy pairs outside of this are discarded, and zero
is entered in proxy data for pairs in the parent but not in the
proxy.

Rather than just the overall percentages as the earlier figure
showed, the correlations take into account whether message
counts are similar over communicating pairs. Pearson is es-
sentially a linear correlation, while Spearman can handle non-
linear correlation effects. Figure 3A shows that the proxy-
parent pairs have significant correlations, with the 4-sphere
simulations showing distinctly higher correlations, and mini-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CTH/miniAMRZ CTH/miniAMR CTH/miniAMRZ CTH/miniAMR

4Sphere BallPlate

Co
sin

e 
Si

m
ila

rit
y

Fig. 4. Cosine Similarity between Proxy and Application.

AMRZ showing distinctly higher correlation than miniAMR.
However, Figure 3B shows quite lower Spearman correlations
across this same data, and shows miniAMR sometimes more
correlated than miniAMRZ. In viewing multiple different scat-
terplot views (too numerous to include), data for miniAMRZ
spreads more uniformly on both sides of a linear relationship,
while miniAMR data deviates more in one direction, which
allows Spearman to curve in that direction and increase the
correlation. This is most pronounced in the high correlation
spike for miniAMR in the proxy view for the 4-sphere problem
in Figure 3B; there are many zero message counts in miniAMR
(proxy) that are nonzero in the parent (CTH), so when these
are removed for the proxy view, the correlation increases.
Given that there is no reason that a non-linear correlation
would be a good proxy-parent relationship, what the Spearman
correlation shows us is that while there is high deviation
between the parents and proxies, miniAMRZ is more balanced
in its linear relationship to CTH than miniAMR is.
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Fig. 5. Similarity Metrics over Detailed Time Series Data, Ball & Plate.

We also evaluated our data using the cosine similarity
metric, shown in Figure 4. Cosine similarity ignores the
absolute magnitudes of the data values and calculates the
angle of difference between the data as vectors, the directions
being determined by the relative magnitude of the data values.
The figure shows significant similarity between the parent and
proxies and, consistent with the Pearson correlations, shows
the 4-sphere simulations as more similar, and miniAMRZ
more similar to CTH than miniAMR. One can see the same
basic figure shape as the Pearson correlation has, indicating
aggreement bewteen them.

After these aggregate metrics and comparisons, we now
look at the dynamic communication behavior over the ex-
ecution lifetime of the applications. As noted before, we
captured the communication data at every refinement step of
the applications, and the analyses below use this data.

Figure 5A shows the Pearson correlation of step data
between CTH and the proxies for the ball&plate simulation.
Interestingly, the per-step correlation is very low, always much
lower than the overall correlation of about 0.66 (miniAMR)
and 0.73 (miniAMRZ) from the previous figure. What this
means is that even though they are doing the exact same
number of timesteps and refinement steps, the communication
of the identically offset intervals does not match. Moreover,
miniAMRZ, which is in aggregate more correlated to CTH, is
lower in per-step correlation than miniAMR.

Even though CTH and the miniAMR proxies perform
exactly the same number of timesteps and refinement steps,
we verified in the data that their refinement steps are not
guaranteed to be always in the exact same place—i.e., between
the exact same timesteps. Thus not only are their refinements
happening over somewhat different methods, they are happen-
ing at somewhat different timesteps. Thus we lose correlation
when trying to look at similarity at the level of refinement
step.

Figure 5B shows the cosine similarity of the same data as
Figure 5A. Again, the per-step similarity is significantly lower
than the aggregate similarity, and miniAMRZ is less similar,
per step, than miniAMR. It was unexpected that miniAMRZ
would be less similar, step by step, to CTH than miniAMR.
Thus we explore this below.

Figure 6 shows the cumulative cosine similarity for the
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Fig. 6. Cumulative Stepwise Cosine Similarity, Ball & Plate.

ball&plate simulations, where similarity is computed not per
step but over the data from the beginning to the current step
under consideration. Thus by the end it reachs the aggregate
similarity measure. Interestingly, it takes miniAMRZ almost
half of the execution to rise above miniAMR in similarity to
CTH. Our interpretation of this is that the applications do not
quite do refinement in a lock-step similar fashion, but as the
simulation proceeds the mesh refinement looks more similar
in the proxies and parents than any individual step indicates.
MiniAMR rapidly reaches its highest similarity to CTH, while
miniAMRZ takes longer but ends up more similar to CTH.

Figure 7 shows the dynamic interval cosine similarity, but
aggregated by 10, 100, and 200 datapoints. Thus these are still
intervals, not cumulative from the beginning, but just different
sizes of intervals. Interestingly, in almost none of the intervals
is miniAMRZ more similar than miniAMR to CTH. Moreover,
there is a consistent downward trend during execution. Recall
that this is for the ball and plate simulation, which has more
interaction area than the four sphere simulation. We interpret
this as follows: with dynamic AMR, the complex simulations
diverge in their mesh detail because they simply are not
doing the exact same computation (miniAMR’s is simplified).
Thus communication does indeed slightly diverge, interval
by interval. Yet, when accumulated together, since the mesh
details are roughly in the same place, the overall aggregate
communication is more similar than any sized interval.

Figure 8 shows the dynamic interval cosine similarity over
the raw data intervals, and Figure 9 shows it over partial
aggregations, both for the four sphere problem. Again, over
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none of the interval sizes does the similarity approach the
whole-application similarity, and miniAMRZ is almost always
lower than miniAMR.

Figure 10 shows the cumulative cosine similarity for the
four sphere simulation, which smoothly rises to its aggregate
level during the computation, and in which miniAMRZ is
consistently higher than miniAMR. The similarities are higher
than in the ball and plate simulation, for both miniAMR
versions, and we explain this by the fact that since this
simulation has less interaction, the miniAMR computation
retains a more similar mesh to CTH than it does in the ball
and plate simulation.
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C. Analysis Summary

In the above we presented many different analyses and
views, but what does it all signify? Our main conclusions
are that non-adaptive applications and proxies do not need
dynamic communication behavior analysis and that adaptive
applications and proxies should not necessarily be expected to
have fine-grained similarity in their communication behavior.
These two conclusions have some caveats, of course. Both
non-adaptive and adaptive communications could still have
message sizes and bursts that dynamically exercise or saturate
the hardware in different ways, and if an adaptive proxy is
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meant to directly follow the parent’s adaptive communication,
then one should expect it to.

VI. RELATED WORK

In our prior work, we noted at that time that there was
little related work done on characterizing the similarity in
communication patterns of parallel applications that use MPI.
This is still the case and there is only one new piece of work
that extends prior work in this area.

Ma et al. [12] present the only other work we have identified
on characterizing similarity in MPI communication patterns.
Their method uses a linear correlation coefficient on ranked
metric values in conjunction with a graph isomorphism met-
ric. They construct a graph based on communicating pairs
(source, destination), then use graph isomorphic degree to
determine the similarity between graphs. The metrics they
use for correlation are temporal, which reflects message rates,
volume for representing message size, and spatial that captures
communication locality in terms of communicating pairs.
Their results are mixed with three out of six benchmark
comparisons showing strong similarity and three out of six
showing weak, but some similarity. In contrast, our proposed
method is much simpler, using data directly gathered from
mpiP. We do non-linear correlation, which we believe is key,
and use real applications in addition to proxies (similar to
benchmarks).

The work presented in [13] and [14] focuses on match-
ing application communication patterns to a library of com-
monly observed patterns. Their methods are based on pattern
matching and they are not focused on understanding pattern
similarity (although their method could be applied to this
with some extension). The work in [13] has been recently
extended [15], and they improved it in [16] by representing the
communication matrix (mpiP data–source, destination, number
of messages, bytes transferred) as an augmented communica-
tion graph and then doing search space pruning based on a
library of communication patterns to determine patterns that
comprise the particular communication. As noted, this work
could be applied to the problem of communication pattern
similarity and will be leveraged in our work in the future.
In [15] they discuss how to apply deep learning methods in
their methodology.

VII. CONCLUSION AND FUTURE WORK

In our prior work, we presented an exploration into quan-
tifying a comparison of cumulative communication charac-
teristics between parent and proxy. This work extends that
methodology to include comparison of time-varying commu-
nication behavior using pairwise communication data. We
define metrics that capture how much of one application
matches the other and we use correlation metrics over the
message counts of communicating pairs to further quantify this
relationship. We found that for applications with dynamically
driven communication characteristics such as those that use
adaptive mesh refinement, the time-varying behavior of the

parent and proxy can be quite different, rendering the use of
cumulative data potentially misleading.

Although this work reveals the importance of examining
the differences in time-varying behavior, it also exposes new
questions/issues that need to be addressed. The first pertains
to the fidelity of proxy apps. In this team, we have over 30
years of experience with CTH, and an author of miniAMR.
miniAMR was originally intended to faithfully model only the
communication in CTH. We see from our data that in spite of
expertise, we have a proxy that has different communication
characteristics with respect to its parent. We believe this is
because miniAMR does not do exactly the same computation
that is done in CTH, and since the communication is dependent
on the dynamic computation, the communication is different.
Therefore, for applications that are characterized by dynamic
communication, it may be very important to ensure that
the same computations are done in both the proxy and the
parent. At a minimum, extreme care and caution must go
into understanding proxy intent in terms of which specific
parent behavior it models and developers must give adequate
attention to modeling these behaviors accurately. This implies
an iterative development-measurement cycle to ensure accurate
representativeness. Intuition is not good enough.

Secondly, although the time-varying communication be-
havior in CTH and miniAMR do not closely match, the
underlying behavior at the network level may be the important
characteristic we should be trying to mimic in the proxy. We
need to address the question as to how the communication
behavior we have observed differs or matches at the hardware
level. For example, do these two applications demonstrate the
same behavior with respect to network congestion, traffic at
the NIC, point-to-point message latency? This is our next step
for future work.

The instrumentation used in this work was either expensive
to use (e.g., one full execution per data collection interval)
or was hand-crafted, which points to an area of possible tool
improvement. Efficient tools often aggregate data until the end
of execution (e.g., CrayPat, mpiP); an ability to “checkpoint”
this data at selectable intervals would enable efficient dynamic
data over which to perform analyses.
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