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Abstract—Unified Memory (UM) has significantly simplified
the task of programming CUDA applications. With UM, the
CUDA driver is responsible for managing the data movement
between CPU and GPU and the programmer can focus on the
actual designs. However, the performance of Unified Memory
codes has not been on par with explicit device buffer based
code. To this end, the latest NVIDIA Pascal and Volta GPUs
with hardware support such as fine-grained page faults offer the
best of both worlds, i.e., high-productivity and high-performance.
However, these enhancements in the newer generation GPU ar-
chitectures need to be evaluated in a different manner, especially
in the context of MPI+CUDA applications.

In this paper, we extend the widely used MPI benchmark
OSU Micro-benchmarks (OMB) to support Unified Memory or
Managed Memory based MPI benchmarks. The current version
of OMB cannot effectively characterize UM-Aware MPI design
because CUDA driver movements are not captured appropriately
with standardized Host and Device buffer based benchmarks.
To address this key challenge, we propose new designs for the
OMB suite and extend point to point and collective benchmarks
that exploit sender and receiver side CUDA kernels to emulate
the effective location of the UM buffer on Host and Device.
The new benchmarks allow the users to better understand the
performance of codes with UM buffers through user-selectable
knobs that enable or disable sender and receiver side CUDA
kernels. In addition to the design and implementation, we
provide a comprehensive performance evaluation of the new UM
benchmarks in the OMB-UM suite on a wide variety of systems
and MPI libraries. From these evaluations we also provide
valuable insights on the performance of various MPI libraries
on UM buffers which can lead to further improvement in the
performance of UM in CUDA-Aware MPI libraries.

Index Terms—Benchmark, CUDA, GPU, Unified Memory,
MPI, HPC

I. INTRODUCTION

Micro-benchmarks play a vital role in characterizing the
behavior of a system. A well-developed benchmark provides
the user with various knobs to play around with to under-
stand the system under study. Moreover, the results from
the benchmark should not be ambiguous and should clearly
expose the characteristics of the system as it is. Even though
benchmarks have been written and maintained for almost all
areas of computing, its usefulness is highly prominent in
the area of parallel or high performance computing where a
plethora of parameters interact in seemingly unintuitive ways.
A benchmark which can rightly characterize such a system can
provide great insights to the developer of parallel systems.

Message Passing Interface (MPI) is the de facto program-
ming model for computing in parallel across multiple nodes of
a High Performance Computing (HPC) cluster. Modern MPI
libraries consist of numerous parameters which can act as
knobs to tweak the MPI library to enable the best performance.
Micro-benchmarks provide the opportunity to play around
with these parameters to characterize an MPI library. As the
prevalence of Graphics Processing Unit (GPU) architectures in
HPC clusters continues to increase, the number of applications
taking advantage of it to accelerate performance also have
risen. GPUs are especially noted for their role in improving the
performance of traditional HPC [1] and machine learning [2],
[3] applications.

Compute Unified Device Architecture (CUDA) platform
aids in the task of programming these high performance
NVIDIA GPUs efficiently. Various CUDA versions are re-
leased over the years which provided new features that ef-
ficiently take advantage of the improvements in NVIDIA
GPU architectures, thereby yielding higher performance. To
harness computing power on GPU clusters, it is common
to adopt CUDA-aware MPI libraries such as OpenMPI and
MVAPICH2-GDR, which can be used to perform communi-
cation between GPUs within a node or between multiple GPU
nodes. CUDA-aware MPI libraries provide efficient schemes to
handle GPU-resident data directly in the MPI primitives; thus
relieving the application developers from managing memory
explicitly, increasing productivity and performance [4]. Bench-
marks such as OMB [5] have been developed to characterize
and study the performance of CUDA aware MPI libraries.

Recently, Unified Memory (UM), a new feature being in-
troduced and enhanced in recent CUDA releases, significantly
improves the productivity for developing CUDA-enabled ap-
plications. Prior to the introduction of UM, the memory was
allocated either on the host (through malloc) or the device
(through cudaMalloc), and the programmer had to explicitly
perform the data movement between device and host using
CUDA application programming interfaces (APIs) such as
cudaMemcpy. UM provides an abstraction of unified memory
address space for the programmer. As a result, the programmer
no longer has to explicitly manage the data movement, which
will be handled by the underlying CUDA driver, enhancing
productivity. While UM improves productivity for the pure
CUDA applications, it falls short in performance when UM is
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used for MPI+CUDA applications. To address the performance
issue, UM-aware MPI designs to alleviate the performance
impact [6] were proposed.

More recently, the deployment of advanced GPU page fault
engines in the NVIDIA Pascal and Volta GPU architectures
significantly improve the performance of page migration be-
tween CPU and GPU for UM. This development along with
the inherent nature of UM’s effective location being either
in the CPU or GPU adds a unique feature to the UM aware
MPI library which cannot be fully characterized using previous
micro-benchmarks such OMB [5]. Thus, there is a need in the
HPC community to develop a benchmark such as OMB-UM
that can thoroughly study and characterize UM aware MPI
libraries and take full advantage of the UM.

In this context, we take up the challenges and propose
OMB-UM that aims to fill these gaps to enable full charac-
terization of UM-based MPI libraries on current and future
GPU architectures. To the best of our knowledge, this is the
first work to design, implement and evaluate UM-Aware MPI
benchmark suite on modern GPU clusters. This paper makes
the following key contributions.

• Design and implementation of comprehensive UM-aware
point-to-point benchmarks with extended options to spec-
ify the effective location of the UM buffer.

• Design and implementation of UM-aware collective com-
munication benchmarks with extended options to deter-
mine the effective location of the UM buffer.

• Comprehensive performance evaluation of the new UM-
aware benchmarks on a wide variety of systems and
multiple CUDA-aware MPI libraries.

II. MOTIVATION AND CHALLENGES

Prior to the introduction of UM, the data buffers used in
the CUDA-aware MPI library can be identified either as a
host buffer or device buffer based on their location. These
buffers reside in their respective location throughout the entire
duration of the MPI+CUDA program. With the introduction of
UM, another buffer type called unified memory is added to the
buffer types handled by CUDA-aware/UM-aware MPI library.
The unique nature of UM buffers, unlike the other types is
that they can now move between host and device. They are
moved by the underlying CUDA driver based on whether CPU
or GPU is accessing the buffer. The effective location of an
UM buffer is its current location of residence which can be
either ’host’ or ’device’ and will change dynamically during
program runtime.

A. Limitations of current UM-aware MPI benchmarks

The variability of UM buffer’s effective location in-turn
affects the characteristics of MPI operations using this buffer.
The current UM-aware MPI benchmark suite such as OMB
lacks options to capture accurately the effect of this variability
on performance of MPI operations. This is explained by taking
2DStencil code as an example.

Figure 1 shows the computation kernel of the 2D stencil
code. The computation pattern starts with a CUDA kernel then
followed by MPI calls and then followed by couple of CUDA

Fig. 1. Pseudocode of a common 2DStencil kernel in CUDA+MPI applica-
tions

Fig. 2. Pseudocode of existing latency benchmark in OMB suite

kernels. When this pattern is present within a for loop, the
computation alternates between device and host. When UM
buffers are used in this stencil code, the effective location of
the UM buffer also alternates between host and device.

On the other hand Figure 2 shows the computation kernel
inside the osu latency benchmark from the OMB benchmark
suite. Here we could see that the device buffers are set in
the beginning of the benchmark using cudaMemset() and then
MPI Send() and MPI Recv() MPI calls are used inside for
loops to calculate the latency. Thus when UM buffers are
used in this benchmark, the effective location of the buffer
will initially be on the device during the initialization phase.
During the iteration of the loop the effective location of the
UM buffer can either be host or device depending upon the
MPI implementation and hence ’Undefined’. Thus the current
version of OMB benchmark is unable to capture the variability
in effective location of UM buffers as found in the stencil code
described above. Thus there is a need to extend the OMB suite
to capture the effective location variability of UM buffers.

B. Benchmark Extensions

The proposed benchmark extensions provide the necessary
options to explicitly dictate the effective location of the UM
buffer. For the point to point MPI operations the proposed
OMB-UM adds four possible effective locations for the UM
buffer namely 1)MH-MH 2)MD-MH 3)MH-MD 4)MD-MD.
Here H indicates the effective location of a UM buffer as host
while D indicates the effective location of a UM buffer as a
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device. Furthermore, the first ’Mx’ and second ’My’ in Mx-
My refers to the UM buffer type of process 0 and process 1
respectively. For collective operations the -d managed option
already available in OMB is extended to set the effective
location of UM buffer as ’device’ similar to MD-MD in point
to point operations.

C. Broad Challenge

The following broad challenge is investigated in this paper:
How can a full-fledged UM aware OMB (OMB-UM) be de-
signed to provide the facility to set the four possible effective
locations for UM buffers leading to the full characterization
of UM aware MPI on modern GPU clusters?. This broad
challenge leads to the following key questions that need to be
addressed:

• How to achieve the different data placements on UM
provided that the underlying UM driver migrates pages
between host and device based on the recent access?

• How to properly measure and adjust the kernel launch
time overhead during the timing calculations inside the
benchmark?

III. BACKGROUND

In this section, we provide the necessary background knowl-
edge related to this paper.

A. NVIDIA GPU, CUDA and Unified Memory Technology

NVIDIA General Purpose Graphics Processing Unit
(GPGPU) has been widely deployed in HPC systems to
accelerate applications due to its massive parallelism and high
memory bandwidth. CUDA is the parallel computing platform
and programming model to harness the computing power
of NVIDIA GPUs. Unified Virtual Addressing (UVA) is a
feature introduced in CUDA 4.0 that provides a single virtual
memory address space for all CPU and GPU memory. Through
UVA, the physical memory location can be determined from a
pointer value that is accessible by the GPU regardless of where
it resides in the system. Unified memory was introduced by
NVIDIA in CUDA 6.0 to simplify the complexity of sharing
data between the CPU and GPU. Prior to this feature, in order
to share data between the CPU and GPU, memory had to
be allocated on both the host and the device and explicit
copies made between them, incurring additional overhead.
Unified memory provides a single, unified virtual address
space to applications for accessing CPU and GPU memory.
The managed memory is shared between CPU and GPU,
eliminating the need for explicit data transfers in applications.
Unlike UVA, with unified memory, the CUDA driver auto-
matically migrates data between CPU and GPU. Since the
release of CUDA 8.0 and NVIDIA Pascal GPU architecture,
the hardware support for unified memory has significantly
improved [7]. Memory page faulting support is a significant
enhancement enabling on-demand migration and concurrent
access. On-demand migration yields improved performance
through a small amount of page movement and better data
locality.

The latest NVIDIA Volta GPU architecture, further opti-
mizes the performance of unified memory through the access
counter hardware feature. It ensures memory pages are moved
to the physical memory of the processor, i.e., to the physical
memory of CPU or GPU, based on which accesses the pages
most frequently. To further improve productivity, Volta over
NVLink2 interconnect addresses translation services (ATS)
which allows the GPU to directly access page tables of
CPU [8].

B. CUDA-Aware MPI
MPI is a de-facto standard programming model used for

parallel applications on HPC systems. With the popular-
ity of GPU-enabled HPC systems in recent years, CUDA-
Aware MPI [9] has been widely adopted in communica-
tion libraries such as OpenMPI [10], MVAPICH2 [11], and
more [12]. CUDA-Aware MPI eliminates explicit handling
of data movement between the CPU and GPU by directly
passing pointers to GPU memory instead. Advanced CUDA-
Aware MPI libraries take advantage of NVIDIA GPUDirect
technology to provide low-latency and high-bandwidth data
transfer among GPUs within and across nodes through Peer-
to-Peer (P2P) Communication and GPUDirect Remote Direct
Memory Access (RDMA) [13]. CUDA managed memory-
aware MPI designs [14], [6] are proposed and evaluated on
NVIDIA Kepler GPU architecture. Unified memory technol-
ogy has significantly evolved over the years leading to a
dearth of understanding CUDA-Aware MPI with the use of
CUDA Unified Memory on the modern GPU architectures like
NVIDIA Pascal and Volta. This paper aims to fill this gap in
knowledge.

C. Advanced CUDA-IPC design in MVAPICH2 MPI
Advanced CUDA-IPC designs for managed memory are

proposed [6] to improve the performance of large message
communication within a single node. These designs take
advantage of NVIDIA GPUDirect Peer to Peer technology
to load and store data directly between two GPU memories.
Unfortunately this technology is available only for device
buffers and not for managed buffers. Advanced CUDA-IPC
design for managed memory [6] brings this technology for
managed buffers by copying the contents of managed buffers
to a device buffer and performing CUDA-IPC on them.

D. MPI-Level Performance Benchmark

There are many MPI benchmarks existed for different
purpose, however, very few of them supports CUDA-Aware
MPI and UM-Aware buffers. The OSU Micro-benchmark
(OMB) suite is used with various MPI libraries to evaluate
performance of MPI primitives on CPU and GPU clusters.
In order to evaluate various communication configurations
on GPU clusters, OMB provides support for evaluating the
performance of point-to-point, multi-pair, and collective com-
munication [15], [5]. The point-to-point MPI benchmarks
include tests for latency, uni-directional bandwidth, and bi-
directional bandwidth. The latency test is carried out in a
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ping-pong manner using MPI Send and MPI Recv. The uni-
directional bandwidth test starts off with sending a number of
back-to-back messages from the sender using MPI ISend. The
sender waits (MPI Waitall) for a message from the receiver
process confirming it received all the data using MPI IRecv.
Similar logic is followed in the bi-directional bandwidth test
but with both the sender and the receiver processes sending
back-to-back messages to each other. Both processes then
wait for confirmation from each other that all the messages
have been received. These benchmarks take two parameters to
indicate whether the buffers reside on the host or device. The
various communication patterns include inter-node and intra-
node communication on the host, on the device, or between
the host and device.

IV. PROPOSED DESIGNS

The proposed OMB-UM is aiming to provide flexibility
to benchmark communication performance with the various
effective location of UM that mimic real applications using
CUDA-Aware MPI libraries as described in Figure 1. This
section delves into how proper data placements are achieved
in OMB-UM and describes the subsequent algorithms for MPI
operations that use them internally.

A. Data Placements of Unified Memory

The on-demand migration of UM between CPU and GPU
occurs transparently via the underlying CUDA driver when-
ever CPU or GPU touches (i.e., accesses) the managed buffer.
To explicitly move the memory pages from CPU to GPU,
one could launch a kernel that reads the managed memory
buffer in the GPU thereby touching it, and we refer this to
data migration kernel in the rest of the paper. This forces the
underlying CUDA driver to migrate the memory pages to GPU
if needed. Similarly, reading the managed memory buffer from
CPU will force the buffer to be moved to the system memory.
When performing data transfer between two processes, the

Fig. 3. Data placement when using unified memory for communication

effective location of UM varies when entering the commu-
nication runtime. Figure 3 illustrates the four possible data
placements for the UM buffer as follows.

1) MH-MH: In this data placement, the effective location of
both the send and receive buffers in a point to point operation
is set to “host”. In other words, data reside on host memory
before and after the transaction of the point-to-point operation.
Since the default effective location is “host” when allocating
a UM (e.g., using cudaMallocManaged() without additional
setting), the benchmark does not need to explicitly touch the
buffer in this scenario. This is the only scenario supported in
the existing OMB suites [15].

2) MD-MH: For the MD-MH case, the effective location of
the send buffer is set to “device” and the effective location of
the destination buffer is set to host. This scenario mimics the
case where the sender process invokes a kernel computation
on GPU before issuing the send operation, where the receiver
process does not involve any GPU kernels with the receive
buffer.

3) MH-MD: This is similar to the MD-MH case, but
the roles are reversed. Here, the receiver process invokes
computation on GPU after the inter-process communication.
In the benchmark, this can be achieved by launching a kernel
“after” the receive operations are completed.

4) MD-MD: This case is the most commonly used as
shown in Figure 1 and it has both the sender and receiver
sides set the effective location to “device” because of the
GPU computing kernel before and after the send and receive
operations. To mimic this scenario in the benchmark, we can
launch a kernel “before” sending the data and also launching
a kernel “after” receiving the data.

B. Proposed OMB-UM Latency Benchmark

This section describes the proposed OMB-UM latency
benchmark, which is based on the existing ping-pong test in
OMB [15], for the unified memory. Moreover, the effective
location of UM buffers can be set as device or host at both
the source and the destination. Here, we use the most common
use case of MD-MD as shown in Figure 4(a) to illustrate
the proposed design to measure the latency accurately when
data migration of unified memory is involved during the
communication. Let us consider that P0 be the process with
rank 0 and P1 be the process with rank 1 that are involved
in the point to point operation with UM buffers. Initially,
P0 sets the effective location of the source UM buffer to
device by launching a kernel before sending a message to
P1 (before Start in Figure 4(a)). On the other side, upon P1
receiving the message from P0, it launches a kernel which
causes the memory pages of receive buffer to be migrated to
GPU memory.

In MD-MD case, the data is assumed to be present on
GPU memory before and after the communication. Therefore,
to report the latency of communication accurately, we do
not include the time where driver migrates data from system
memory to GPU memory before the communication and the
duration where we launch the data migration kernel. However,
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Fig. 4. Proposed OMB-UM Latency and Bandwidth Benchmarks

we do include the data migration time after the communication
to guarantee the GPU-resident data because the state-of-the-art
CUDA-Aware MPI libraries do not provide such a guarantee.
Finally, P0 can calculate the latency as follows.

LatencyMD−MD =
tEnd − tStart − 2× tKernel Launch

2
(1)

Similarly, other data placement cases can be derived from this
case. For example, in MD-MH case, there is no need to launch
the data migration kernel after the communication.

C. Proposed OMB-UM Bandwidth Benchmark

The OMB-UM unidirectional bandwidth algorithm for the
MD-MD data placement case is depicted in Figure 4(b).
Similar to the bandwidth algorithm in OMB, P0, the process
with rank 0, issues a window of non-blocking send operations,
i.e., window size times, to P1. In OMB-UM, P0 issue the
data migration buffer with UM buffers that used in these non-
blocking send operations. It then waits until all the sends are
complete through calling MPI Waitall. On the other side, P1,
the process with rank 1, issues a window of non-blocking
receive operation corresponding to the send operations in P0.
It then waits for all the receives to complete and then sets
the effective location of the UM buffers used in these non-
blocking receives to device by launching the data migration
kernel on every one of them. The total time is calculated from
the time P0 started the non-blocking send until the time P1
finished setting the effective location of all the UM buffers to
device. The total adjusted time is calculated by subtracting the

time taken for kernel launches by both P0 and P1 from the
total time. This is then used to calculate the bandwidth.

BWMD−MD =
M × window size

tbw − tKernel Launch
(2)

where M represents the message size used.
Other data placement cases can be derived from this case

in a similar manner by removing the data migration kernels
accordingly. Also, the bi-directional bandwidth benchmark
can be simply implemented by introducing send and receive
operations on the both processes.

D. Proposed OMB-UM Collective Benchmarks

This section uses broadcast as an example to demonstrate
the efficacy of the proposed OMB-UM for benchmarking
collective operations. A broadcast operation involves a root
process sends the data to every other process in a group,
i.e., communicator in MPI context. Thus, the techniques
employed in the previously described point to point OMB-UM
algorithms can be applied here. For the OMB-UM broadcast
with the MD-MD data placement, the root process launches
a kernel before sending the data through UM buffer to set
its effective location as device. Then the broadcast operation
is performed through calling MPI Bcast. Similarly, all the
non-root processes launch the data migration kernel after
receiving the data to ensure the memory pages reside on GPU
memory. All the processes involved in the broadcast operation
would measure the broadcast time, the kernel launch overhead
and execution time of data migration, and then calculate the
latency of broadcast operation with UM buffer. This can
be represented as Figure 4(a) by replacing MPI Send and
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TABLE I
EXPERIMENTAL PLATFORMS

CPU GPU Interconnect NVLink OS
Sandy Bridge E5-2670 Volta V100 EDR No RHEL 7.5.1804

Haswell E5-2687W Volta V100 EDR No RHEL 7.5.1804
OpenPOWER POWER9 Volta V100 EDR Yes RHEL 7.6

MPI Recv operations to just MPI Bcast operation on multiple
processes.

V. EVALUATION

This section presents the evaluation of the proposed OMB-
UM benchmarks on various platforms and communication run-
times. First, we describe the experimental platforms and setup.
Next, we present the evaluation of the OMB-UM on intra-
and inter-node point-to-point communications on Intel x86-
based GPU system with PCIe interconnect using MVAPICH2-
GDR, a CUDA-Aware library with advanced UM design [6].
Next, we present the point-to-point and collective commu-
nications evaluation of OMB-UM on OpenPOWER system
with NVLink interconnect using MVAPICH2-GDR, Spectrum
MPI and Open-MPI+UCX libraries. We finally conclude the
evaluation section with the discussions and insights obtained
from the evaluation of OMB-UM on x86 and OpenPOWER
systems.
A. Experimental Platforms and Design

The experiments were performed on three types of system
architectures as shown in Table I: i) Intel x86 machine: a
local cluster that has nodes with two NVIDIA Volta V100
GPUs connected by PCIe Gen3 x16 and Intel Sandy Bridge
E5-2670 processors running at 2.60 GHz. Each node has two
sockets with eight cores per socket connected using Intel
QPI. The nodes run Red Hat Enterprise Linux Server release
7.5.1804 (Core) with a kernel version of 3.10.0-862.14.4.
Mellanox OFED 4.5-1.0.1.0 and CUDA toolkit 10.1 were
used. Mellanox Infiniband EDR networks are used to connect
these nodes. It is used for obtaining x86 intra-node numbers
ii) Intel x86 machine: a local cluster that has nodes with two
generations of NVIDIA GPUs: Pascal P100 and Volta V100,
both are connected by PCIe Gen3 x16 to Intel Haswell E5-
2687W processors running at 3.1 GHz. Each node has two
sockets with ten cores per socket connected using Intel QPI.
The nodes run Red Hat Enterprise Linux Server release 7.4
(Core) with a kernel version of 3.10.0-693.21.1. Mellanox
OFED 4.4-2.0.7 and CUDA toolkit 9.2.14x86 8 were used.
Mellanox Infiniband EDR networks are used to connect these
nodes. It is used for obtaining x86 inter-node numbers ii) IBM
OpenPOWER machine: The node is equipped with two 22-
core IBM POWER9 CPUs and 6 NVIDIA Volta V100 GPUs,
where NVLink2 is used to connect CPU and GPU to provide
advanced UM features as described in Section III-A. The
nodes are connected via Mellanox InfiniBand EDR networks.
The system has 256GB memory, and each GPU has 16GB
GDDR5 memory. The node runs Red Hat Enterprise Linux
Server release 7.6 (Maipo) with a kernel version of 4.14.0-
115.8.1. CUDA toolkit 10.1.168 along with Mellanox OFED
4.5-2.2.9.0 is installed on this system.

On each of the above mentioned architectures, the extended
point-to-point communication type benchmarks in the pro-
posed OMB-UM such as latency (osu latency), unidirectional
bandwidth (osu bw) and bidirectional bandwidth (osu bibw)
are first evaluated using different CUDA-Aware MPI libraries.
The four data placements for UM effective location: 1) MH-
MH 2) MD-MH 3) MH-MD 4) MD-MD discussed in Sec-
tion IV are evaluated.

To gain insights into “UM-Awareness” of existing CUDA-
Aware MPI libraries and cutting-edge interconnect technol-
ogy, we performed the above evaluation using different MPI
libraries such as MVAPICH2-GDR, OpenMPI and Spectrum
MPI on the OpenPOWER-based GPU machine. Finally, we
evaluated the extended UM-based collective benchmark using
broadcast (osu bcast) as the test candidate to show the efficacy
of the proposed OMB-UM benchmark.

B. Intra-node Evaluation on Intel x86 System

In this section, the extended point-to-point benchmarks of
OMB-UM are evaluated on a single node using MPVAICH2-
GDR MPI library. We conducted experiments using the four
extended data placement options for specifying the locality of
UM buffers namely 1)MH-MH 2)MD-MH 3)MH-MD 4)MD-
MD. Moreover, we compared these new options to host-to-
host (labeled as HH) and device-to-device (labeled as DD)
communication to understand the performance differences
when moving from the explicit memory allocation to the
implicit unified memory.

1) Latency(MH-MH): Figure 5(a) shows the latency curve
for MH-MH data placement. This is the default data placement
scenario in existing OMB suite. It shows that the curve aligns
with the host (HH) path until the medium message range and
then it suddenly increases and aligns with the device (DD)
path. Since the UM buffer’s effective location is set as host,
it initially follows the host path. However, in the medium
message range the advanced IPC designs for UM buffers as
described in Section III-C kick in and change the effective
location of UM buffer as device. Thus for medium and large
message range it aligns with the device’s path. This behavior
of MH-MH curve needs to be fixed to align MH-MH curve
with the HH curve.

Thus these data placement options to the UM buffer provide
various knobs which an MPI designer can use to get more in-
sights into the performance of UM-aware MPI library thereby
improving its performance. Since these extended options are
not available in current OMB benchmark where the only
available option is MH-MH implicitly, it might sometimes
mislead the UM-aware MPI developer with incorrect perfor-
mance characteristics. This is also another motivation behind
the development of OMB-UM.

2) Latency(MD-MH and MH-MD): Figure 5 shows the la-
tency curve for MD-MH data placement. This data placement
is also called as the sender side kernel design as only a sender
launches a kernel to move the source UM buffer in the host to
the device. Since the UM buffer is moved to the device we see
that the MD-MH latency curve initially aligns with the device

687



0.1

1

10

100

1000

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

La
te

nc
y 

(u
s)

Message Size (Bytes)

HH DD MH-MH

(a) Latency MH MH

0.1

1

10

100

1000

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

La
te

nc
y 

(u
s)

Message Size (Bytes)

HH DD MD-MH

(b) Latency MD MH

0.1

1

10

100

1000

1 4 16 64 25
6 1K 4K 16
K

64
K

25
6K 1M 4M

La
te

nc
y 

(u
s)

Message Size (Bytes)

HH DD MD-MD

(c) Latency MD MD

Fig. 5. x86 intra-node latency on MVAPICH2-GDR using OMB-UM

(DD) and in the middle it is in-between device and host (HH)
and finally it aligns with both the host and the device.

Similarly in MH-MD data placement one process sets the
effective location of source UM buffer as host and another
process sets the effective location of the destination UM buffer
as device. Since OMB-UM benchmarks are designed to start
the timing measurement after the source UM buffer is brought
to the device, this MH-MD curve is similar to MD-MD curve
and hence it is omitted here for space.

3) Latency(MD-MD): Figure 5(c) shows the latency curve
for MD-MD data placement. Here, both the processes involved
in the point to point operation launch a kernel to move the
source and destination UM buffer from host to device. From
the graph we could see that the MD MD curve has mostly
aligned with the device (DD) curve for medium and large
messages. Since MD-MD data placement sets the effective
location of source and destination UM buffer to be on device
consistently, this is semantically similar to host (HH) and
device (DD) curves where their buffers also lie either at the
host or device consistently during the entire point to point
operation. Thus in all the subsequent graphs host (HH), device
(DD) and MD-MD data placement is shown for consistency.

4) Bandwidth and Bi-Bandwidth(MD-MD): Figure 6 shows
the bandwidth and bi-bandwidth curves for the MD-MD data
placement. Both the processes involved in the bandwidth and
bi-bandwidth benchmark launch a kernel to move the source
and destination UM buffer to the device. From both the graphs
we could see that UM buffers are having a low bandwidth
compared to the device (DD) and host (HH) counterparts for
small to medium message range. For large message range
bandwidth and bi-bandwidth curves aligns with the host (HH)
and device (DD) curves. This characteristic obtained from
OMB-UM reflects the usefulness of MVAPICH2-GDR’s ad-
vanced IPC design as explained in Section III-C for large
messages.

C. Inter-node Evaluation on Intel x86 System

While the previous sections detailed the intra-node evalua-
tion on X86, this section covers the inter-node evaluation. The
latency, bandwidth and bi-bandwidth benchmarks are run on a

couple of nodes with the UM data placement set as MD-MD
and their results are presented in figure 7. From the latency
curve we could see that MD-MD curve is slightly ahead of
device (DD) curve as managed memory latency is expected
to be higher than device (DD) curve due to underlying
data migration costs. Furthermore, for the bandwidth and bi-
bandwidth curves the performance of MD-MD curve is worse
by an order of magnitude. This insight by the OMB-UM
benchmark can be used by the UM-aware MPI designer to
come up with better UM-aware MPI designs for improving
the bandwidth and bi-bandwidth.

D. NVLink-enabled POWER9 intra-node and inter-node eval-
uation

To evaluate the effect of UM on the latest NVLink-enabled
GPU systems, we conducted experiments using the proposed
OMB-UM on a couple of GPU-enabled POWER9 nodes. Here,
we perform point-to-point communication between two GPUs
with direct NVLink and report the latency, uni-bandwidth,
and bi-bandwidth. We compared the performance between
three CUDA-Aware MPI libraries: 1) MVAPICH2-GDR 2.3.2
(MVAPICH2-GDR), 2) OpenMPI 4.0.1 with UCX 1.6 (Open-
MPI+UCX), and 3) SpectrumMPI 10.3.0.01 (SpectrumMPI).

In Figure 8(a), we can see that MVAPICH2-GDR and
OpenMPI+UCX provide the lowest latency and SpectrumMPI
delivers high latency where data migration is occurring for
small messages. For large messages, MVAPICH2-GDR sig-
nificantly outperforms OpenMPI+UCX and SpectrumMPI due
to the advanced designs for UM. For bandwidth and bi-
bandwidth as shown in figures 8(b) and 8(c), MVAPICH2-
GDR and SpectrumMPI perform similar until advanced IPC
designs in MVAPICH2-GDR takes effect in larger message
sizes. The bandwidth of OpenMPI+UCX is limited by explicit
data movement between host and GPU memory.

E. NVLink-enabled POWER9 intra-node collective communi-
cation evaluation

Finally, we present the performance comparison of MPI
libraries performing UM-based broadcast on the POWER9 ma-
chine as a proof-of-concept of completeness of the proposed
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Fig. 8. Comparison of intra-node point-to-point communications between CUDA-Aware MPI libraries using OMB-UM on POWER9 and Volta over NVLink2

OMB-UM. Figure 10 depicts the latency of broadcast oper-
ation obtained by using MVAPICH2-GDR, OpenMPI+UCX,
and SpectrumMPI across 6 GPUs within a POWER9 machine.
Similar to point-to-point shown in Figure 8(a), MVAPICH2-
GDR, and OpenMPI+UCX yield comparable performance for
small message sizes (i.e., smaller than 16KB) and outperform
SpectrumMPI by a magnitude of two. For large message sizes,
MVAPICH2-GDR achieves up to 2X and 7.5X lower latency
compared to SpectrumMPI and OpenMPI+UCX, respectively,
due to the advanced IPC design for UM.

VI. DISCUSSION

This section discusses some interesting insights obtained
by using the OMB-UM benchmark on various CUDA-Aware
MPI libraries such as MVAPICH2-GDR, SpectrumMPI and
OpenMPI on both x86 and OpenPOWER architectures. These

insights from OMB-UM benchmarks provide valuable infor-
mation to identify the bugs and MPI design issues.

A. x86 Intra-node MH-MH latency bump in MVAPICH2-GDR

In Figure 5(a) which refers to the MH-MH latency curve,
the effective location of the sender and receiver side UM
buffer is set to host. Hence no kernel is launched either on
the sender side or on the receiver side. Hence the MH-MH
curve is expected to align well with pure host to host (HH)
curve. But from Figure 5(a) we see that the MH-MH curve
aligns well HH curve from small till medium message range.
For large message range there is a sudden increase in latency.
This is due to the activation of advanced IPC designs explained
in Section III-C in MVAPICH2-GDR. This sudden increase in
latency needs to be addressed to make the MH-MH curve align
well with HH curve by intelligently activating and deactivating
the advanced IPC designs.
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Fig. 9. Comparison of inter-node point-to-point communications between CUDA-Aware MPI libraries using OMB-UM on POWER9 and Volta over NVLink2
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Fig. 10. Comparison of UM-based Broadcast operation between CUDA-
Aware MPI libraries using OMB-UM on POWER9 and Volta over NVLink2

B. x86 Intra-node MD-MD large message bandwidth and bi-
bandwidth benefited from MVAPICH2-GDR advanced IPC
designs

From Figure 6(a) and Figure 6(b) it is seen that even
though bw and bibw are really low for managed buffers
for small and medium messages, they are on par with host
and device buffers for large message sizes. Thanks to the
advanced IPC designs present in the MVAPICH2-GDR which
provides these benefits. Another point worthy of mention is
that these advanced IPC designs were developed during the
Kepler era NVidia GPUs which had very preliminary support
for managed memoey and those designs are still valid on the
latest Volta and Pascal GPUs which boast advanced hardware
features to support managed memory.

C. x86 Intra-node and inter-node MD-MD small to medium
message bandwidth and bi-bandwidth needs improvement in
MVAPICH2-GDR

From Figure 6(a), Figure 6(b), Figure 7(b) and Figure 7(c)
we could see that the bw and bibw lag behind their host
(HH) and device (DD) counterparts by an order of magnitude
in MVAPICH2-GDR. This may be due to excessive moving
of managed buffer between host and device but needs to be
investigated further.

D. OpenPOWER Intra-node point to point communication
using MVAPICH2-GDR suffers from loopback design

MVAPICH2-GDR employs high performance communica-
tion designs such as loopback [16] for communication within
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Fig. 11. Loopback issue with intra-node point to point communication in
MVAPICH2 on OpenPOWER systems

TABLE II
INSIGHTS ON POWER9 SYSTEMS WITH VOLTA GPUS

MPI Library Comm type + bench GPU Page Faults CPU Page Faults
OpenMPI+UCX Intra-node bibw 284557 295680

SpectrumMPI Intra-node bibw 1248 —
SpectrumMPI Inter-node latency 351864 390526

OpenMPI+UCX Inter-node latency 70445 74020

a node. The infiniband HCA adapter is involved in the com-
munication. It receives the data from the sender and then it
routes the data back to the receiver within the same node.
This mechanism is normally exercised on host (HH) and
device buffers (DD) in an intra-node setting. On the other
hand when loopback is employed on managed buffers (MD-
MD), performance degradation on the orders of magnitude is
observed as shown in Figure 11. Further investigation needs
to be done to identify the root cause of the degradation.

E. OpenPOWER Intra-node bibw on OpenMPI needs im-
provement

Figure 8(c) shows that bi-bandwidth of OpenMPI is signifi-
cantly lower than that of SpectrumMPI and MVAPICH2-GDR
for large messages. Further profiling of both OpenMPI and
SpectrumMPI shows that OpenMPI designs result in larger
CPU and GPU page faults in the Vota GPUs resulting in poor
performance. The page fault data are tabulated in the Table II.
The design choices can be revisited in the OpenMPI designs to
avoid unnecessary movement of managed data due to touching
it either from host or device.
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F. OpenPOWER Inter-node point to point communication in
MVAPICH2-GDR suffers due to two sided protocols

MVAPICH2-GDR employs 2 sided protocols when commu-
nicating between managed buffers between a pair of nodes.
But when the nodes are of type OpenPOWER significant
degradation is seen as shown in the Figure 12. The degradation
is alleviated when single sided protocols are employed in the
place of 2 sided ones.

G. OpenPOWER Inter-node latency on Spectrum MPI needs
improvement

Figure 9(a) shows that the latency of Spectrum MPI is on the
order of magnitude worse than OpenMPI for small to medium
messages. On further profiling it is found that the CPU and
GPU page faults in Spectrum MPI are almost five times that
of OpenMPI. Hence design choices in Spectrum MPI needs
to be revisited to avoid the data migration of managed buffers
thereby realizing high performance.

VII. RELATED WORK

In [17], Chao et al. developed a test benchmark suite and
nine applications to evaluate and compare the performances
of pageable memory, pinned memory, and unified memory.
In [18], the authors developed a UM benchmark in the
context of OpenMP. They evaluated the performance of these
benchmarks to identify where GPU memory management can
be optimized. In [19], Jablin et al. developed a system
for optimizing CPU-GPU communication. They evaluate the
various issues with CPU-GPU communication and propose
an automated approach to GPU memory management. While
this work evaluates GPU data movement, the system does not
consider UM.

IMB [20] is the benchmark developed by Intel to conduct
performance and validation tests for all kinds of MPI commu-
nication APIs including MPI-1 functions, one-sided commu-
nications, MPI input/output (I/O), non-blocking (NBC) collec-
tives and MPI3-RMA communications. MPICH test suite [21]
provides the validation tests for MPI-1, MPI-2, and MPI-3
standard. Nevertheless, there is no performance measurement,
and it is not GPU-aware. OMB [15], [5] provides performance
measurement for all communication APIs, and it is GPU-aware

and UM-Aware. However, UM support is naive and cannot
evaluate the scenarios addressed in this paper.

Manian et al. [22] provided an in-depth characterization
of UM-Aware MPI libraries on three generations of GPU
architectures including Kepler K-80, Volta V100, and Pascal
P100. OMB is modified to launch a sender side CUDA
kernel similar to MD-MH to evaluate the UM-Aware MPI’s
performance. Manian et al. work lacks the options for all the
four data placement options for setting UM buffer’s effective
location along with a full fledged benchmarking of UM buffer
on various architectures and CUDA-Aware MPI libraries.

In [23], Knap et al. evaluate the performance of Unified
Memory with data prefetching and memory oversubscription
for various CUDA applications on Volta and Pascal GPUs
to determine the influence of specific architectures on per-
formance.

VIII. CONCLUSION

GPUs are becoming ubiquitous in the HPC world, and
CUDA-aware MPI is one of the most preferred programming
model to utilize the power of GPU clusters. The latest ad-
vancement in CUDA Unified Memory (UM) improves the
productivity of the programmers by giving a unified memory
space between CPU and GPU. Since the UM buffer can ef-
fectively lie either in the CPU or GPU, the micro-benchmarks
written for CUDA-aware MPI such as OMB does not capture
all the data placements possible for UM buffer. Thus this
work proposes OMB-UM a UM-aware micro-benchmark that
provides options for explicit data placement of UM buffers for
point to point and collective operations. MPI designers can
take advantage of new options provided by OMB-UM to fully
characterize the UM-aware MPI libraries for finding insights to
issues or for evaluating high performance designs. In addition
to the design and implementation an in-depth performance
evaluation of the proposed OMB-UM benchmark on a wide
variety of systems and MPI libraries is provided. Furthermore,
the insights gained by using the OMB-UM benchmarks on the
issues found during the evaluation of various MPI libraries on
multiple systems is provided to showcase the efficacy of the
proposed benchmarks.
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