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Abstract—GPUs are powerful, massively parallel processors,
which require a vast amount of thread parallelism to keep their
thousands of execution units busy, and to tolerate latency when
accessing its high-throughput memory system. Understanding
the behavior of massively threaded GPU programs can be
difficult, even though recent GPUs provide an abundance of
hardware performance counters, which collect statistics about
certain events. Profiling tools that assist the user in such analysis
for their GPUs, like NVIDIA’s nvprof and cupti, are state-of-
the-art. However, instrumentation based on reading hardware
performance counters can be slow, in particular when the number
of metrics is large. Furthermore, the results can be inaccurate as
instructions are grouped to match the available set of hardware
counters.

In this work we introduce CUDA Flux, an alternative to
profiling based on hardware performance counters. As part of
CUDA compilation, code is instrumented to collect statistics about
the control flow. The resulting instruction count is then calculated
based on these statistics in combination with an analysis of PTX
assembly. In general, it is possible to trade profiling overhead
for profiling accuracy, as the number of threads to instrument
can be varied. Our experiments show that code instrumentation
and associated data acquisition is usually faster than reading
out a large amount of hardware performance counters, like
being done by nvprof. Ultimately, we see code instrumentation
as highly flexible, with many possibilities to trade accuracy for
resource requirements, while the fundamental techniques can be
preserved.

Index Terms—GPU, CUDA, LLVM, Profiling, PTX

I. INTRODUCTION

Characterizing workloads is a recurring topic in various
fields of computing, including GPGPUs. In order to develop
new innovations, computer scientists have to understand fun-
damental properties of a variety of workloads. For instance,
this understanding can be used for developing new hardware
that is better adapted to the workloads or improving software
like compilation tool chains to produce more efficient code.
In general, this understanding should be close to the metal,
meaning such a characterization should report metrics that
can be easily mapped to the processor’s ISA. While there are
multiple ISA levels for GPUs, for NVIDIA GPUs the PTX
ISA is best documented and most heavily used.

The currently dominating tool used to characterize CUDA
kernels is NVIDIA’s profiler nvprof. While this tool offers
lots of metrics which provide insights on what happens in

hardware, it lacks verbosity when it comes to analyzing the
different types of instructions executed. This problem is aggra-
vated by the recently frequent introduction of new instructions,
for instance floating point operations with reduced precision
or special function operations including Tensor Cores for ma-
chine learning. Similarly, information on the use of vectorized
operations is often lost. Characterizing workloads on PTX
level is desirable as PTX allows us to determine the exact types
of the instructions a kernel executes. On the contrary, nvprof
metrics are based on a lower-level representation called SASS.
Still, even if there was an exact mapping, some information on
the exact type would be lost as many instructions of similar
type have only one metric. One example for such a loss of
information is the usage of special floating-point units for
computation of e.g. square-roots or trigonometric functions.

Characterizing GPU kernels on current CUDA implemen-
tations is easily done with nvprof. However, GPU applica-
tions are often computationally intensive and executed for a
considerable amount of time. Even with only a few metrics,
using nvprof to profile an application will result in substantial
overhead and increase of execution time. In the worst case,
probably due to limited hardware resources, kernels have to
be replayed to gather all metrics requested by the user. This
can result in different behavior for data-driven applications.

There are use cases that cannot be satisfied with the limited
information of profiling based on hardware performance coun-
ters, thus the community developed a couple of alternatives.
One class of proposed solutions includes GPU simulators like
GPGPU-Sim [1], Multi2Sim [2] and Barra [3], which are
certainly powerful tools to characterize GPU applications as
nearly every aspect of an application can be investigated. How-
ever, substantial application slow-down and lack of support
for recent GPU architectures often rule them out. Tools like
GPU Ocelot [4] and Lynx [5] replace the CUDA runtime
to instrument and recompile GPU kernels before execution,
which are much more lightweight than simulation. According
to Farooqui et al. [6], just-in-time compilation introduces
14.6 % overhead for a selected application which is a good
result considering that overhead for long-running kernels will
be lower and this step has only to be done once per kernel.
Unfortunately, the maintenance of such tools is cumbersome
and for each new GPU generation substantial effort is required,
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which often results in limitations regarding their use, respec-
tively in these projects being no longer active.

Code instrumentation is flexible as it is easy to reduce
the scope of instrumentation. For instance, only certain parts
of the code, like specific functions which are of interest
to the user, can be instrumented, reducing overall overhead.
Rather than limiting instrumentation of code, the number of
instrumented threads can be reduced as GPUs are thread-
collective processors and the threads exhibit identical or at
least very similar control flow in many cases. Ultimately, one
can reduce the scope of instrumentation to a single thread,
while assuming that other threads of the same kernel behave
very similar. Such an approximation has a huge impact on
instrumentation overhead, as only one thread is profiled instead
of thousands of threads per kernel.

In this work we introduce a new tool called CUDA Flux
that characterizes the executed instructions of CUDA kernels.
It is based on the LLVM compiler framework and instruments
GPU kernels to collect instruction statistics. The detailed
contributions are as follows:

• An extension to the existing LLVM compiler framework
that allows instrumentation of CUDA kernels at compile
time with no need for later just-in-time compilation.

• Exact characterization of all the types of PTX instructions
that are being executed by a kernel, resulting in a large
amount of verbosity.

• Instrumentation with very low execution overhead by ap-
proximating control flow divergence, resulting in minimal
application slow-downs.

• Easy extendability of instrumentation, also leveraging
LLVM community efforts regarding CUDA and PTX
updates. Similarly, the tool maintenance overhead is low
since many updates are already covered by the LLVM
community.

• Adaptable fundamentals which allow very selective in-
strumentation. For example, instrumentation of selected
parts of code for less overhead or higher accuracy on
control flow divergence can be gained by allowing more
instrumentation overhead.

The remainder of this work gives background on the com-
piler framework, source code assembly and limitations of other
currently available tools for workload characterization. Details
of the tool design and the methods follow. The remaining part
addresses the methods for evaluation and their results.

II. BACKGROUND

This section provides a brief background on the used com-
piler framework and the GPU instruction set. While this work
is focused on CUDA, many techniques have corresponding
counterparts in alternative GPU programming frameworks, in
particular OpenCL.

A. LLVM

The compiler framework LLVM [7] natively supports the
compilation of CUDA code, since work of gpucc [8] has
been fully integrated. The framework can be divided in three

different parts: the front end (Clang for C/C++), optimizer
passes, and the back end. Furthermore, the framework provides
a well-defined intermediate representation (IR) of the program
code. These different parts are exchangeable because the IR
neither depends on a particular programming language nor a
target architecture. This allows for very similar compilation
pipelines for CUDA and C/C++ code.

The compilation pipeline can be easily extended by adding
passes to the optimizer passes that analyze or modify the IR.
In the case of CUDA compilation, there are two compilation
pipelines: one for host code and one for device (GPU) code.
The compilation of device code results in PTX code which is
assembled into a fat binary. The host code compilation
pipeline will include this binary and additional code is added
to register and launch kernels.

B. PTX vs. SASS

CUDA is mainly used for NVIDIA GPUs. The code of a
CUDA kernel is usually compiled to PTX. Before execution
on a specific GPU, the PTX code is translated to SASS. Thus,
kernel code can be characterized two different ISAs: PTX and
SASS.

The PTX ISA is an intermediate representation for kernel
assembly [9]. PTX defines a virtual machine for which the
CUDA compiler generates code for. When launching PTX
code, it will be translated just-in-time to the target hardware
instruction set and then executed on the GPU. This has the
advantage that this ISA can be used across different GPU
generations with different instructions sets.

The target hardware instruction set is called SASS [10].
While PTX is well documented by NVIDIA, SASS is less
accessible. There is no guarantee that upcoming GPU archi-
tectures will have a similar ISA. The lack of information and
not guaranteed portability makes the SASS unattractive for
development. However, when optimizing kernels for specific
GPU models, analyzing SASS instructions may be useful.

C. Limitations of Currently Available Tools for Workload
Characterization

Two important criteria for the selection of a tool for a
specific task are the effort that is required to use the tool, and
the quality of the results. Depending on the goal of workload
characterization, the qualities may change.

Considering instruction profiling of CUDA kernels, an im-
portant quality is the scope on which instructions are counted.
For example, operating on high-level C/C++ operators will
ignore that programs are often significantly optimized by
compilers. Viewing PTX instructions is a good compromise
between precision and portability. Emitted PTX code is already
optimized by the compiler and expresses the kernel with
universal operations that can be implemented on any CUDA
device (given certain restrictions regarding supported compute
capabilities).

Regarding the effort required to get the same quality of
results, lower is always better. In some cases it is desirable
to trade lower quality or precision for lower effort or less
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time required, which is in particular true for long-running,
computationally intensive programs.

As nvprof [11] and related tools are based on hardware
performance counters, it is sometimes hard to map the reported
metrics to PTX instructions. To the best of our knowledge, it is
not possible to count a specific type of instruction. Besides this
disadvantage, overhead for profiling can be quite high. These
results are in line with other recent work, which documented
the overhead associated with measuring an increasing amount
of nvprof events [12].

Besides nvprof, there are other profilers for CUDA applica-
tions. SASSI [10] is another instrumentation tool that operates
on low-level assembly language. Mapping these instructions
to PTX instructions should be possible but would require
additional effort for each GPU architecture. In addition, SASSI
is not open source and thus cannot be extended.

CUDAAdvisor [13] is based on LLVM and provides a
profiling framework to guide code optimizations. While the
authors note that CUDAAdvisor is in principal extendable,
the current instrumentation operates on LLVM IR level and
does not directly consider PTX code.

Ocelot is a dynamic CUDA compiler that can generate
code for GPUs and CPUs at runtime. With Lynx, which
is built on top of Ocelot, Farooqui et al. showed how this
concept can be used for instrumentation [5, 6]. Instrumenting
on PTX level is used to count how often each basic block is
executed. Fundamentally, part of Lynx is based on counting
the execution of basic blocks, which is conceptually similar to
this work. Contrary, the instrumentation is done dynamically
at runtime, which adds some overhead that could be avoided.
Furthermore, Lynx is not maintained anymore and PTX ISA
higher than version 3.0 may not work. Compared to Lynx and
its conceptual foundation on Ocelot, this work rather builds on
top of the publicly maintained LLVM infrastructure, hopefully
resulting in a continuous development and no constraints
regarding PTX versions

Besides tools for instrumentation, there are also various
GPU simulators [1, 2, 3]. While simulators provide very
detailed insights, the execution time increase is usually sub-
stantial. Simulating long-running kernels is often not feasible.
Furthermore, most simulators only support rather oldish GPU
architectures and the effort for updating simulator models is
very high.

III. TOOL DESIGN

CUDA Flux analyzes and instruments the kernel code at
compile time. It is embedded into the LLVM compilation tool-
chain for CUDA source files. In this way, the instrumentation
is neatly integrated and will be executed automatically when
the associated wrapper for the Clang front end is used when
compiling.

While executing the resulting binary, information on each
launched kernel is collected and stored for later analysis. In
order to keep the execution overhead low, further analysis is
done separately from the application execution.

Device Source

Clang 
front end 

Device IR

CUDA Flux 
Device Pass 

llc

PTX 

PTX Parsing & 
Instr. extraction 

Instruction Summary 

Modified Device IR

Code Generation

Host Source

Clang 
front end 

Host IR

CUDA Flux 
Host Pass 

Code GenerationFat Binary

Binary 

Modified Host IR

Fig. 1: Workflow of CUDA Flux Instrumentation

Three major components are added to the Clang compila-
tion: a device instrumentation pass, a PTX parser and a host
instrumentation pass. Figure 1 gives an overview on the work
flow during CUDA compilation.

Since a single CUDA file can contain code for host and
device, the same file is compiled in two pipelines, one for
device code and another one for host code. Note that the device
code pipeline has to be executed first because the generated
fat binary has to be embedded into the host binary.

The device IR is modified by the device instrumentation
pass. Before the modification, the IR is compiled to PTX
which is processed by the PTX parser to an instruction
summary.

The fat binary with the modified kernel is handed over
to the Clang pipeline for the host code. During the host
instrumentation, further modifications are added to complete
the instrumentation.

The following subsections will describe in detail what is
done in these three major components, and how the post-
processing step produces the final results.

A. Device Instrumentation Pass

The device instrumentation implements the following func-
tions:

• Provide infrastructure to the kernel to store basic block
counters.

• Instrument basic blocks with code to increase their cor-
responding counter.
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• Emit PTX code using llc.
• Invoke the PTX Parser.

B. PTX Parser

The PTX parser consumes the PTX assembly produced
by llc. The parser does not support the full PTX ISA
specification, as only the instructions and not their operators
need to be processed. Besides the instruction types, the parser
needs to be able to detect functions and basic blocks. The list
of functions, basic blocks and instructions is extracted from
the token list of the PTX assembly and processed into the
instruction summary. The summary is stored for later use in
post-processing.

C. Host Instrumentation Pass

The host instrumentation implements the following func-
tions:

• Replacing kernel invocations with the corresponding in-
strumented kernels.

• Extending kernel launches by providing memory for the
counters, measuring time and storing results.

• Embedding the instruction summary of the parser into the
binary.

Embedding the instruction summary into the binary is only
for convenience, as it allows for an integrated output, including
the counter for the basic blocks along with the list of functions,
basic blocks and instructions.

D. Post-Processing of Profiling Data

The execution of the binary itself only provides basic
block execution frequencies. Based on this information, in
combination with results of the PTX parser, the task of post-
processing is to provide counters for all executed instructions.
For every kernel launch the following information is stored:

• Basic Block execution counts
• Grid and thread block size
• Shared memory used by the kernel
For convenient processing of these executions counts, a list

of all kernels, including their basic blocks and the instructions
they are composed of, is stored. To obtain the final results, the
occurrences of instructions in the kernel list will be multiplied
with their corresponding block counter.

Depending on the usage of the counters, we suggest summa-
rizing closely related instructions into groups. However, this
is ultimately a decision that is left to the user.

E. Limitations

In order to achieve a very low profiling overhead and
only little additional memory requirements, only one single
thread is profiled. As mentioned previously, our use case is
to profile regular workloads, where most of the threads will
have a highly similar control flow. This is an approximation
which should fit the GPU programming model well, as branch
divergence and therefore control flow divergence are common
performance bugs that should be avoided. In some cases,
threads at the edge of the up to 3-dimensional CTA only assist

other threads by e.g. loading data into shared memory and
not taking part in the computation. Such a behavior is not
tracked by the default configuration, however, this can easily
be explored by modifying the instrumentation code. Because
threads on the edges of the grid may behave different from the
majority of threads, the thread performing profiling is located
in the center of a CTA, which itself is in the center of its block
grid.

The Clang front-end of LLVM does not support texture
memory, therefore, applications making use of texture memory
currently cannot be profiled. As soon as LLVM supports
texture memory, the CUDA Flux will also natively support
it.

Since the device pass and the host pass need to exchange
information, the kernel has to be called in the compilation
module in which it is defined. This limitation can be eas-
ily avoided by wrapping the function call. However, this
workaround would require code modifications.

Concurrent kernel execution is currently not supported,
mainly because there is no thread-safe interface to store the
instrumentation results (yet).

Last, due to being still in development, the instrumentation
does only work on kernels with inlined functions. However,
this limitation has not caused any problem so far.

IV. EVALUATION METHODOLOGY

LLVM with the CUDA Flux extension is used to compile
four commonly used benchmark suites. The profiling results
are compared with data gathered with nvprof. Execution time
of the kernels and the applications is also measured. Three
different sets of measurements are done to measure overhead
and to compare with the overhead introduced profiling with
nvprof:

• nvcc without profiling (baseline)
• nvcc with nvprof profiling: overhead of nvprof-based

profiling
• LLVM with CUDA Flux instrumentation: overhead of

profiling based on CUDA Flux
For the evaluation, four benchmark suites are used: Rodinia,

Parboil, SHOC, and Polybench-GPU. Table I reports all ap-
plications which have been used and their number of unique
kernels.

Due to missing support for texture memory within the
LLVM tool chain, the following applications had to be ex-
cluded:

• Rodinia: hybridsort, mummergpu, leukocyte, kmeans
• Parboil: bfs, sad
• Shoc: DeviceMemory, MD, spmv
Additionally, some applications are not used because of

compilation issues:
• Rodinia: cfd, huffman, pathfinder, hotspot
• Parboil: cutcp, mri-gridding
• Shoc: qtclustering
Finally, the GEMM benchmark from the shoc benchmark

suite was not used because there is no kernel which can be
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Benchmark Application Unique Kernels

parboil-2.5 cutcp 1
histo 4
lbm 1
mri-gridding 8
mri-q 2
sgemm 1
spmv 1
stencil 1
tpacf 1

polybench-gpu-1.0 2DConvolution.exe 1
2mm.exe 2
3DConvolution.exe 1
3mm.exe 3
atax.exe 2
bicg.exe 2
correlation.exe 4
covariance.exe 3
fdtd2d.exe 3
gemm.exe 1
gesummv.exe 1
gramschmidt.exe 3
mvt.exe 2
syr2k.exe 1
syrk.exe 1

rodinia-3.1 3D 1
b+tree.out 2
backprop 2
dwt2d 4
euler3d 4
gaussian 2
heartwall 1
lavaMD 1
lud cuda 3
myocyte.out 1
needle 2
particlefilter float 4
particlefilter naive 1
sc gpu 1
srad v2 2

shoc DeviceMemory 6
FFT 6
MaxFlops 36
Reduction 2
Scan 6
Sort 5
Stencil2D 2

TABLE I: Applications of all used benchmark suites and the
corresponding number of unique kernels.

instrumented. The benchmark simply measures a cublas library
call.

V. ACCURACY EVALUATION

In this section, we provide a case example to demonstrate
the verbosity of the metrics that can be gathered using CUDA
Flux. Furthermore, we investigate the accuracy of the approx-
imation when using only one thread to profile a whole thread
grid.

A. Case Example FFT

Replacing the instruction metrics provided by nvprof is
not easily done due to missing documentation how PTX
instructions are mapped to hardware counters. Despite that
PTX and SASS instructions may not be translated one-to-one
in general, the results of nvprof and CUDA Flux should be
similar because the most frequently used PTX instructions are
likely to have counterparts in SASS. To confirm this, we will
create PTX instruction groups similar to nvprof metrics.

NVIDIA’s profiler provides lots of metrics, but usually only
a subset reflects the inherent characteristics of the executed
kernel. As this work considers only profiling of instructions,
we limit the considered metrics to those which represent
executed instructions.

Before compute capability 5.0, only the following metrics
represented executed instructions:

• flop count dp
• flop count dp add
• flop count dp fma
• flop count dp mul
• flop count sp
• flop count sp add
• flop count sp fma
• flop count sp mul
• flop count sp special
• inst bit convert
• inst compute ld st
• inst control
• inst executed
• inst fp 32
• inst fp 64
• inst integer
• inst inter thread communication
• inst issued
• inst misc

These metrics give only very limited insight on what an
application does in detail. With modern NVIDIA GPUs, there
exist more metrics, which can be used to count the executed
memory operations. The categories of those metrics are still
coarse and it is not possible to examine the execution count
of specific operations. This applies to special function units
for e.g. trigonometric functions, video encoding instructions,
and instructions using the recently introduced Tensor Core or
Ray-Tracing units.

The metrics are compared in detail using a kernel of the
FFT application from the shoc benchmark suite as an example.
Listing 1 shows the source code of this kernel. This particular
kernel is suited well to show the differences between profiling
with CUDA Flux and nvprof:

• All threads perform the same amount of work, which
allows to scale the instruction counters with the number
of the total threads executing the kernel.

• The FFT algorithm uses special function units for sine
and cosine functions.

• The underlying data of the imaginary numbers can be
accessed using vectorized loads and stores.

Type T2 is an imaginary number that uses either double
or float data type for each component. Loading imaginary
numbers can be vectorized. The transpose function in line 18
and 25 operates on shared memory. In theory, there could be
vectorized loads on shared memory as well. Sine and cosine
functions are called from the twiddle functions in line 17 and
22.
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1 t e m p l a t e<c l a s s T2 , c l a s s T> g l o b a l
2 vo id FFT512 device ( T2 *work )
3 {
4 i n t t i d = t h r e a d I d x . x ;
5 i n t h i = t i d >>3;
6 i n t l o = t i d &7;
7

8 work += ( b l o c k I d x . y * gridDim . x + b l o c k I d x . x ) *
512 + t i d ;

9

10 T2 a [ 8 ] ;
11 s h a r e d T smem [ 8 * 8 * 9 ] ;
12

13 load <8, T2>( a , work , 64 ) ;
14

15 FFT8<T2 , T>( a ) ;
16

17 t w i d d l e <8,T2 , T>( a , t i d , 512 ) ;
18 t r a n s p o s e <8, T2 , T>( a , &smem [ h i *8+ l o ] , 66 , &

smem [ l o *66+ h i ] , 8 ) ;
19

20 FFT8<T2 , T>( a ) ;
21

22 t w i d d l e <8,T2 , T>( a , h i , 64) ;
23 t r a n s p o s e <8, T2 , T>( a , &smem [ h i *8+ l o ] , 8*9 , &

smem [ h i *8*9+ l o ] , 8 , 0xE ) ;
24

25 FFT8<T2 , T>( a ) ;
26

27 s t o r e <8, T2>( a , work , 64 ) ;
28 }

Listing 1: FFT512 kernel code of the shoc benchmark suite

The results of the double-precision version of this kernel
are show in Table II. These results of CUDA Flux have
been multiplied by the total number of threads for a direct
comparison with nvprof metrics. Part of the loads and stores
are indeed vectorized, as the .v2 identifier in the instruction
name indicates. Note that access to shared memory is not
vectorized. Also, sine and cosine instructions each have their
own counter, respectively.

For a comparison with nvprof, the metrics from table II
are grouped and, for warp-level nvprof metrics, scaled to
reproduce the instruction metrics of nvprof. Table III compares
the obtained results from nvprof and CUDA Flux. Metrics that
start with inst_executed are counted per warp instead of
per thread.

Based on this comparison, we can make the following
observations:

• Vectorized loads and stores are counted as a single load
or store by nvprof and not as multiple ones.

• inst_compute_ld_st counts access to global and
shared memory.

• flop_count_sp does not include trigonometric in-
structions, and probably also not other special-function
unit instructions.

• The metrics flop_count_dp_add, inst_fp_32
and
inst_integer show the largest deviation.

The last observation is difficult to explain. There are two
factors that are probably responsible for the deviation.

1) Faulty mapping between PTX instructions and nvprof
metrics

Metric Name Value

add.rn.f32 0
add.rn.f64 144,703,488
add.s32 2,097,152
add.s64 8,388,608
and.b32 4,194,304
bar.sync 14,680,064
cos.approx.f32 29,360,128
cvt.f64.f32 58,720,256
cvt.rn.f32.f64 29,360,128
cvt.rn.f64.s32 4,194,304
cvta.to.global.u64 2,097,152
fma.rn.f32 0
fma.rn.f64 109,051,904
ld.global.f32 0
ld.global.v2.f32 0
ld.global.v2.f64 16,777,216
ld.global.v2.u64 0
ld.param.u64 2,097,152
ld.shared.f32 0
ld.shared.f64 67,108,864
mad.lo.s32 4,194,304
mov.b32 0
mov.b64 0
mov.u32 8,388,608
mov.u64 2,097,152
mul.lo.s32 2,097,152
mul.rn.f32 0
mul.rn.f64 113,246,208
mul.wide.u32 8,388,608
neg.f32 0
neg.f64 35,651,584
or.b32 2,097,152
ret 2,097,152
shl.b32 2,097,152
shr.u32 2,097,152
sin.approx.f32 29,360,128
st.global.v2.f32 0
st.global.v2.f64 16,777,216
st.global.v2.u32 0
st.global.v2.u64 0
st.shared.f32 0
st.shared.f64 67,108,864
sub.rn.f32 0
sub.rn.f64 144,703,488

TABLE II: Results of CUDA Flux instrumentation for the
double-precision FFT512 kernel

2) Differences between SASS and PTX assembly
It is not exactly known how a PTX instruction translates into

SASS. One PTX instruction may be translated into multiple
SASS instructions. Furthermore, during translation of PTX to
SASS, there is still the possibility to perform optimizations.
For instance, some PTX instruction combinations could be
replaced by a single SASS instruction.

B. Accuracy

If a single thread is representative for a whole kernel, the
total instruction count of CUDA Flux should be in the same
order of magnitude compared to nvprof results. Differences
introduced by PTX to SASS translation should only lead to
small deviations of the instruction count. In cases where a
single thread is not representative, the approximation would
fail and the instruction count could be off by a higher factor.

Figure 2 shows a histogram of the inst executed metric
measured with CUDA Flux, normalized to nvprof results
for almost all applications. The applications spmv and histo
crashed while profiling with nvprof, and the mri-gridding
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nvprof CUDA Flux Ratio
Metric Name

flop count dp 645,922,816 547,356,672 1.18
flop count dp add 301,989,888 144,703,488 2.09
flop count dp fma 121,634,816 109,051,904 1.12
flop count dp mul 100,663,296 113,246,208 0.89
flop count sp 0 58,720,256 0.00
flop count sp add 0 0 -
flop count sp fma 0 0 -
flop count sp mul 0 0 -
flop count sp special 58,720,256 58,720,256 1.00
inst bit convert 92,274,688 94,371,840 0.98
inst compute ld st 167,772,160 167,772,160 1.00
inst control 2,097,152 2,097,152 1.00
inst executed 30,212,096 29,163,520 1.04
inst executed global atomics 0 0 -
inst executed global loads 524,288 524,288 1.00
inst executed global reductions 0 0 -
inst executed global stores 524,288 524,288 1.00
inst executed local loads 0 0 -
inst executed local stores 0 0 -
inst executed shared atomics 0 0 -
inst executed shared loads 2,097,152 2,097,152 1.00
inst executed shared stores 2,097,152 2,097,152 1.00
inst executed surface atomics 0 0 -
inst executed surface loads 0 0 -
inst executed surface reductions 0 0 -
inst executed surface stores 0 0 -
inst executed tex ops 0 0 -
inst fp 32 88,080,384 58,720,256 1.50
inst fp 64 524,288,000 547,356,672 0.96
inst integer 35,651,584 20,971,520 1.70
inst inter thread communication 0 0 -
inst issued 30,216,709 0 inf
inst misc 56,623,104 44,040,192 1.29

TABLE III: Instrumentation results of nvprof and CUDA Flux
for the FFT512 kernel in comparison

benchmark did produce incorrect results. The cause of this
still needs to be investigated.
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Fig. 2: Histogram of inst executed metric measured with
CUDA Flux Profiler normalized to nvprof results

The applications Sort and Stencil2D are also not included.
For these applications, the current approximation is probably
not feasible. For Sort, the CUDA Flux reported 9.02 times
more instructions executed and for Stencil2D the ratio is 35.52.
Looking into the kernels of the Sort applications there is

some branch divergence that could explain the high difference.
Regarding Stencil2D, there is also some branch divergence,
because loading the halo of other tiles is only done by threads
working on items at the edge of the tile. But it is unlikely that
this divergence leads to such a high factor because the number
of these threads should be rather low compared to total number
of threads a CTA. Another outlier is myocyte.out with a ratio
0.0042. Because the application has many kernels, a thorough
investigation would be needed to make a statement regarding
the cause of this.

Referring to Figure 2, many applications have a ratio that is
close to one, actually slightly larger than one to be concrete.
Even though we chose a very simple approximation method
for this work, these results suggest that actually such an
approximation is appropriate, as the overall deviation from
nvprof is quite low. Thus, it suggests that such an approxima-
tion is sufficient when considering regular workloads with very
low or no branch divergence. Still, more studies are required
to assess the trade-off in terms of accuracy and speed in more
detail.

VI. PERFORMANCE EVALUATION

In this section, we will report on performance differences to
an uninstrumented application as baseline; furthermore we also
compare against execution time for nvprof-based profiling. All
experiments are repeated five times and the average execution
time is reported.

Figure 3 shows the execution time measurements. Note that
the y-axis is of logarithmic scale. Benchmarks are ordered
ascending by execution time without profiling. Except for the
spmv application from the parboil benchmark suite, CUDA
Flux outperforms nvprof consistently.

For some applications, the CUDA Flux binary actually
executes faster than the baseline, but without separate measure-
ment of kernel time is not possible to say whether the kernels
are actually executed faster. Six of the seven applications
that execute faster than the baseline are from the polybench
benchmark suite. Those benchmarks compute the result also
on the CPU to compare the accuracy. Since the polybench
benchmark suite originates from the LLVM community, it
might be possible that the binary produced by LLVM is better
optimized compared to the binaries using nvcc. In general,
according to Wu et al. [8], binaries produced by nvcc should
be about as fast as clang.

Table IV reports the detailed results of the measurements.
The nvprof and CUDA Flux columns are normalized to the
baseline execution time. In average, the overhead for using
CUDA FLUX is 13.2 which is a big improvement to nvprof,
which is about 171.01 higher than the baseline.

VII. CONCLUSION

This paper introduces CUDA Flux, a profiler for lightweight
instruction profiling. With the integration into the LLVM
framework, we see this tool as viable alternative to current
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Fig. 3: Plot of benchmark execution times using no profiling, nvprof and CUDA Flux Profiler

tools for workload characterization. Describing CUDA appli-
cations with PTX instructions as an abstraction serves well for
gaining deeper insights on application behavior.

We have shown a couple of advantages compared to hard-
ware performance counters, including accuracy and speed:
accuracy improves as code instrumentation allows a direct
mapping of PTX instructions to counters, and furthermore
avoids grouping effects that often result in ambiguous profiling
results. Also, profiling of the application is much faster: in
average, while nvprof increases execution time by a factor
of 171.01, compared to a non-profiled execution, the total
execution time of an application instrumented by CUDA Flux
is only 13.2 times slower. This fast execution time is achieved
by profiling only one representative thread of a kernel, and by
avoiding costly kernel replays as often employed by nvprof.
While this is an approximation of other threads’ behavior,
we have shown that this works very well for most CUDA
application. Applications whose control flow do not depend
on input data or threadID will have no noticeable accuracy
degradation.

As the fundamental techniques of CUDA Flux allow pro-
filing more threads, it is also possible to increase the instru-
mentation scope, which would greatly improve accuracy on
workloads with divergent control flow. Profiling additional
threads will increase the needed memory bandwidth. With
similar control flow, this bandwidth can be expected to be
increase linear with the number of threads. Depending on
the complexity of the control flow, coalescing and caching
will affect the overhead more or less, which makes it hard
to estimate how much additional overhead is introduced by
profiling more threads. We envision that using a sophisticated

analysis at compile time, the selection of threads needed to
produce representative results could be adapted to the kernel
which is being instrumented.

Finally, it is possible to instrument only specific functions,
which would lower the overhead even more and remove noise
from other code parts.
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